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Abstract. This paper deals with a nonlinear theory of equivariant con-
volutional neural networks (CNNs) on homogenous spaces under the ac-
tion of a group. Many groups of image transforms �t this framework.
The purpose of our work is to have a universal equivariant representation
of nonlinear maps between image features which is based on mathemat-
ical morphology operators for groups. In particular, we combine some
powerful results of universal representation of nonlinear mappings with
the equivariance properties of morphological group operators.
The approach considered here is signi�cantly di�erent from other theories
of representation of equivariant CNNs. On the one hand, it is founded on
results from lattice theory and other hand, it deals with the universal rep-
resentation of nonlinear maps, which can involve in a uni�ed framework
(linear) convolutions, activation functions and other nonlinear layers.

Keywords: deep learning ; mathematical morphology ; group morphol-
ogy ; equivariant CNN; nonlinear representation theory.

1 Introduction

Figure 1 depicts the typical operators (layers) in a convolutional neural network
(CNN) block formalized by the nonlinear map Ψ . Let us consider a group G, now
G-CNN means that Ψ is equivariant to the group action Tg, g ∈ G; i.e., Ψ (Tgf) =

T
′

gΨ(f). We consider that feature maps in these networks represent functions (or
image �elds) f(x) on a homogeneous space and the layers are equivariant maps
between spaces of functions, i.e., [Tgf ](x) = [f ◦ g−1](x) = f(g−1x).

The theoretical study and implementation of equivariant CNNs and more
generaly of equivariance in deep learning is an active area with many contribu-
tions. General theory of equivariant CNNs on homogenous spaces [5] or on com-
pact groups [12] considers mainly the generalization of convolution to groups and
how any linear equivariant layer can be represented by combinations of equivari-
ant group convolutions. The nonlinearity aspects of deep learning are secondary
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Fig. 1. Typical operators (layers) in a CNN block.

in this kind of approach and basically limited to point-wise nonlinearities. We
propose to address in this paper the representation of nonlinear equivariant lay-
ers using group morphology and general morphological representation theory.

The interest of morphological scale-spaces in the context of equivariant deep
learning has been explored previously from the perspective of Hamilton�Jacobi
PDEs on groups [6,24]. This work proposes an initial contribution on the interest
of group morphological operators for equivariant deep learning sketched in [1].
More precisely, our approach is a representation theory for nonlinear equivariant
deep learning operators Ψ based on ordered structures (lattice algebra, tropical
semirings) which will bring up the relevance of group morphological operators.
However note that we are not dealing with the implementation of group mor-
phological operators.

The main references of group morphology are the work done by Roerdink
in [20,22], see also his papers on the commutative group case [19] or on the
group of transformations for the camera projective model [21]. Another inter-
esting theoretical contribution, in particular to the case of the a�ne group was
proposed by Maragos [15]. The case of abelian groups was studied in detail in
these references too [8,10]. Another related work which can be of interest for the
reader is the de�nition of Minkowski product, instead of the sum, of two sets on
the complex plane [7]. To the best of our knowledge, group morpholoy has been
mainly used to solve problems on robotics, i.e., �nding obstacles and free space,
and on symmetry detection, both applications in [13].

Organisation of the paper. The rest of the paper is organized as follows.
Section 2 provides a review of the main theoretical results of universal represen-
tation of nonlinear (increasing) operators using mathematical morphology. An
introduction to group morphology on homogeneous spaces is given in Section
3. The main contribution of our work is considered on Section 4 with a �rst
general result on the morphological representation of equivariant CNNs. Some
persectives in Section 5 close the paper.



2 Universal representation of nonlinear operators

In this section, we review the fundamental results for the morphological represen-
tation of nonlinear operators based on lattice algebra. We focus in particular on
the case of increasing operators and provide just the references for the extension
to non-increasing mappings.

2.1 Characterization of increasing operators on a complete lattice

Let us start by the most general result for the representation of any increasing

nonlinear operator Ψ in a lattice L with partial order ≤, i.e., X,Y ∈ L, X ≤ Y
⇐⇒ Ψ(X) ≤ Ψ(Y ).

Theorem 1 (Serra (1988) [23], Heijmans & Ronse (1990) [8]). Let us

consider a complete lattice L and an increasing operator Ψ : L → L, which

preserves the greatest element ⊤; i.e., satis�es Ψ(⊤) = ⊤.

Then Ψ is the supremum of a non-empty set of erosions E:

Ψ =
∨
ε∈E

ε.

If the operator preserves the smallest element ⊥; i.e., Ψ(⊥) = ⊥, the operator Ψ
can be written as an in�mum of dilations from a set D:

Ψ =
∧
δ∈D

δ.

That abstract universal representation theorem in terms of erosions and di-
lations can be instantiated in a particular case useful as starting point for this
paper. Let us consider a translation equivariant 1 (TE) increasing operator Ψ .
The domain of the functions considered here is either E = Rn or E = Zn, with
the additional condition that we consider only closed subsets of E. We focus �rst
on the set operator case applied on P(E) and then that for functions f : E → R̄.
Here are the main results from Matheron [17] and Maragos [16].

Kernel and basis representation of TE increasing set operators. The
kernel of the TE operator Ψ is de�ned as the following collection of input sets [17]:

Ker(Ψ) = {A ⊆ E : 0 ∈ Ψ(A)} ,

where 0 denotes the origin of E. In the following, we use the classic de�nitions
of Minkowski sum X ⊕B and Minkowski di�erence X ⊖B of sets X,B ∈ P(E).

1 In the classic literature of image processing and mathematical morphology, it is used
the term translation-invariant (TI) �lters and operators.



Theorem 2 (Matheron (1975) [17]). Consider set operators on P(E). Let
Ψ : P(E) → P(E) be a TE increasing set operator. Then

Ψ(X) =
⋃

A∈Ker(Ψ)

X ⊖A =
⋂

B∈Ker(Ψ̄)

X ⊕ B̌.

where the dual set operator is Ψ̄(X) = [Ψ(Xc)]c and B̌ is the transpose struc-

turing element.

The kernel of Ψ is a partially ordered set under set inclusion which has an
in�nity number of elements. In practice, by the property of absorption of erosion,
that means that the erosion by B contains the erosions by any other kernel set
larger than B and it is the only one required when taking the supremum of
erosions. The morphological basis of Ψ is de�ned as the minimal kernel sets [16]:

Bas(Ψ) = {M ∈ Ker(Ψ) : [A ∈ Ker(Ψ) and A ⊆ M ] =⇒ A = M} .

A su�cient condition for the existence of Bas(Ψ) is for Ψ to be an upper
semi-continuous operator. We also consider closed sets on P(E).

Theorem 3 (Maragos (1989) [16]). Let Ψ : P(E) → P(E) be a TE, increas-

ing and upper semi-continuous set operator. Then

Ψ(X) =
⋃

M∈Bas(Ψ)

X ⊖M =
⋂

N∈Bas(Ψ̄)

X ⊕ Ň .

Kernel and basis representation of TE increasing operators on func-
tions. Previous set theory was extended [16] to the case of mappings on functions
Ψ(f) and therefore useful for signal or gray-scale image operators. We focus on
the case of closed functions f , i.e., its epigraph is a closed set. In that case, the
dual operator is Ψ̄(f) = −Ψ(−f) and the transpose function is f̌(x) = f(−x).
Let

Ker(Ψ) = {f : Ψ(f)(0) ≥ 0}
be the kernel of operator Ψ . As for the TE set operators, a basis can be obtained
from the kernel functions as its minimal elements with respect to the partial
order ≤, i.e.,

Bas(Ψ) = {g ∈ Ker(Ψ) : [f ∈ Ker(Ψ) and f ≤ g] =⇒ f = g} .

This collection of functions can uniquely represents the operator Ψ .

Theorem 4 (Maragos (1989) [16]). Consider an upper semi-continuous op-

erator Ψ acting on an upper semi-continuous function f . Let Bas(Ψ) = {gi}i∈I

be its basis and Bas(Ψ̄) = {hj}j∈J the basis of the dual operator. If Ψ is a TE

and increasing operator then it can be represented as

Ψ(f)(x) = sup
i∈I

[(f ⊖ gi)(x)] = sup
i∈I

[
inf

y∈Rn
{f(x+ y)− gi(y)}

]
(1)

= inf
j∈J

[
(f ⊕ ȟj)(x)

]
= inf

j∈J

[
sup
y∈Rn

{
f(x− y) + ȟj(y)

}]
(2)



The converse is true: given a collection of functions B = {gi}i∈I such that all

elements of it are minimal in (B,≤), the operator Ψ(f) = supi∈I {f ⊖ gi} is a

TE increasing operator whose basis is equal to B.

For some operators, the basis can be very large (potentially in�nity) and even
if the above theorem represents exactly the operator by using a full expansion
of all erosions, we can obtain an approximation based on smaller collections
or truncated bases B ⊂ Bas(Ψ) and B̄ ⊂ Bas(Ψ̄). Then, from the operators
Ψl(f) = supg∈B{f ⊖ g} and Ψu(f) = infh∈B̄{f ⊕ ȟ} the original Ψ is bounded
from below and above, i.e., Ψl(f) ≤ Ψ(f) ≤ Ψu(f). Note also that in the case of
a non minimal representation by a subset of the kernel functions larger than the
basis, one just gets a redundant still satisfactory representation.

2.2 Extension to non-increasing mappings

The extension of this theory to TE non necessarily increasing mappings was
introduced by Bannon and Barrera in [3]. It involves a supremum of a basis
of operators combining an erosion and an anti-dilation. Other than that addi-
tional level of complexity of the underlying operators, the results are structurally
similar to those that we discussed above.

3 Morphological group equivariant operators on

homogeneous spaces

We revisit in this section the main results on Roerdink group morphology [20,22].

3.1 Group morphological operators for Boolean lattices

Let us consider E is now a homogeneous space under a group G acting tran-
sitively on E. The object space of interest is the Boolean lattice P(E) of all
subsets of E.

The strategy to introduce the group operators on P(E) will consist in

1. de�ning Minkowski operators on P(G), then
2. using a lifting of subsets of E to subsets of G, apply these operators, and

�nally
3. projecting the corresponding result back to the original space E.

Dilation and erosion on P(G). A mapping Ψ : P(G) → P(G) is called G-left-
equivariant when, for all g ∈ G, Ψ(gG) = gΨ(G), ∀G ∈ P(G). And similarly, a
G-right-equivariant implies for all ∀G ∈ P(G), Ψ(Gg) = Ψ(G)g.

The dilation and erosion on P(G) will be de�ned as the G-equivariant map-
pings commuting with unions and intersections respectively. Let H be a �xed



Fig. 2. Top, morphological operations on the motion group SE(2): (a) group set G
and group structuring element H, (b) dilation of G by H and (c) erosion of G by
H. Bottom, illustration of the actions of operators ϑ (a), π (b) and (c) πΣ on the
rotation-translation group SE(2). Extracted from [22].

subset ofG, called the group structuring element, we de�ne theG-left-equivariant
dilation and erosion of G by H as

δlH(G) = G⊕l
G H =

⋃
h∈H

Gh =
⋃
g∈G

gH =
{
k ∈ G : (kȞ) ∩G ̸= ∅

}
, (3)

εlH(G) = G⊖l
G H =

⋂
h∈H

Gh−1 = {g ∈ G : gH ⊆ G} , (4)

where gH = {gh : h ∈ H}, Hg = {hg : h ∈ H}.
An example of dilation and erosion for the rotation-translation group SE(2)

is depicted in Figure 2-top.

Proposition 1 (Roerdink (2000) [22]). The pair (δlH , εlH) forms an adjun-

tion and all G-left-equivariant adjunctions on P(G) are of this form.

The duality by complement is given by the fact that
(
G⊕l

G H
)c

= G−1⊖l
GH−1.

Because of the non-commutativity of the set product G ⊕l
G H, it is possible to

introduce G-right-equivariant dilation and erosion.

Lifting and projections operators. We remind that work on the case of G is
acting transitively on E. Let the origin ω be an arbitrary point of E. The lifting
operator ϑ : P(E) → P(G) is the mapping de�ned for any subset X ∈ P(E) as

ϑ(X) = {g ∈ G : gω ∈ X} , (5)



associates to X all group elements which map the origin ω to an element of X.
The projection operator π : P(G) → P(E) for any G ∈ P(G) as

π(G) = {gω : g ∈ G} , (6)

maps to each subset G of G the collection of points gω ∈ E, where g ranges
over G. The main bene�t of creating these maps it that they translate the group
action on X into multiplication in G.

The stabilizer�projection operator πΣ : P(G) → P(E) �rst extracts the
cosets and then carries out the projection π:

πΣ = πεlΣ(G),

where the erosion by the stabilizer σ; i.e., εlΣ(G) = G⊖l
G has the property

εlΣ(G) = εlΣ(ε
l
Σ(G)) = δlΣ(ε

l
Σ(G)) which implies that εlΣ(G) is an idempotent

operator in P(G) → P(G) providing the invariant elements to Σ.
All the operators ϑ, π, πΣ are increasing and G-equivariant. It is obvious

that πϑ = IdP(E) and πΣϑ = IdP(E).
The illustration of the actions of these operators for the example of rotation-

translation group SE(2) is given in Figure 2-bottom.

G-equivariant dilation and erosion on P(E).
A G-equivariant operator Ψ on P(E) can be constructed by using the group

operator Ψ̃ according to the following commuting diagram:

P(G)
Ψ̃−−−−→ P(G)xϑ

yπ

P(E)
Ψ−−−−→ P(E)

Let us consider in particular the G-equivariant dilation and erosion on P(E).
For any set X and structuring element B, X,B ∈ P(E):

δGB(X) = π
[
ϑ(X)⊕l

G ϑ(B)
]
=

⋃
g∈ϑ(X)

gB, (7)

εGB(X) = πΣ

[
ϑ(X)⊖l

G ϑ(B)
]
=

⋂
g∈ϑ(Xc)

gB̂∗, (8)

with Ŷ ∗ =
(
π(ϑ̌(Y ))

)c
.

3.2 G-equivariant dilation and erosion on L
The generalization to non-Boolean lattices and particular the case of numerical
functions is based on the notion of sup-generating families of a lattice. A subset
l of a complete lattice L is called sup-generating if every element of L can be
written as a supremum of elements of l .

For every X ∈ L, let l(X) = {x ∈ l : x ≤ X} and X =
∨
l(X). Let L be a

complete lattice with an automorphism group G and a sup-generating subset l
such that:



1. l is G-equivariant; i.e., for every g ∈ G and x ∈ l , gx ∈ l ;
2. G is transitive on l : for every x, y ∈ l there exists at least one g ∈ G such

that gx = y.

In that case, the construction of operators follows the commuting diagram:

P(G)
Ψ̃−−−−→ P(G)xϑ

yπ

P(l)
˜̃Ψ−−−−→ P(l)xl

y∨
L Ψ−−−−→ L

The lattice of numerical functions has a natural sup-generating family given
by the impulse functions fx,t, x ∈ E, t ∈ R de�ned by

fx,t(y) =

{
t, y = x
−∞, y ̸= x

For the complete results on that case, the reader is invited to [22]. In the frame-
work of this paper, we propose to introduce numerical group operators as group
convolutions in (max,+)-algebra which could be represented by the impulse
functions.

4 Morphological representation of equivariant CNNs on

homogeneous spaces

Let us come back to the diagram of Fig. 1. The network Ψ as a whole is G-
equivariant if all its layers are G-equivariant. One can consider group convolution
for the linear components of Ψ and to characterize the nonlinear ones using a
group morphological representation. Or alternatively, to represent the network
Ψ as a nonlinear map of G-equivariant erosions (or dilations). As we mentioned
above, for the sake of simplicity of this paper we assume Ψ is increasing.

4.1 From group convolution to group dilations/erosions for
functions

Given a compact group G, the group convolution (or more precisely, �correla-
tion�) layer between G-feature maps in L2(G) with kernel k is given by [4]

(f ⋆G k) (g) =

∫
G
f(h)k(g−1h)dh, (9)

where dh is the left Haar measure on G. Note that the feature map f ∈ F(G,R)
has been lifted to G. A typical example is the group SE(2):(

f ⋆SE(2) k
)
(x, θ) =

∫
R2

∫
S1
f(x′, θ′)k

(
R−1

θ (x′ − x), θ′ − θ
)
dx′dθ′.



Let us consider the counterpart group convolution in tropical semirings. We
work on the set of functions, or G-feature maps, f : G → R̄ = R ∪ {+∞,+∞},
where instead of square integrability we need upper (or lower) semi-continuity
on G. The G-equivariant max-plus dilation and adjoint erosion of function f by
the structuring function b, with f, b ∈ F(G, R̄), are de�ned as: ∀g ∈ G

(f ⊕G b) (g) = sup
h∈G

{
f(h) + b(gh−1)

}
, (10)

(f ⊖G b) (g) = inf
h∈G

{
f(h)− b(g−1h)

}
. (11)

For readers interested on the relationship between morphological operators
and PDE models, we note that similar operators appears in the context of
Hamilton�Jacobi equations and its viscosity solutions as the Hopf�Lax formula
for the Heisenberg group [14] or the Carnot group [2], relevant in control theory.

Because of the combination of weighting and nonlinearities which are used in
deep learning, which can be viewed from a morphological perspective [25], we can
propose more general equivariant morphological operators. The G-equivariant
max-times-plus dilation and and erosion of function f by the pair of structuring
functions {a, b}, a(g) > 0, ∀g ∈ G, f, a, b ∈ F(G, R̄), are de�ned as

(f ⊕G {a, b}) (g) = sup
h∈G

{
a(gh−1)f(h) + b(gh−1)

}
, (12)

(f ⊖G {a, b}) (g) = inf
h∈G

{
1

a(g−1h)

(
f(h)− b(g−1h)

)}
. (13)

These operators are the generalization to group morphology of the H-operators
dilation and erosion studied by Heijmans in [9].

4.2 Representation of increasing G-equivariant operators

Consider an increasing G-equivariant group operator

Ψ̃ : F(G, R̄) → F(G, R̄)

The kernel of the operator Ψ̃ is given by:

Ker(Ψ̃) =
{
b : Ψ̃(b)(ω) ≥ ⊥

}
, b ∈ F(G, R̄)

and the corresponding morphological minimal basis of Ψ̃ is obtained from the
kernel functions as its minimal elements with respect to the partial order ≤, i.e.,

Bas(Ψ̃) =
{
b′ ∈ Ker(Ψ̃) : [b ∈ Ker(Ψ̃) and b ≤ b′] =⇒ b = b′

}
This collection of functions can uniquely represent the Ψ̃ operator as follows.



Theorem 5. Consider a group operator Ψ̃ acting on an upper semi-continuous

function f and satisfying Ψ̃(⊤) = ⊤. Let Bas(Ψ̃) = {bi}i∈I be its basis. If Ψ̃ is a

G-equivariant and increasing operator then it can be represented as a supremum

of G-equivariant erosions. Every G-equivariant increasing operator Ψ̃ satisfying

Ψ̃(⊥) = ⊥ can be written as an in�mum of G-equivariant dilation. We have

therefore the alternative representations:

Ψ̃(f)(g) = sup
i∈I

[(f ⊖G bi) (g)] = sup
i∈I

inf
h∈G

{
f(h)− bi(g

−1h)
}

(14)

= inf
j∈J

[(f ⊕G bj) (g)] = inf
j∈J

sup
h∈G

{
f(h) + bi(gh

−1)
}

(15)

The converse is true.

Proof. This proof follows the same line as the proof in [9](Proposition 7.1). Let
us prove the expression of the in�mum of dilations. Then the second follows by
duality.

Let Ψ̃(f)(g) = ⊥ if f(g) = ⊥, and let D be the set of all dilations f ⊕G b =
δGb (f) which dominate Ψ̃ , that is δGb ≥ Ψ̃ . It is clear that inf D ≥ Ψ̃ .

To prove the reverse inequality, it su�ces to show that for every f ∈ F(G,R)
there is a δGb ∈ D such that

Ψ̃(f)(ω) ≥ δGb (ω), (16)

where w is the origin. That yields

Ψ̃(f)(ω) ≥ (inf D) (f)(ω),

and therefore using the transitivity and the notation fg−1(ω) = f(g), we have
that

Ψ̃(f)(g) = Ψ̃(fg−1)(ω) ≥ (inf D) fg−1(ω) = (inf D) (f)(g).

To prove (16), take f ∈ F(G,R). For h ∈ G, we de�ne the mapping dh : R → R
by

dh(t) =


−∞, if t = −∞
Ψ̃(f)(ω), if −∞ < t ≤ f(h−1)
+∞, if t = f(h−1).

We can prove that dh is dilation in t. Let δGb be the G-equivariant group dilation
given by

δGb (f)(g) = (f⊕G)(g) = sup
h∈G

dh
(
f(gh−1)

)
,

with dh(t) = t+ b(h), t ∈ R being a dilation [9](Example 2.1).
It follows that for g = ω one has

δGb (f)(ω) = sup
h∈G

dh
(
f(h−1)

)
= Ψ̃(f)(ω).

Next, it should be shown that δGb ∈ D, or in other words that Ψ̃ ≤ δGb . Note that
the later will be case only if

Ψ̃(f ′)(ω) ≤ δGb (f
′)(0), ∀f ′,



There are three possibilities for that
i) f ′ = ⊥ (trivial);
ii) ⊥ ≠ f ′ ≤ f , then δGb (f

′)(0) = suph∈G dh
(
f ′(h−1)

)
= Ψ̃(f)(ω) ≥ Ψ̃(f ′)(ω);

iii) f ′ > f , then δGb (f
′)(0) = ∞ ≥ Ψ̃(f ′)(ω).

We can now state the �nal result of the paper which provide the universal
representation of G-equivariant and increasing operators using group morpho-
logical dilations and erosions.

Theorem 6. Let Ψ be an operator acting on upper semi-continuous functions

f : F(E, R̄) → F(E, R̄) on a homogeneous space E.

If Ψ is a G-equivariant and increasing operator then it can be represented as

Ψ(f)(x) = π

[
sup
i∈I

(ϑ(f)⊖G bi)

]
= π

[
sup
i∈I

inf
h∈G

{
ϑ(f)(h)− bi(g

−1h)
}]

. (17)

The proof makes use of 14 and the construction of G-equivariant operators using
the paradigm of section 3.2.

5 Perspectives

The �rst step forward in order to complete the scope of our program is to con-
sider the case of non-increasing equivariant operators. Technically there is no
major challenge and the representation combining both supremum of erosions
and in�mum of dilations will provide a sound framework to explore innovative
deep learning architectures.

A second element to be studied is the particular case of the morphological
representation of group convolution by morphological group operators. That
makes sense in the particular case of �nite discrete operators and functions,
see [11].

Obviously the �nal perspective for us is the practical implementation of group
morphology and its interest on equivariant deep learning. We do believe morpho-
logical representations yield the general structure of equivariant layers learning
the nonlinear components of CNNs and other neural networks, as the compan-
ions to the equivariant convolution layers. For initial results, see [18].
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