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Abstract—Although Network Function Virtualization (NFV)
has introduced better flexibility and agility to the way network
operators design, manage, and deploy their network services,
it is still challenging to find the optimal real-time placement
of network services which have evolved into complex dynamic
graphs (or VNF-FGs) to satisfy the Quality of Service (QoS)
requirements of their end-users and accommodate their dy-
namically changing service demands. Another crucial challenge
that compounds the complexity of the online network service
provisioning is to efficiently improve the utilization of the limited
resources and reduce energy consumption and costs for service
and infrastructure providers in large-scale networking environ-
ments such as 5G networks, edge computing, and Internet of
Things (IoT). To meet both user and service provider needs, this
paper proposes a novel Transformer-based Deep Reinforcement
Learning (DRL) architecture, called TDRL (Transformer based-
DRL), to address the dynamic energy-aware VNF-FG placement
problem. Our intelligent encoder-decoder architecture leverages
the power of both Graph Attention Networks (GAT) which
extract the important features of the physical network, and
sequence-to-sequence (seq2seq) models with Transformers which
encode the ordered requirements of the complex VNF-FG service
graphs. The main aim of these techniques is to improve the
combined representation of the current state environment, and
help our actor-critic DRL agent learn the optimal policy that
achieves a “one-shot” placement decision of all VNFs in the
service graph, thereby improving placement efficiency and re-
source utilization, especially in large-scale systems. Our extensive
simulation results show that our TDRL approach significantly
outperforms other state-of-the-art baseline learning algorithms
in terms of achieving the optimal balance between acceptance
ratio and energy efficiency.

Index Terms—Energy Efficiency, Deep Reinforcement Learn-
ing, Transformer, Attention, VNF-FG Embedding, Scalability.

I. INTRODUCTION

Network Function Virtualization (NFV) [1] is a promising
networking paradigm that reduces network operating expenses
by decoupling network functions from the underlying ded-
icated hardware, namely the traditional middle-boxes. This
decoupling enables the hosting of network services, known
as Virtualized Network Functions (VNFs), on commodity
hardware (servers), which facilitates and accelerates service
deployment and management by service providers, improves
flexibility, leads to efficient and scalable resource usage, and
reduces operational costs.

Network providers are confronted with the challenge of
securing a stable power supply for their extensive large-scale
networks. Due to the pivotal role of energy as an essential
OPerating EXpenditure (OPEX) factor, its smart control is
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considered as necessary to facilitate network expansion. There-
fore, Communications Service Providers (CSPs) are devoting
much of their efforts to reduce energy consumption of their
network infrastructures. In future communication networks,
traditional management mechanisms, and centralized legacy
solutions show their limitations in ensuring revenue for the
infrastructure providers, the service providers, and a good
Quality of Experience (QoE) for the end-users. The deploy-
ment of these services requires, typically, an efficient alloca-
tion of Virtual Network Function Forwarding Graphs (VNF-
FGs) which is commonly known as the VNF-FG placement
(or embedding) problem.

This paper focuses on the optimal placement of complex
service graphs, or VNF-FGs, which implies the efficient
placement of networking functions and their chaining to meet
tenant requests while ensuring an efficient use of hosting
infrastructure resources. A crucial challenge in this context is
determining the optimal selection of physical servers to host
the VNFs and the optimal set of physical links to interconnect
the ordered VNFs. VNF placement algorithms may consider
various network factors into account. Foremost among these
factors are the resources available on the physical network,
as their efficient utilization directly impacts the network
provider’s profitability. Additionally, it is crucial to focus on
reducing the power consumption. By doing so, not only does
it lower costs for the network provider, but it also contributes
positively to environmental sustainability.

Machine Learning (ML) has recently piqued the interest
of researchers all over the world. ML techniques are already
widely used in networking [2]. However, the majority of
these applications involve supervised learning. Many network-
ing problems are unlabeled and can be viewed as decision-
making issues in an uncertain environment. Reinforcement
Learning (RL) approaches can be used to improve decision-
making speed and accuracy when dealing with large service
requests for dynamically constructing and updating end-to-
end (E2E) slices (or VNF-FGs) across multiple infrastructures.
Furthermore, Deep Reinforcement Learning (DRL), which
combines conventional RL with neural networks, has recently
been employed to efficiently solve complex, high-dimensional
state spaces problems, such as the scalable VNF-FG placement
challenge.

In this context, we propose TDRL, an intelligent energy-
efficient VNF-FG embedding approach using Transformer-
based DRL to address the NP-hard VNF-FG Embedding
(VNF-FGE) problem in large-scale network environments.

The main contributions of this paper are the following:



• We formulate the VNF-FGE problem as an Integer
Linear Programming (ILP) optimization problem. Then,
we model the VNF-FGE decision strategy as a Markov
Decision Model (MDP) and establish a reward function
that aims to achieve a trade-off between maximizing the
acceptance rate (and thus the service providers’ revenue)
and minimizing the power consumption.

• We propose TDRL, a novel attention-based Transformer
mechanism within an encoder-decoder framework that
uses an Actor-Critic network structure, to address the
online VNF-FGE problem.

• Our approach takes into consideration the features of
physical hosts and links, and outputs the mapping de-
cisions of VNFs on physical hosts and the steering of
inter-VNF traffic across the hosts with verification of QoS
constraints and consideration of energy efficiency.

• Through extensive simulation experiments, we demon-
strate that our TDRL method performs better than exist-
ing algorithms. It achieves a higher acceptance rate, uses
less power, and runs in a linear time frame.

The remainder of this paper is organized as follows. Sec-
tion II discusses the related work and provides an overview of
existing research on energy-efficient VNF-FG placement and
MARL methods. Section III formulates the VNF-FGE problem
and Section IV describes the proposed model. Section V
outlines the performance evaluation and simulation results.
Finally, Section VI summarizes the main findings.

II. RELATED WORK

The VNF resource allocation problem in the single-domain
scenario has received significant attention. While the majority
of studies focused on the placement of simple single-VNF
services, a few recent works addressed the realistic placement
of complex service graphs involving multiple interconnected
VNFs, or VNF-FGs. Different approaches have been followed
in the literature to address the intra-domain VNF-FGE problem
depending on the problem’s characteristics and objectives.

To find exact solutions, the VNF-FGE optimization problem
has been mathematically formulated as an Integer Linear
Programming (ILP) [3]–[6], a Mixed Integer Linear Problem
(MILP) [7], or an Integer Non-Linear Program (INLP) [8].
Since the problem is NP-hard, the resolution was only pos-
sible for small network instances, and different strategies are
considered to solve the ILP problem for larger instances [9].

Soualah et al. [10] proposed ILP-based algorithms that
reduce the number of selected candidate servers/hosts from the
infrastructure to control complexity and improve scalability.
The proposed embedding algorithms, which work in both
online and batch modes, relied on VNF sharing across tenants
to optimize physical resource usage and power consumption
and increase provider revenues. In the same spirit, Tomassilli
et al. [11] approached the problem as a Set Cover Problem,
offering a relaxed ILP formulation. The authors propose an
efficient and near-optimal logarithmic factor approximation
algorithm based on LP rounding with proven theoretical per-
formance results for the placement of chains of VNFs with
ordering constraints. Their goal was to minimize the total
deployment cost while satisfying the SFC requirements. On

the other hand, due to the scalability limitations of the above-
mentioned strategies and their limited performance for real-
world applications (associated assumptions), heuristic-based
and meta-heuristics-based solutions with lower complexity
have been proposed to obtain approximate solutions in a viable
execution time [12], [13]. Authors in [12] propose “Holu”, a
fast heuristic algorithm to tackle the power-aware and delay-
constrained joint VNF placement and chaining problem by di-
viding it into two sub-problems: a VNF placement based on a
centrality-based ranking method, and a VNF routing based on
a Delay-Constrained Least-Cost (DCLC) method. Khebbache
et al. [13] formulated the SFC placement problem as a multi-
objective optimization problem and proposed a meta-heuristics
evolutionary algorithm based on the Non-Dominated Sorting
Genetic Algorithm (NSGA-II) to minimize the total VNF map-
ping cost and maximize the physical link utilization. Although
meta-heuristics are known to perform better than heuristics
in solving complex optimization problems and adapting to
changing real-life contexts and dynamic environments, they
can encounter convergence issues. Given these limitations,
Reinforcement Learning (RL)-based approaches have been
explored [14] to solve the on-demand placement of virtualized
services in complex and uncertain network environments. In
[14], the authors leverage the RL benefits to solve the VNF-
FG problem in dynamic networks, in which an agent learns
from past experience an optimal policy to use resources more
efficiently, maximize the number of accepted requests, and
increase the long-term provider revenue. Their Q-Learning-
based approach was enhanced with an expert knowledge
mechanism to accelerate the training process and thus improve
efficiency and performance.

More recently, Deep Reinforcement Learning (DRL) tech-
niques have shown great potential in addressing the high-
complexity associated with the VNF-FGE problem in large-
scale networks [15]–[20]. Quang et al. [16] modeled the
VNF-FG allocation problem as a Markov Decision Process
(MDP) and implemented an efficient and lightweight DRL-
based actor-critic approach to maximize the number of allo-
cated VNF-FGs with their QoS requirements in the substrate
networks. The authors enhanced the conventional Deep De-
terministic Policy Gradient (DDPG) to provide feasible VNF-
FGE solutions while improving the exploration of the large
action space for the DRL agent.

VNF-FG deployment has been optimized through various
objectives and aspects. However, the primary consideration of
energy remains an open challenging topic, particularly in a
graph-structured Service Function Chain (SFC) environment.
In [18], authors modeled the energy-efficient graph-structured
SFC as a combinatorial optimization problem, where a Graph
Convolutional Network GCN-based DRL was proposed to
minimize the energy consumption by autonomously selecting
nodes with adequate resources. It is also notable that the work
by Tajiki et al. [21] is one among the few attempts to address
the problem of service function chaining with the goal of min-
imizing energy consumption. Several heuristics were proposed
consisting in iteratively placing the VNFs in series using the
nearest search procedure. In [22], a sampling-based Markov
Approximation (MA) approach, using replications, is proposed



for the energy-efficient VNF placement problem. This method
needs a long time to find a near-optimal solution which makes
it impractical. Indeed, solutions that take into account multiple
parameters as in [21], [22] seem to have limited applicability
and are more efficient in the cases of a small number of user
nodes, due to their complexity costs. Unlike these works, our
approach introduces a “one-shot” methodology for VNF-FG
placement, handling all VNFs in one single step rather than
sequentially. This not only accelerates the response to VNF-
FG requests, but also minimizes potential inefficiencies that
may arise when VNFs are placed sequentially.

III. VNF-FG EMBEDDING PROBLEM FORMULATION

Our scenario involves a set of network service requests
that need to be efficiently mapped on top of the physical
network with the aim of maximizing service acceptance and
minimizing the overall power consumption of the infrastruc-
ture. However, this optimization must adhere to the constraints
imposed by the resource demand specified by each service.
First, we present the physical network model and that of the
network services. Then, we provide the formal definition of
the VNF-FG embedding problem.

A. Physical network (NFV Infrastructure (NFV-I))
To model the physical network, we designate the servers

as a set of nodes denoted as Np and their connections as
Lp. As a result, the physical network can be represented by a
weighted undirected graph Gp, where Gp = (Np, Lp). Each
node in the graph corresponds to a server that has resources
such as Central Processing Units (CPUs) and Random Access
Memory (RAM). The available resources are quantified as
rnp . Additionally, we consider the available bandwidth for link
resources, denoted as blp with lp ∈ Lp.

B. VNF-FG requests
We denote the nodes and links as Nv and Lv for service

request (or VNF-FG) i with time arrival ti. So, we can
model the VNF-FG as a directed graph Gv = (Nv, Lv). The
requested resources of each VNF nv

i ∈ Nv
i are denoted as

rnv
i

where r refers to the resource and i to the request. We
can group the resources of each VNF nv

i in SFC i as a vector
rnv

i
= [rnv

i ,1
,..,rnv

i ,k
,..,rnv

i ,|K|], where rnv
i ,k

is the amount of
resource k ∈ K requested by VNF nv

i . The bandwidth demand
of virtual link lvi ∈ Lv

i is represented by blvi .

C. Problem formulation
The objective of this paper is to minimize the power con-

sumption (PC) and maximize the acceptance ratio (AR) while
guaranteeing the success of VNF-FG deployment. For sim-
plicity, we assume that the power consumption of all physical
network nodes is directly proportional to the CPU utilization
(i.e., depending also on the number of active/working servers
in the physical network). The main aim is to minimize the
overall power consumption in the whole physical network, by
putting into sleeping mode all non-utilized physical nodes that
are at idle power consumption while accommodating VNF-
FGs’ demands.

Our objective considers jointly the power consumption and
the acceptance ratio. Let us denote the trade-off parameters

TABLE I: Main notations
Notation Description

Np Set of nodes for physical network

Lp Set of links for the physical network

rnp Amount of resources r available in physical node np

rmax
np Maximum capacity of resources r of physical node np

blp Amount of bandwidth available in physical link lp

bmax
lp Maximum capacity of bandwidth of physical link lp

Nv Set of VNFs

Lv Set of virtual links

rnv
i

Amount of resources r required by VNF nv
i in SFC i

blvi Bandwidth demanded by link lvi in SFC i

as e1 and e2, where e1 represents the weight for energy
consumption and e2 represents the weight for the acceptance
ratio. These parameters satisfy the condition e1 + e2 = 1.

We consider the computing resources of physical nodes
and the bandwidth of physical links as constraints in our
optimization problem. These constraints are combined with
the optimization objective to define the overall problem :

• Each VNF can be deployed at only one substrate node
np; therefore :∑

np

Mnv

np ≤ 1, ∀nv ∈ Nv (1)

• A VNF is successfully deployed when its substrate node
has sufficient resources, i.e. the total amount of the
required resource k of VNF-FG i mapped on np should
not exceed its residual amount of resources.∑

nv

Mnv

np × rnv,k ≤ rnp,k, ∀np ∈ Np, ∀k ∈ K (2)

Where Mnv

np is a binary variable indicating if VNF nv is
deployed at substrate node np and rnp,k is the available
amount of resource k in physical node np.

• In our case, we focus specifically on the bandwidth
metric for the successful deployment of a virtual link
lvi . This involves ensuring that the associated VNFs are
deployed successfully and that the Quality of Service
(QoS) requirements related to the bandwidth are met:∑

lv

M lv

lp × blv ≤ blp , ∀lp ∈ Lp (3)

• If the VNF-FG i is accepted, the path mapped in the
physical network should traverse through VNFs following
the order specified in the request. We denote I(np) and
O(np) as the sets of incoming and outgoing links of
physical node np. Additionally, nv

i,s and nv
i,d represent

the source and destination VNFs of the virtual link lvi .

∑
lp∈I(np)

M
lvi
lp −

∑
lp∈O(np)

M
lvi
lp = M

nv
i,d

np −M
nv
i,s

np ,∀lvi ∈ Lv
i

(4)
A VNF-FG is considered accepted if and only if all of its

constituent VNFs and Virtual Links (VLs) are successfully



allocated and the Quality of Service (QoS) requirements are
met. The objective is to maximize the number of accepted
VNF-FGs and minimize the power consumption.

Maximize: e1 × AR − e2 × PC
Adhering to: (1), (2), (3), (4)

IV. TDRL: TRANSFORMER-BASED ACTOR-CRITIC
APPROACH FOR VNF-FG EMBEDDING

A. MDP model for DRL

Under the DRL model, the agent-environment interaction
is formalized as a Markov Decision Process (MDP). Within
this framework, an agent operates with an environment E
in discrete time steps, aiming to enhance its performance
through experiential learning. At each time step t, the agent
perceives an observation ot from the environment, processes
this information to determine an action at, and subsequently
obtains a reward rt. We assert that the environment is fully
perceptible, indicating that the state, denoted as st, at time
step t aligns with the observation ot. In the following section,
we will provide an overview of the state, action, and reward.

1) State: To achieve a fully perceptible environment, it
is essential to integrate the descriptions of both the physical
network and the VNF-FG request. Accordingly, we define the
state as st = (spt , s

v
t ) which incorporates:

• The physical network state spt : In the given context,
the current state of the physical network is denoted as
spt = (A,X). The adjacency matrix of the network,
A ∈ R|Np|×|Np|, represents the network’s connections,
while X ∈ R|Np|×F illustrates the feature matrix of the
physical nodes. Each row of X refers to a F -dimensional
feature vector of physical node np.
To describe the physical nodes, we consider various re-
sources as features. These include the available CPU cnp ,
the maximum CPU capacity cmax

np , the sum of available
bandwidth Bnp =

∑
lp∈L(np) blp , and the maximum

bandwidth Bmax
np =

∑
lp∈L(np) b

max
lp of adjacent links

L(np) as features of each physical server np. To ensure
consistency, we normalize these values into the [0, 1]
range. This normalization process guarantees a uniform
representation for the considered features.

• The VNF-FG request state svt : This denotes the current
state of the VNF-FG request i, which consists of the
required amount of resources rnv

i
of VNF nv

i , the required
bandwidth blvi of virtual link lvi , and the number of VNFs
remaining to be placed.

2) Action: At time step t, the agent makes a selection of
servers to simultaneously instantiate all the Virtual Network
Functions (VNFs) of the current VNF-FG request. The action
taken by the agent is thus represented as At = {np ∈
Np|rnv

i ,k
≤ rnp,k,∀k ∈ K}, indicating the servers responsible

for deploying the VNF-FG. It is possible for a server to host
multiple VNFs, as long as the available resources of the server
can satisfy the deployment requirements and constraints.

3) Reward: We adopt both the acceptance rate and power
consumption as the reward for an action. A VNF-FG is
deployed when all VNFs and virtual links (VLs) are deployed
successfully. The acceptance ratio (AR) has recently been

adopted to assess the performance of VNF-FG embedding
algorithms [23]. Unlike previous approaches, which just use
the acceptance ratio as a simple reward function, we introduce
in our proposed TDRL approach, as shown in Eq. 6, a
constrained reward expression to penalize decisions if the
global consumed power at time t, PCG(t) is very high.

The power consumption, at time t, of a physical node np ∈
Np is estimated as defined in [24], [25] based on the following
equation:

Pt(n
p) = P idle(np) +

[
PM (np)− P idle(np)

]
× Ut(n

p) (5)

where P idle(np) is the power consumption where the machine
np is at the idle state. PM (np) is the maximum power
consumption. It is reached when the physical machine is fully
used. Ut(n

p) is the usage rate (i.e., a value between 0 and 1)
of the initial CPU capacity.

The global consumed power at time t, PCG(t), equals the
sum of the power consumption of the activated servers at
time t. Formally, PCG(t) =

∑
np∈Np Pt(n

p).
Equation 6 presents the reward expression used for perfor-

mance evaluation.

R = e1 ×AR− e2 × PCG(t) (6)

where PCG(t) is the penalty term. The weights e1 and e2,
which are assigned equal values, are respectively allocated
to the acceptance ratio and power consumption. The weight
e1 emphasizes the importance of acceptance ratio, while e2
penalizes excess power consumption. This equal weighting
allows us to balance these crucial factors, reflecting the real-
world necessity of optimizing multiple goals harmoniously.

B. TDRL model architecture

Our approach integrates Deep Reinforcement Learning
(DRL) using Graph Attention Networks (GAT) [26], and a
Transformer architecture [27] to optimize VNF-FG placement.
In this framework, the encoder component of the Trans-
former is responsible for encoding the VNF-FG requests.
Concurrently, the GAT network is employed to capture the
features of the physical network. These two representations
are then merged to form a full description of the environment
state. Then, the decoder component of the Transformer makes
“one-shot” placement decisions for the VNFs of a VNF-FG
request. This approach enhances both placement efficiency and
resource utilization in large-scale systems.

1) Network state embedding: The challenge of assigning an
appropriate host in the physical network for each VNF within
a VNF-FG is fundamentally based on the relevance of the
environment’s observation. Indeed, the accurate observation
provides a comprehensive understanding of both the current
state of the physical network and the demands of the VNF-
FG enabling the agent to build a placement policy on the most
relevant information. We learn separately the physical network
embedding using a Graph Attention Network (GAT) and the
VNF-FG embedding leveraging the encoder component of the
Transformer model. GAT was selected for physical network
modeling due to its suitability for environments with a con-
stant topology but a changing resource utilization. Conversely,
the Transformer’s encoder was used for sequential VNF-FG
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Fig. 1: Our TDRL architecture.

arrivals, as it excels in handling sequential data and capturing
interdependencies among VNF-FGs.

a) GAT for physical network embedding: GATs are neu-
ral networks that use an attention mechanism to handle graph-
structured data. They were first introduced by Veličković et al.
in [26]. GATs are capable of focusing on the most informative
parts of the input data.

A GAT consists of several layers, each performing the
following computation steps:

• Self-attention mechanism: Each node i’s feature vector,
hi, is first linearly transformed using a shared weight
matrix W. We then perform self-attention on the nodes
(i.e., a shared attention mechanism a) by computing
attention coefficients:

eij = a(Whi,Whj) (7)

Where the attention coefficients between node i and node
j can be computed as:

eij = LeakyReLU (a⊺[Whi∥Whj ]) (8)

where ·⊺ represents transposition, ∥ represents concate-
nation, and LeakyReLU (Leaky Rectified Linear Unit) is
the activation function used in our case.
The attention mechanism a is a single-layer feedforward
neural network, parametrized by a weight vector “a”.

• Normalization: The attention coefficients are then nor-
malized using the softmax function:

αij = softmaxj (eij) =
exp (eij)∑

k∈Ni
exp (eik)

(9)

• Aggregation: The next layer features are computed as
a weighted sum of the neighbors’ features, with weights
given by the normalized attention coefficients:

h
′

i = σ

∑
j∈Ni

αijWhj

 (10)

where σ denotes a non-linear activation function.
The attention mechanism in GATs enables the model to

assess the influence of each neighboring node based on its fea-
tures, leading to a more detailed representation of the network.
This feature is particularly beneficial in physical networks,
where the connections between nodes are key indicators of
the network’s overall state and dynamics.

b) Transformer Encoder for VNF-FG embedding: The
host assigned to a VNF has an impact on the assignment of
other VNFs and is also impacted by them. That is why con-
sidering the effective capture of inter-dependencies between
nodes in the VNF-FG embedding task is perceived as essential.

To that end, we deploy a Transformer encoder in our TDRL
architecture. This model, first introduced in the seminal paper
“Attention is All You Need” by Vaswani et al. [27], is a kind
of neural network architecture that counts heavily on attention
mechanisms, ensuring equal attention to all parts of the input
sequence, and that captures the relationships between their
features. In contrast, traditional sequential models, such as re-
current neural networks (RNNs), analyze the data one element
at a time. As the interval between the elements expands, their
ability to capture and understand these distant dependencies
diminishes, decreasing their performance in such tasks. The



Transformer encoder consists of a set of blocks, each block
consists of the succession of two sub-layers: the self-attention
mechanism and the feed-forward neural networks. The self-
attention mechanism allows the model to attend to different
positions within the input sequence and captures relevant
contextual information. Here is the formula for self-attention:

Attention(Q,K, V ) = softmax
(
QKT

√
dk

)
V (11)

In this equation, Q, K, and V represent the query, key, and
value vectors, respectively. The softmax function is applied to
the scaled dot-product of the query and key vectors, divided
by the square root of the dimension of the key vector, dk.
Finally, the result is multiplied by the value vector.

The output of the self-attention mechanism is then passed
through a feed-forward neural network (FFN) that consists of
two linear transformations followed by a non-linear activation
function, typically ReLU. Here is the formula for the FFN:

FFN(x) = ReLU(xW1 + b1)W2 + b2 (12)

In this equation, x represents the input, W1, b1, W2, and b2
are the learnable weight and bias matrices.

By employing these components in the Transformer en-
coder, we can effectively capture and represent the require-
ments of each VNF in the VNF-FG, enabling more robust and
efficient processing of the graph for various network functions.

We selected the Transformer model for three main reasons.
First, it is computationally efficient for each layer. Second,
it allows many operations to be done simultaneously, making
them faster. Third, it is good at handling complex relationships
in the data because the signals inside the network do not have
to go through many steps.

Transformers process the entire input at once, giving equal
attention to all parts of the input sequence. This capability
makes them more suitable for tasks where inter-dependencies
are crucial.

2) Policy learning with an Actor-Critic algorithm:
a) Transformer Decoder for the Actor network: Let s

denote the state at any time step, which is represented as
a sequence of VNFs, {v1, v2, . . . , vn}. We define an actor
network A parameterized by θ that maps states to actions. In
our model, the actor network is a Transformer decoder. Our
choice of a Transformer decoder as the component to generate
the placement policy, is motivated by:

A(s; θ) = TransformerDecoder(s; θ) (13)

• Variable-length sequence handling: A VNF-FG is a se-
quence of VNFs which can vary in length. The Trans-
former Decoder inherently handles sequences of variable
lengths, making it suitable for this task.

• Modeling inter-dependencies within the VNF-FG: The
self-attention mechanism in the Transformer decoder al-
lows it to model dependencies between different elements
in the sequence. In the context of the VNF-FG, this
means that the placement of one VNF can impact the
placement of subsequent VNFs within the same graph.
Through its self-attention mechanism, the Transformer

decoder can learn these dependencies, which can lead
to better placement decisions.

• Temporal dependencies across VNF-FGs: The ability of
the Transformer decoder to use its previously generated
outputs as inputs can also allow it to learn temporal
dependencies across different VNF-FG placements.

The architecture of the Transformer decoder consists of a
set of identical layers, each layer contains three sub-layers, as
detailed below:

- Self-Attention Mechanism: This sub-layer helps the model
focus on different parts of the input sequence. The output of
the self-attention mechanism in layer l is computed as:

Zl
self-attention = Attention(Ql,Kl, V l), (14)

where Ql, Kl, and V l are the queries, keys, and values
respectively. They are all derived from zl, the output from the
previous layer (or the input sequence for l = 0).

- Cross-Attention Mechanism: This sub-layer is traditionally
used in the Transformer model to allow the decoder to focus
on different parts of the input sequence. The output of the
cross-attention mechanism in layer l is computed as:

Zl
cross-attention = Attention(Ql,Kl

enc, V
l

enc), (15)

where Ql is the same query from the self-attention mecha-
nism, and Kl

enc and V l
enc are the keys and values derived from

the encoder output.
- Feed-Forward Network: This is a simple feed-forward

neural network that consists of two linear transformations with
a ReLU activation in between. The output of the feed-forward
network in layer l is computed as:

Zl+1 = FFN(Zl
cross-attention). (16)

b) Transformer Decoder for the Critic network: The
critic network is deployed as a Transformer decoder that
estimates the Q-value using Vω = (st, at). It plays a crucial
role in evaluating the performance of an action by estimating
the quality of the state-action pair. By analyzing the Q-value,
the critic network assesses whether an action performs well or
poorly in a given state.

The Q-value represents the expected cumulative reward that
an agent can achieve by taking a particular action at in a
specific state st, considering the future rewards and possible
future states. Through its deep neural architecture, the critic
network learns to approximate this Q-value by processing the
state and action inputs.

By estimating the Q-value, the critic network provides
valuable feedback to the reinforcement learning agent. This
feedback guides the agent’s decision-making process, enabling
it to select actions that maximize the expected cumulative
reward. In essence, the critic network serves as a powerful
tool for evaluating and assessing the performance of actions
in the context of an RL setting.

Q(st, at;ω) = E[Rt+1 + γmax
a

Q(st+1, a;ω)|st, at], (17)

where: Q(st, at;ω) is the Q-value function, parameterized
by ω, which estimates the expected return for taking action at



in state st, Rt+1 is the immediate reward after taking action
at in state st, st+1 is the state following st, γ is the discount
factor, which determines how much future rewards contribute
to the Q-value. The expectation E[·|st, at] is conditioned on
the current state-action pair (st, at) and averages over the
possible next states and rewards and the maxa operation
selects the action that yields the highest Q-value in the next
state st+1.

V. PERFORMANCE EVALUATION

This section presents the evaluation methodology and the
simulation results. The algorithms are compared using ex-
tensive simulations where both the service requests and the
hosting network infrastructure are generated using standard
graph generation tools (such as the Waxman topology model
[28]) and real infrastructure topologies.

A. Simulation setup

We randomly generate a physical network with 100 nodes
and 500 links, following the Waxman topology model [28],
which imitates a medium-sized infrastructure. The CPU re-
sources of nodes and the bandwidth of links in the physical
network are uniformly distributed with 50 to 100 units. In
each episode, 1000 VNF-FG requests arrive at the system
sequentially according to a Poisson process with an average
arriving rate of 20 per 100 time units.

Specifically, each VNF-FG request consists of different
numbers of VNFs from 5 to 15 according to the uniform
distribution and has a lifetime exponentially distributed with
an average of 1000. The node and link resources demand of
VNF-FG requests are generated from the uniform distribution
of 2 to 30. Our model architecture is built with PyTorch.
Adam optimizer is employed to update the parameters of
neural networks. Our simulation experiments are executed on
a computer with 2.60 GHz Intel Core i7-9750H CPU and 16
GB of RAM. During the testing phase, only the actor network
of the trained agent works to place 1000 VNF-FG requests.
The simulation parameter values are given in Table II.

TABLE II: Simulation parameters
Learning rate of actor and critic 10−1

Batch size 32

τ delayed network update rate 0.1

γ discount factor 0.95

Number Transformer layers 4

Number of attention heads 4

Optimizer Adam

B. Baseline algorithms

To evaluate the efficacy of our proposed TDRL method, we
choose the following two methods for comparative analysis:

• GRU-A3C [29]: A methodology that employs the Asyn-
chronous Advantage Actor-Critic (A3C) [30] algorithm
for concurrent training of both policy and value function
estimations. To capture the orderly requirements of VNF-
FG requests, the approach utilizes an encoder from a

Seq2Seq model, implemented using a Gated Recurrent
Unit (GRU) network.

• GRC [31]: A heuristic algorithm that maps VNFs into
physical nodes based on the global capacity of resources.

C. Performance metrics

The metrics used for performance evaluation are typical
indicators for placement algorithms and are defined below:

1) Acceptance ratio: is the ratio of incoming service
requests that have been successfully deployed on the network
to all incoming requests. In other terms, the rate of VNF-
FG requests that have been accepted due to physical resource
limitations (i.e., available CPU). Maximizing this quantity is
equivalent to minimizing the rejection rate of requests.

2) Power consumption: The global consumed power at
time t, PCG(t), is equal to the sum of the power consumption
of the activated servers at this time t.

Formally, PCG(t) =
∑

np∈Np Pt(n
p).

3) Execution time: is the time needed to find an embedding
solution for each VNF-FG request. This metric reflects the
ability of algorithms to scale with problem size. It is a decisive
measure that assesses algorithm scalability. Service providers
favor efficient and fast algorithms to quickly serve clients,
especially in the context of large-scale network environments.

D. Results and discussion

We analyze the training loss to assess the performance of
our TDRL-DDPG approach. As depicted in Figure 2, the loss
functions for both TDRL-DDPG and GRU-A3C decrease after
a few initial steps. However, the critic loss for TDRL-DDPG
is notably more stable compared to that of GRU-A3C. This
enhanced stability, along with the convergence to a steady
state, contributes to a more consistent output policy for online
VNF-FG placement. The observed rapid convergence is a
result of extensive hyper-parameter tuning, a critical aspect
of our training process.

Figure 3 depicts the mean acceptance rate of VNF-FG
requests achieved by each algorithm. The acceptance rate of
our TDRL-DDPG is higher than that of the GRU-A3C by
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Fig. 2: TDRL-DDPG Critic Loss during training



23.38% and better than GRC by 40.46%. The TDRL approach
employs the Transformer architecture’s encoder to capture the
ordered requirements and inter-node dependencies within the
VNF-FG, and uses Graph Attention Networks (GAT) to obtain
a nuanced representation of the physical network. The merged
representation of the two high-dimensional representations
gives a comprehensive view of the environment, facilitating
more informed decision-making. This integration empowers
the Transformer’s decoder to execute “one-shot” placements
for the entire VNF-FG, thereby enhancing efficiency and
resource utilization.

The average power consumption of all three compared algo-
rithms is presented in Figure 4. The proposed TDRL approach
achieves an average power consumption around 31 × 103

watts versus 38× 103 watts for GRC. Notably, our approach
involves the optimization of two primary criteria: maximizing
the acceptance ratio and minimizing power consumption. The
pursuit of this dual optimization objective adds some com-
plexity, further intensifying the challenges we encountered.
However, our TDRL-DDPG method excels in achieving the
optimal balance between these two contrasting objectives. It
is worth noting that the baseline GRU-A3C approach achieves
lower energy consumption but at the expense of a reduced
acceptance ratio.

This observation strongly implies the presence of a compro-
mise between the two optimization criteria. Consequently, we
manage to achieve an optimal acceptance ratio while simulta-
neously maintaining a reasonable level of power consumption.

The aspect that deserves more attention is the algorithms’
execution time as reported in Table III which clearly shows
that the TDRL-DDPG and GRU-A3C methods have the best
performance for this metric since they find solutions for the
VNF-FG requests placement in a few milliseconds for 100
nodes, a few tens of milliseconds for 500 nodes. In addition,
the reported results indicate that the execution times of the
compared approaches grow linearly.

TABLE III: Execution time (ms)

Algorithms

NFV-I
100 200 300 400 500

TDRL-DDPG 9.71 16.92 25.13 33.84 42.07

GRU-A3C 6.77 14.17 21.32 29.35 36.54

GRC 14.98 28.95 43.75 59.81 76.24

Table III reports the execution time performance of the
algorithms to gain insight into their scalability and complexity
with problem size. To evaluate this metric, we generate 1000
VNF-FG requests and vary the physical network (NFV-I)
size from 100 to 500 nodes. These results indicate that the
GRU-A3C algorithm has significantly better execution time
when compared to our TDRL-DDPG algorithm and GRC’s
execution time. However, the faster execution times of the
GRU-A3C algorithm are accomplished at the expense of the
number of accepted requests. Indeed, for the scenario where
NFV-I is equal to 100 nodes, our TDRL-DDPG achieves
78.1% as acceptance rate, versus 63.3% for the GRU-A3C,
while the GRC accepts only 55.6%. The extra time taken by
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Fig. 3: Acceptance ratio for different VNF-FG requests.
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Fig. 4: Power consumption for different VNF-FG requests.

the TDRL-DDPG is due to the ability of our TDRL approach
to find more feasible solutions and hence accept more requests.

VI. CONCLUSION

This paper proposes a smart energy-efficient algorithm
for VNF-FG placement and chaining in NFV-enabled infras-
tructures. Using a Transformer-based DRL mechanism, our
solution reduces the global data-center power consumption
through consolidation at the hardware level and optimizes
the QoS for clients by optimally sharing the VNFs across
multiple tenants at the service level. Simulation results of our
approach confirm the applicability and the energy efficiency of
our TDRL architecture. For large-scale topologies, our results
highlight the scalability of our proposal which is ensured by an
attention-based mechanism that extracts the relevant features
from the underlying physical network. That said, our approach
guarantees a balanced trade-off between service acceptance,
energy savings, and scalability. In future work, we will address
in-depth topics like VNF scaling, efficient migration methods,
and strategies for fault-tolerant placement.
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