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Abstract
Sensory information, sampled by sensory organs positioned on each side of the body may play a crucial role in organizing 
brain lateralization. This question is of particular interest with regard to the growing evidence of alteration in lateralization in 
several psychiatric conditions. In this context, the olfactory system, an ancient, mostly ipsilateral and well-conserved system 
across phylogeny may prove an interesting model system to understand the behavioral significance of brain lateralization. 
Here, we focused on behavioral data in vertebrates and non-vertebrates, suggesting that the two hemispheres of the brain 
differentially processed olfactory cues to achieve diverse sensory operations, such as detection, discrimination, identification 
of behavioral valuable cues or learning. These include reports across different species on best performances with one nostril 
or the other or odorant active sampling by one nostril or the other, depending on odorants or contexts. In some species, hints 
from peripheral anatomical or functional asymmetry were proposed to explain these asymmetries in behavior. Instigations 
of brain activation or more rarely of brain connectivity evoked by odorants revealed a complex picture with regards to asym-
metric patterns which is discussed with respect to behavioral data. Along the steps of the discussed literature, we propose 
avenues for future research.
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Introduction

Behavioral and brain functional asymmetry is now a well-
documented evidence across phylogeny, from humans 
(Broca 1865; Dax 1865; Gazzaniga 2005; Manning and 
Thomas-Antérion 2011) to other vertebrates and non-ver-
tebrate species as recently reviewed (Vallortigara and Rog-
ers 2020; Güntürkün et al. 2020). Lateralized behaviors go 
far back in phylogeny, since asymmetry in feeding behavior 
was reported in a Paleozoic reptile (Reisz et al. 2020). In 
humans, initial discoveries by Broca in brain-lesioned apha-
sic patients, followed by the studies in commissurectomized, 
split-brain patients provided evidence that the two sides of 
the brain sub-serve different functions, such as language or 
visuo-spatial cognition for the left and right hemispheres 
respectively (Volz and Gazzaniga 2017). Brain imaging 
studies provided more evidence of lateralization of cognitive 

functions and recently, a large-scale analysis showed that 
brain activity was lateralized in a comprehensive set of 
cognitive domains. Furthermore, the lateralized activation 
patterns were used to reveal a low-dimension organization 
of the main brain functions across distinct axes including 
perceptive/motor, communication, decision making and 
emotion (Karolis et al. 2019). Left–right asymmetry in the 
organization of cortical functional connectivity at rest was 
also reported and linked to verbal ability for the sub set of 
brain regions involved in language (Gotts et al. 2013). Thus, 
lateralized brain activity may represent a fundamental fea-
ture of behavior control and it has been further suggested 
that brain lateralization could confer some advantages in 
specific behavioral tasks, such as food search, predator sur-
vey, or social communication (Fabre-Thorpe et al. 1993; 
McGrew and Marchant 1999; Güntürkün et al. 2000; Rog-
ers 2000; Dadda and Bisazza 2006) or song production in 
birds (Nottebohm 1970). However, there is no unified theory 
yet and the function of brain lateralization remains largely a 
mystery (Rogers 2014; Güntürkün et al. 2020; Vallortigara 
and Rogers 2020).

The brain is fed by sensory information and any asym-
metry in sensory reception, sampling or processing may play 
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a large part in overall brain lateralization. Hence, a better 
understanding of asymmetric sensory processing may shed 
light onto the function of lateralization. Behavioral stud-
ies in different species documented the concept of sensory 
dominance corresponding to a best sensory channel whose 
stimulation leads to better perceptive performance than that 
of the other side. In humans, eye dominance has been largely 
studied at the behavioral level (Chaumillon et al. 2015) and 
was found to depend on whether one measures visual acuity, 
the best eye to achieve a monocular task or the eye dominat-
ing when two conflicting stimuli are presented to the two 
eyes (Seyal et al. 1981; Mendola and Conner 2007). In other 
species, such as fishes (Facchin et al. 1999; Bisazza and de 
Santi 2003), birds (Mench and Andrew 1986; Zucca and 
Sovrano 2008) or non-vertebrate species, such as cuttlefish 
(Schnell et al. 2016) or Crustacea (Daly et al. 2017), an eye 
performed better or was actively preferred by the animal 
over the other one to achieve specific tasks. For instance, 
chicks preferentially use their left eye to deal with a potential 
predator’s attack (Facchin et al. 1999; Bisazza and de Santi 
2003; Zucca and Sovrano 2008), and their right eye to per-
form a fine visual discrimination task (Rogers 2014) or for 
conspecific recognition (Zucca and Sovrano 2008; Guo et al. 
2009). Taking advantage of the almost complete decussation 
at the optic chiasm and of the lack of corpus callosum in 
the visual pathway in chicks (Cowan et al. 1961), resulting 
in a contralateral processing of the visual inputs, it can be 
concluded that the left and right hemispheres are special-
ized in processing visual stimuli bearing distinct ecological 
significance. In the auditory system, where contralateral pro-
jections of sensory information dominate, the calls emitted 
by the newborn rats out of the nest triggered the maternal 
response (collect the babies and bring them back to the nest), 
only when processed by the right ear, i.e. the left hemisphere 
(Ehret 1987). Such lateralized stimulus processing was also 
reported in acoustic recognition of conspecifics in Califor-
nia sea lions (Böye et al. 2005), European starlings (George 
et al. 2002) or Japanese macaques (Petersen et al. 1978) (for 
review see Rogers 2014). Thus, there is strong evidence for 
hemispheric specialization in sensory processing across the 
animal kingdom.

Among sensory functions, olfaction has not attracted as 
much attention as other sensory systems while it may have 
specific characteristics of interest. Considered as an ancient 
or “primitive” sense, well conserved, and often presented 
as unilateral given the ipsilateral projections of the olfac-
tory epithelium to the brain, it may retain original features 
of sensory lateralization. However, recent studies revealed 
more extensive connections between the olfactory bulbs 
(OB) than previously reported in some species (Yan et al. 
2008; Grobman et al. 2018; Schaffer et al. 2018; Kermen 
et al. 2020) suggesting more inter-hemispheric interactions 
than commonly thought.

In the light of studies conducted in other sensory systems, 
we propose a descriptive state of the art of the literature 
regarding asymmetry in reception, sampling and process-
ing of the olfactory stimulus, from which we can try to 
draw testable hypothesis to gain a better understanding of 
the function of olfactory lateralization. We first focus on 
the behavioral evidence of lateralized olfactory sampling, 
then we discuss asymmetric activations induced by odor-
ant stimulation in relation to the anatomy of the olfactory 
pathway and to behavior.

Behavioral evidence of lateralized olfactory 
processing

Olfactory dominance: is there a best nostril?

Studies in humans revealed different perceptual perfor-
mances when the odorant stimulus is experimentally deliv-
ered to the left or to the right nostril.

Measuring detection performance in humans, Toulouse 
and Vaschide reported a left nostril advantage for camphor 
detection in 56 out of 64 (86%) subjects including males, 
females, and children (Toulouse and Vaschide 1900). A more 
recent study reported no nostril advantage for amyl-acetate 
detection in a group of forty male and female right-handed 
subjects (Koelega 1979). In another work, right-handers per-
formed better with their right nostril, whereas left-handers 
were more sensitive with their left nostril (Youngentob et al. 
1982), suggesting a link between handedness and olfaction. 
Partially in line with this, Manescu et al. showed a right 
nostril advantage in eucalyptol detection in right-handers 
but no best nostril in left-handers (Manescu et al. 2017). 
However, testing detection of several different odorants in 
a large group of right- and left-handed subjects revealed no 
nostril advantage with no effect of handedness (Zatorre and 
Jones-Gotman 1990). Other authors reported no difference 
in detection thresholds between the two nostrils regardless 
of handedness (Betchen and Doty 1998). A confounding 
factor in these conflicting reports could be the ability of the 
stimuli to stimulate the trigeminal system, as it is the case for 
eucalyptol. The trigeminal system is a bilateral and crossed 
sensory system reporting on the pungent, irritant, or toxic 
component of odorant molecules and may interfere with 
olfactory responses (Frasnelli et al. 2008).

Regarding intensity rating, experiments carried out in 
humans revealed that the intensity of an odorant is evalu-
ated as stronger when it is presented to the right nostril com-
pared to the left (Thuerauf et al. 2008; Manescu et al. 2017). 
The same benefit of the right nostril has been observed in 
response to presentation of high concentration eugenol 
(Burne and Rogers 2002). Pendse et al. also reported a right 



687Brain Structure and Function (2022) 227:685–696 

1 3

nostril advantage in determining odorant concentrations, but 
in women only (Pendse 1987).

In a discrimination task, Hummel et al. reported that left- 
and right-handers showed, respectively a left and right nos-
tril dominance (Hummel et al. 1998). A right nostril advan-
tage was also described in males and females even though 
in this study, the relationships with handedness were weak 
(Zatorre and Jones-Gotman 1990). Right-handed human 
subjects were also found to be better at discriminating unfa-
miliar odorants using their right nostril. In contrast, if odor-
ants were familiar scents, the success rate was the same for 
both nostrils (Savic 2000). An interpretation of these results 
involves an influence of the semantic dimension of the pro-
cessing of olfactory information. Indeed, unfamiliar scents 
would be processed by the right hemisphere while when the 
subjects were familiar with the scents, they sought to name 
the scents and this would solicit the regions of language, 
located in the left hemisphere. Recently, in an odor identifi-
cation task, a nostril advantage was reported in right-handed 
subjects, switching from the right nostril in younger subjects 
(< 18 years) to the left nostril in adults (Zang et al. 2020). 
Such switch from the right to the left hemisphere could pos-
sibly be linked to an enlargement of the sematic repertoire 
associated to odorants in adults compared to younger sub-
jects, leading to a greater solicitation of the left hemisphere 
to identify odorants. The right nostril stimulation was also 
reported to elicit faster responses to a pleasant versus an 
unpleasant odorant in a task of affective judgment (Bensafi 
et al. 2002). However, no difference in the assessment of the 
pleasantness of odors according to the stimulated nostril was 
found (Thuerauf et al. 2008).

In birds, the first evidence of olfactory functional laterali-
zation was found in chicks, by exploiting the phenomenon 
of maternal imprint to make the young memorize odorous 
stimuli (Vallortigara and Andrew 1994). This study uncov-
ered that chicks performed better on an olfactory discrimina-
tion task between familiar and unfamiliar stimuli when the 
stimulations were delivered to the right nostril. Accordingly, 
an advantage for the right antenna in olfactory learning was 
reported in honeybees (Letzkus et al. 2006).

In summary, nostril dominance has been studied princi-
pally in human. It appears to depend on several factors, such 
as the nature of the stimulus or the olfactory task, under 
investigation, manual preference, age, and gender, notwith-
standing the effects of their combination. Nevertheless, given 
the predominantly ipsilateral connections of the olfactory 
epithelium to OB and piriform cortex, these data suggested 
that, when present, nostril asymmetry may reflect special-
ized olfactory information processing by the two sides of the 
olfactory brain, accounting for performance differences. In 
this context, and despite some discrepancies in the literature, 
an emerging picture designates the right nostril/hemisphere 
as best performing for detection and discrimination and left 

nostril/hemisphere as best performing for odor identification 
or odor detection and discrimination of already memorized 
stimuli like familiar ones (Fig. 1A).

A preferred nostril according to the behavioral value 
carried by the olfactory stimulation

Pursuing on the comparison with other sensory modalities, 
it appeared from behavioral asymmetry in visual tasks that 
the two hemispheres process visual stimuli carrying spe-
cific behavioral significance, such as predator or food-related 
stimuli, as mentioned above. Thus, depending on the infor-
mation borne by the scent, the two hemispheres would not be 
as effective in carrying out different tasks in olfaction. Con-
sistent with this view, numerous experimental results, almost 
exclusively obtained in animal species (but sparse data were 
reported in humans, Millot and Brand 2000), revealed a lat-
eralized sampling of the odorant depending on its ecological 
or emotional value. In other words, many species actively 
choose one or the other nostril for sampling the odorant.

Experiments conducted in dogs, using video recording of 
the position of the nostrils with regard to the odor source, 
revealed that they preferentially used their right nostril when 
facing unfamiliar stimuli with no aversive emotional value. 
Interestingly, if these stimulations were repeated and the 
scent became familiar, then dogs preferentially used their 
left nostril to sample the scent. On the other hand, if the 
stimuli used had an aversive emotional value (vet sweating, 
adrenaline supposed to activate the fear system, etc.), the 
dogs used their right nostril even when the exposure was 
repeated. Thus, in dogs, the olfactory system mobilizes the 
right nostril in the face of new, unfamiliar stimuli, and then 
a shift takes place towards the left nostril when the smell 
becomes familiar, provided that the latter has no negative 
emotional value (Siniscalchi et al. 2011). In a complemen-
tary study, the authors showed that, exposed to an odor emit-
ted by an individual of the same species having experienced 
fear, dogs sample the stimulus with their right nostril. In 
contrast, the left nostril is used to smell an odor emitted by a 
human having experienced fear (Siniscalchi et al. 2016). So, 
beyond emotional value, the species from which the stimulus 
was isolated plays an important role in which nostril is used 
for scent sampling.

In other mammalian species as well, differences in use 
can be observed between the two nostrils. This is the case 
in horses for which the preferential use of one of the two 
nostrils was evaluated by presenting to the horse an odor 
of feces of congeners. The results showed a bias towards 
the preferential use of the right nostril to sample the scent 
(McGreevy and Rogers 2005). In addition, when the odors 
presented to horses carried emotional value, they preferen-
tially used their right nostril to sample them. This is the case, 
for example, for the odors of adrenaline or female urine in 
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estrus (Siniscalchi et al. 2015). Finally, in mice, attractive 
stimuli were reported to be sampled by the right nostril and 
less attractive stimuli by the left nostril (Jozet-Alves et al. 
2019) (Fig. 1B).

Importantly, these behavioral data expanded the notion 
of best nostril describing better performance of one nos-
tril over the other when a stimulus is delivered unilaterally 
by the experimenter, to that of preferred nostril, consider-
ing the decision made by the animal to use one nostril or 
the other based on the behavioral value of the stimulus. 
Although available data are too scarce to draw a coherent 
general scheme, a consistent finding in dogs and horses was 
the active sampling by the right nostril for unfamiliar or 
intraspecific aversive stimuli. Further and more systematic 
investigation of the preferred nostril would be useful in 
humans and diverse animal species to extract the common 
features of the stimuli actively explored with either side of 
the olfactory system and get a better picture of hemispheric 
specialization in odorant processing. In this context, it would 
be relevant to assess sampling biases for biological odorants 
and for odorants to which learning would have assigned a 
behavioral or emotional significance.

It follows from the existence of a preferred nostril that 
olfactory–motor processes have to be modulated in a top-
down and asymmetric manner, shortly during the first sam-
pling of the odorant to implement the nostril choice made by 
the animal. Motor adjustments may include head orientation, 
as in the chick turning its head to select one eye or the other 
according to the visual stimulus, and nose twitching. Such 
top-down signals are triggered by temporal shifts and inten-
sity differences in the stimulus reaching the sensory organs 
(Rajan 2006; Louis et al. 2008; Esquivelzeta Rabell et al. 
2017; Liu et al. 2020) and are at play in fast nose orientation 
towards a laterally positioned source of odorant (Esquiv-
elzeta Rabell et al. 2017). Whether they contribute to nostril 
choice remains to be investigated. In addition, one could 
hypothesize asymmetric modulation of the sniff amplitude 
or frequency. Indeed, sniffing is a highly regulated olfacto-
motor behavior. It is modulated by familiarity and learned 
significance of the odorant in rodents (Lefèvre et al. 2016) or 
by the hedonic value of the odorant in humans (Bensafi et al. 
2003). In addition, sniff modulation can occur within less 
than 200 ms (Johnson et al. 2003). However, although not 
fully identified, the brain circuit underlying olfacto-motricity 
is closely related to that controlling respiratory muscles and 
there is no evidence yet that it would be able to implement 
an asymmetric control of sniffing.

Anatomical or functional asymmetry 
of the peripheral olfactory organs

The nasal cycle

An obstacle to interpreting any superiority of one nostril 
over the other or the choice of the preferred nostril is the 
physiological alternance that occurs in the odorant-carrying 
airflow between the two nostrils. Indeed, in humans, nos-
trils are alternatively congested, leading to reduction of the 
airflow entering the nostrils. The period of the nasal cycle 
was reported to be of about 2 h for one nostril (Kahana-
Zweig et al. 2016). Similarly, in rodents, a nasal cycle with 
a period of 30–85 min was reported (Bojsen-Moller and 
Fahrenkrug 1971) (but see also a more recent work using 
pressure sensors that failed to measure any nasal airflow 
rhythm in rat (Parthasarathy and Bhalla 2013). Consistent 
with the alternance of nostril congestion and reduction in the 
nasal airflow, an early study using 2-deoxyglucose up-take 
to map neuronal activation found various degrees of asym-
metric activation of the left and right olfactory bulbs with no 
preference for either side in about two-third of the tested rats 
while one-third showed symmetric bulbar activation (Stew-
art et al. 1979). These data suggest that the nasal cycle may 
interfere when measuring the performances of the two nos-
trils. However, the nasal cycle is not synchronized and, over 
large groups of subjects or animals, would be more likely 
to dampen rather than account for the better performance of 
one or the other nostril or for active choice of one nostril to 
sample the stimulus.

Peripheral morphologic or functional differences

Nostril dominance may arise from peripheral morphologic 
or functional differences between the two sides of the nasal 
cavity or the olfactory epithelium.

In humans, nasal cavity asymmetry measurements have 
been carried and reported mostly in pathologies (James 
et al. 1991; Freeman et al. 2013) and asymmetry in nasal 
cavity may be of low significance in healthy subjects. On 
the functional aspect, a main source of asymmetry could 
relate to olfactory sensory neurons (OSN) and/or olfactory 
receptors distribution introducing differences in sensitivity 
or selectivity. While the spatial pattern of olfactory receptors 
expression within the olfactory epithelia is well described 
in humans and rodents (Mori et al. 2000), comparisons 
between the two sides have been less documented yet to 
the best of our knowledge. This would be a step to take to 
elucidate a possible peripheral origin of nostril dominance 
for some odorants.

In other animal species, especially in non-vertebrate, 
research has been more intensive. In honeybees, Letzkus 

Fig. 1  Left and right nostril asymmetries in human and non-human 
animal species. A Reported differences in nostril performances in 
humans, involving handedness or not. B Preferred nostril uses in non-
human animal species. Red and green dots, respectively infirm and 
confirm the nostril advantage

◂
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et al. asked if the right antenna advantage in olfactory learn-
ing could arise from asymmetry in reception between the 
two antennae (Letzkus et al. 2006). Olfactory receptors 
named sensilla placodea were counted on the bee antennae 
using scanning electron microscopy and proved to be 10% 
more numerous on the right compared to the left antenna. 
However, only a part of the antenna was analyzed and only 
one type of sensilla was counted. Nevertheless, Frasnelli 
et al. confirmed these observations in the honeybee spe-
cies Apis mellifera: the right antenna was better than the 
left in olfactory short-term memory (< 1 h) and contained 
more putative olfactory sensilla (placodea, trichodea and 
basiconica), whereas the left antenna contained more sen-
silla not involved in olfaction (campaniformia, coeloconica 
and chaetica) (Frasnelli et al. 2010). Furthermore, electro-
physiological responses showed a higher responsiveness of 
the right compared to the left antenna to olfactory stimuli 
(Anfora et al. 2010). This asymmetric repartition of sen-
silla between the antennae could modulate the reception of 
the stimulus and account for the difference in learning and 
memory performances using one or the other antenna. A 
right antenna advantage in olfactory learning has then been 
reported in other Hymenoptera species, such as the bum-
blebee species Bombus terrestris (Anfora et al. 2011), three 
different stingless honeybee species Trigona carbonaria, 
Trigona hockingsi and Austroplebeia australis (Frasnelli 
et al. 2011), and in female wasps Anastatus japonicus (Meng 
et al. 2012).

In Caenorhabditis elegans (C. elegans), olfactory asym-
metry was described at the odorant receptor level. In C. 
elegans, the number of neurons is relatively limited: 302 
neurons out of 952 somatic cells and among them, 32 are 
chemosensory neurons. These chemosensory neurons drive 
attractive or repulsive behaviors to different stimuli. Among 
these stimuli, volatile molecules elicited responses from 
AWA, AWB and AWC neurons: AWA and AWC neurons 
responded to attractants, whereas AWB neurons responded 
to repellants (Bargmann et al. 1993; Troemel et al. 1995). 
The AWC neurons are of special interest when considering 
asymmetric repartition of olfactory receptors. Indeed, Troe-
mel et al. showed, using the expression of a fluorescent str-2 
transgene, that in adult nematodes, only one of two morpho-
logically identical AWC neuron expressed the gene str-2, 
either the left or right one (Troemel et al. 1999). Surpris-
ingly, this asymmetry of str-2 expression appeared to be sto-
chastically allocated to the left or right AWC neuron, raising 
the question of its physiological role. Indeed, the C.elegans 
mutant ky542, expressing str-2 on both sides exhibited 
degraded olfactory perception (Wes and Bargmann 2001). 
The question of the possible existence of other such genes 
that may be asymmetrically expressed is open. If it is the 
case, are their asymmetric expression co-regulated? Do they 
allow a precise asymmetric olfactory receptor organization 

and what are the behaviors regulated on the basis of the 
asymmetric expression of olfactory receptors? Still in C. 
elegans, ASE neurons are other chemosensory neurons 
detecting soluble attractants (Bargmann et al. 1993). They 
asymmetrically express a guanylyl cyclase thought to be a 
chemosensory receptor detecting non-volatile chemicals. 
Nonetheless, this asymmetric expression is non-stochastic 
and appears strictly regulated: two members of the guanylyl 
cyclase family are expressed in the left ASE neuron while 
one other member is expressed in the right ASE neuron (Yu 
et al. 1997). Asymmetric distribution of olfactory receptors 
in non-vertebrates may provide interesting models to assess 
the detailed neural connectivity of the lateralized neurons 
and decipher how such asymmetric circuits drive odorant 
approach or escape behaviors, inspired by the way other sen-
sorimotor mechanisms were dissected out in non-vertebrates 
(Jovanic et al. 2016). In vertebrates, the spatial distribution 
of several identified olfactory receptors in selected zones of 
the olfactory epithelium was recently described in mice and 
showed an overall symmetrical expression between the two 
sides of the olfactory epithelium (Zapiec and Mombaerts 
2020). This report does not support a differential olfactory 
receptors expression between the two sides of mammalian 
olfactory mucosa as the potential basis for nostril domi-
nance and lateralized processing of olfactory signals but 
rather points towards asymmetry originating from central 
processing.

Asymmetric central processing of olfactory 
inputs

Insights from anatomy

In mammals, the ascending olfactory projections are 
ipsilateral from the olfactory epithelium to the OB and 
piriform cortex, but there are several levels of inter-
hemispheric interactions allowing olfactory signal shar-
ing between the two hemispheres. OSN project onto the 
relay neurons, the mitral/tufted cells of the ipsilateral OB 
within neuropils called glomeruli (Pinching and Pow-
ell 1971; Mori 1999). OSN expressing the same olfac-
tory receptor innervate a set of glomeruli which in turn 
receive inputs only from one type of molecular receptor 
(Mombaerts et al. 1996). As a result, any odorant elicits a 
stereotyped spatial pattern of activated glomeruli reflect-
ing the tuning of the sensory neurons. This activation map 
was described as symmetrical in the left and right OB, at 
least at the macroscale of glomeruli positions (Sullivan 
et al. 1995; Mori and Sakano 2011). The two OB maps 
are topographically connected to each other by an indi-
rect pathway involving bilaterally the outermost region 
of the anterior olfactory nucleus pars externa (AONpE) 
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(Yan et al. 2008). Interestingly, AONpE can be activated 
by a stimulation applied to the ipsilateral nostril and inhib-
ited by a contralateral nostril stimulation and this integra-
tive property may sub-serve odorant source localization 
(Kikuta et al. 2010). In addition, unilateral optogenetic 
stimulation of the OB was found to elicit mirror activa-
tion maps in the contra-lateral OB (Grobman et al. 2018). 
Further investigations confirmed that AONpE projects to 
the iso-functional mirror-symmetric mitral-tufted cells 
of the contralateral OB through excitatory glutamatergic 
mechanisms. A computational approach suggested that the 
contra-lateral odorant representation contained informa-
tion allowing for odor identity decoding (Grobman et al. 
2018; Dalal et al. 2020). Thus, this inter-bulbar circuit 
would allow sharing of olfactory afferent information 
between the two OB. The OB then projects ipsilaterally 
to the piriform cortex and left and right piriform cortices 
exchange information through the anterior commissure. 
In the rodent piriform cortex, following unilateral stimu-
lations, neurons can be found with receptive fields in the 
right or left epithelia as well as neurons responding to 
bilateral stimulations (Wilson 1997). The anterior com-
missure allowing transferring olfactory information from 
one side to the other of the piriform cortex could con-
tribute to the emergence of these contralateral or bilateral 
receptive fields of piriform cortex neurons. Bilateral pro-
cessing of olfactory signals by the piriform cortex could 
be involved in spatial navigation. Indeed, in pigeons, who 
used olfactory indices for traveling back to their home 
position, lesions of the left piriform cortex impaired navi-
gation. Birds were transported to an unfamiliar position 
and released to allow them to come back home. Those 
with a left piriform cortex lesion took scattered directions 
while those with a right piriform cortex lesion headed to 
the correct direction, as non-lesioned controls did (Gagli-
ardo et al. 2005). Interestingly, although a similar speciali-
zation of the piriform cortex in spatial navigation is not 
described to the best of our knowledge in mammals, the 
left and right hippocampi, to which the piriform cortex in 
connected through the entorhinal cortex, govern distinct 
mode of spatial navigation in human with the left hip-
pocampus activated in egocentric navigation (versus the 
right hippocampus in allocentric navigation) (Iglói et al. 
2010). Finally, in rat pups younger than 12 days, an olfac-
tory memory trace is formed in each hemisphere following 
unilateral stimulation and retrieval of this memory by the 
contralateral naris requires the later development of the 
anterior commissure (Kucharski et al. 1986). Thus, com-
munication between the two sides of the piriform cortex 
through the anterior commissure could also be used for 
bilateral memory retrieval.

In the zebrafish, projections from the epithelia are unilat-
eral and ipsilateral but direct reciprocal connections between 

the OB were recently demonstrated (Kermen et al. 2020). 
Mitral cells were found to be directly connected between 
the two OBs, with preserved topographical organization, 
allowing for communication between homologous olfactory 
columns. These inter-bulbar communications increased the 
detection of pheromones. In Drosophila, OSN located in 
the olfactory epithelium project to both the left and right 
sides of the brain (Stocker et al. 1990). Despite this bilat-
eral structural connectivity, Gaudry et al. showed that at the 
functional level, OSN released about 40% more neurotrans-
mitter to their ipsilateral than to their contralateral target. 
In turn, in response to an asymmetric odor stimulation, the 
ipsilateral central neurons began to fire slightly earlier than 
contralateral central neurons. These functional asymmetries 
of odor processing result in a lateralized behavior in which 
the Drosophila turns towards the odor source, i.e. to the side 
of the antenna that catches the odorant (Gaudry et al. 2013).

Thus, in most species, the olfactory system projects ipsi-
laterally. However, the afferent message reaches the OB 
bilaterally and symmetrically, although, unlike other sen-
sory system in which the afferent information is directed 
to both sides of the brain, olfactory information follows an 
indirect path to the contralateral side. In mammals, it goes 
through a multi-synaptic pathway through the AON. There-
fore, the contralateral representation is attenuated (Yan et al. 
2008) and is likely to be delayed along the multi synaptic 
circuit. One may hypothesize that both phenomena will lead 
to an asymmetric odor representation from the early stage 
of olfactory processing, especially in case of asymmetric 
odor sampling.

Odorant‑evoked asymmetric brain activity

In humans, asymmetry in odor-evoked brain responses was 
first described using PET brain imaging in the right orbit-
ofrontal cortex which exhibited higher level of activation 
than its left counterpart in response to olfactory stimula-
tions (Zatorre et al. 1992). This finding was consolidated 
by several fMRI studies and appeared consistent with the 
best performance of the right nostril reported in odor detec-
tion as discussed above. However, higher right orbitofron-
tal activation occurred regardless of the stimulated nostril. 
In addition, detection tasks tended to be associated with a 
lower level of lateralization than identification tasks, sug-
gesting that deeper cognitive processes were associated with 
enhanced asymmetry. Piriform cortex and orbitofrontal cor-
tex were also asymmetrically activated by odor recognition 
tasks and familiarity judgements with a stronger involve-
ment of the right hemisphere (reviewed in Royet and Plailly 
2004). These latter data do not appear consistent with the 
left nostril advantage described by some authors in an iden-
tification task (Zang et al. 2020) and will need to be clarified. 
Asymmetric brain responses were also reported for hedonic 
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judgements, pleasant odorants producing larger responses in 
the left hemisphere and negative value odorants in the right 
hemisphere, promoting the view of dissociated pathways 
along the left or right hemisphere for positive or negative 
hedonic odorant values, respectively. Asymmetric responses 
included those of the orbitofrontal cortex,  amygdala (Patin 
and Pause 2015) and piriform cortex (Zelano et al. 2007). 
Partially conflicting results were also reported for amyg-
dala, showing a predominant left activation in response to 
unpleasant odorants and bilateral balanced activation in 
response to pleasant odorants (Gottfried et al. 2002). It was 
further suggested that this previous finding could have been 
obscured by an effect of odorant concentration (Anderson 
et al. 2003). Here again, the link with the best or preferred 
nostril is unclear. Indeed, in humans, hedonic judgements 
were reported to be unaffected by the side of the stimulation 
although processed faster through the right nostril (Bensafi 
et al. 2002; Thuerauf et al. 2008). In mice, asymmetry in 
odorant sampling suggested a lateralization pattern oppo-
site to what is proposed in humans, with attractive odorants 
sampled by the right nostril and vice versa (Jozet-Alves et al. 
2019) but no data on brain responses are available yet. In 
rat, the response of the piriform cortex was analyzed along 
the course of an olfactory-associative training and revealed 
an asymmetric pattern of the Beta and Theta oscillations 
between the left and right piriform cortexes that evolve with 
the stages of learning (Cohen et al. 2015). Most interestingly, 
these effects were retrieved in successful trials compared to 
errors trial supporting a role of the asymmetry in perfor-
mance. Dynamic asymmetry in the orbitofrontal cortex, a 
secondary olfactory brain structure, was also reported dur-
ing a reversal learning task (Cohen and Wilson 2017). Thus, 
olfactory representations in the piriform and orbitofrontal 
cortex show dynamic asymmetry associated to the acquisi-
tion of an olfactory task, pointing to a functional role of 
lateralized olfactory processing in learning.

To sum up, asymmetries were reported regarding odor-
evoked brain activation in basal condition and during olfac-
tory learning in a task and performance manner. However, 
before more systematic investigations of the effect of the 
stimulation side on brain lateralization in different types 
of olfactory tasks, it is hazardous to draw any conclusion 
regarding the extent to which the best or preferred nostril 
determines the lateralized activation in the olfactory path-
way and beyond. Furthermore, intrinsic properties of cortical 
circuits may also account for asymmetric processing of sen-
sory information. No data are yet available on the olfactory 
cortex but in audition, in the left and right auditory cortexes 
for instance, microcircuits are organized to process distinct 
spectro-temporal features of sounds, some of them poten-
tially related to biological significance such as vocalizations 
(Levy et al. 2019). The analogy with odorant molecule fea-
tures remains to be investigated. Some physico-chemical 

properties of odorants governing perception would be good 
candidates, such as molecular complexity, which is corre-
lated to hedonics in humans and animals (Khan et al. 2007; 
Kermen et al. 2011).

Besides activation levels and oscillatory activities, affer-
ent stimulation may drive changes in connectivity within 
or between hemispheres. In rat, using local field poten-
tial recordings, olfactory learning proved to first induce a 
decrease in temporal coherence between the left and right 
piriform cortexes during the initial phase of learning recov-
ering as the animals became experts in the task (Cohen et al. 
2015). Changes in intra-hemispheric connectivity between 
the piriform and orbitofrontal cortices were also observed 
in relation to the stages of olfactory learning (Cohen and 
Wilson 2017). A better understanding of the asymmetric 
functioning of the olfactory brain will then require to assess 
not only brain activation levels but also brain connectiv-
ity in future studies. Interestingly, in humans, asymmetry 
in evoked-related potentials between the two hemispheres 
was shown to be reduced in culinary experts compared to 
control subjects during olfactory mental imagery suggest-
ing an effect of experience on inter hemispheric functional 
connectivity (Bensafi et al. 2017).

Conclusion

Lateralized patterns of brain responses to odorant stimula-
tions were reported, mostly in humans. They were obtained 
using multiple olfactory tasks and stimuli and this might 
be a reason why it is currently difficult to gain a global 
understanding of their functional significance. In particu-
lar, the level of familiarity, the hedonic value and olfactory 
learning may interfere with olfactory brain lateralization 
in terms of activity and connectivity but no general rule 
relating the nature of the task to brain lateralization could 
be enacted. Numerous behavioral evidences suggested that 
olfactory brain lateralization may arise from peripheral 
asymmetry. This view is supported by asymmetry in per-
ceptive performances varying according to the stimulated 
nostril. A best nostril has been described in all species that 
were investigated, the left or the right one, depending on 
the type of odorants or tasks. Considering the dominant 
ipsilateral organization of the olfactory pathway, these data 
were interpreted as reflecting hemispheric specialization of 
olfactory information processes. However, the relationships 
between the best nostril and lateralization of brain patterns 
remained unclear. We argue that the asymmetry in olfac-
tory sampling, which represents animal decision on which 
side of the brain should be privileged for a given stimuli, 
is of particular interest in this perspective. It is an active 
process, conserved over the phylogeny, involving olfacto-
motor control and dependent on the olfactory tasks to be 
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accomplished, as suggested by current data. Asymmetry in 
odorant sampling may be of strong ecological pertinence 
and as such might prove to be functionally related to the 
lateralized brain patterns, a hypothesis that remained to be 
tested. Hemispheric specialization in olfactory processing 
could also arise in a non-exclusive manner from distinct 
properties of the sensory organs of the two sides of the body, 
organization of the sensory pathway or intrinsic properties 
of cortical circuits of the left and right hemispheres. Better 
knowledge on the regulation and function of brain lateraliza-
tion may help the understanding of neurodevelopmental or 
psychiatric pathological conditions showing altered brain 
lateralization (Kleinhans et al. 2008; Anderson et al. 2011; 
Wachinger et al. 2018; Wiberg et al. 2019). To achieve this, 
the rodent olfactory system, well conserved along the phy-
logeny, in which the sensory information fed to the brain 
can be controlled and brain network manipulated, may be a 
model system of interest for further studies.
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