
HAL Id: hal-04560729
https://hal.science/hal-04560729v1

Preprint submitted on 3 May 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Full Adagrad algorithm with O(Nd) operations
Antoine Godichon-Baggioni, Wei Lu, Bruno Portier

To cite this version:
Antoine Godichon-Baggioni, Wei Lu, Bruno Portier. A Full Adagrad algorithm with O(Nd) operations.
2024. �hal-04560729�

https://hal.science/hal-04560729v1
https://hal.archives-ouvertes.fr

A Full Adagrad algorithm with O(Nd) operations

Antoine Godichon-Baggioni ∗, Wei Lu†and Bruno Portier†

Abstract

A novel approach is given to overcome the computational challenges of the full-matrix Adaptive Gradi-
ent algorithm (Full AdaGrad) in stochastic optimization. By developing a recursive method that estimates
the inverse of the square root of the covariance of the gradient, alongside a streaming variant for parameter
updates, the study offers efficient and practical algorithms for large-scale applications. This innovative
strategy significantly reduces the complexity and resource demands typically associated with full-matrix
methods, enabling more effective optimization processes. Moreover, the convergence rates of the pro-
posed estimators and their asymptotic efficiency are given. Their effectiveness is demonstrated through
numerical studies.

Keywords: Stochastic Optimization; Robbins-Monro algorithm; AdaGrad; Online estimation

1 Introduction

Stochastic optimization plays a crucial role in machine learning and data science, particularly relevant
in the context of high-dimensional data (Genevay et al., 2016; Bottou et al., 2018; Sun et al., 2019). This
paper focuses on the stochastic gradient-based methods. It targets on a scalar objective function f(X, θ),
where X is a random variable taking values in a measurable space X and θ is a parameter vector in Rd.
This function is assumed to be differentiable with respect to θ. Our goal is to minimize the expected value
of this function, denoted as F (θ) := E [f(X, θ)], in relation to θ. The realizations of X at different time
steps are denoted as X1, · · · , Xt, · · · , and gt(θ) := ∇θf(Xt, θ) refers to the gradient of f(Xt, ·).

A popular approach in addressing this problem of optimization is Stochastic Gradient Descent(SGD),
introduced by Robbins and Monro (1951). It recursively updates the parameter estimate based on the last
estimate of the gradient, i.e.

θt = θt−1 − νtgt(θt−1),

where νt is the learning rate and θ0 is arbitrarily chosen. Despite its computational efficiency and favorable
convergence properties, SGD faces limitations, particularly in adapting the learning rate to the varying
scales of features (Ruder, 2016).

To address these limitations, many extensions of SGD have been proposed. A widely used variant is the
Adaptive Gradient algorithm (AdaGrad) introduced by Duchi et al. (2011). It adapts the learning rate for
each parameter, offering improved performances on problems with sparse gradients. The full-matrix version
of AdaGrad can be expressed as follows:

θt = θt−1 − νtG−1/2
t gt(θt−1),

where Gt :=
∑t

k=1 gk(θk−1)gk(θk−1)
T is a recursive estimate of the covariance matrix of the gradient and

G−1/2
t is the inverse of the square root of it. However, a notable challenge with AdaGrad is computing the

square root of the inverse of Gt. This computation is particularly demanding in terms of computational
resources, with a complexity of order O(d3). Such complexity is often prohibitive, especially in scenarios

∗antoine.godichon baggioni@upmc.fr, Laboratoire de Probabilités, Statistique et Modélisation (LPSM), Sorbonne Université,
4 Place Jussieu, 75005 Paris, France.

†Laboratoire de Mathématiques de l’INSA Rouen Normandie, INSA Rouen Normandie, BP 08 - Avenue de l’Université,
76800 Saint-Etienne du Rouvray, France

1

involving high-dimensional data. To deal with it, a diagonal version of AdaGrad was proposed, simplifying
the process by using only the diagonal elements of Gt, i.e

θt = θt−1 − νtdiag (Gt)
−1/2 gt(θt−1). (1)

In practice, this approach is more feasible and is broadly applied for machine learning tasks (Dean et al., 2012;
Seide et al., 2014; Smith, 2017). Furthermore, Défossez et al. (2022) establishes the standard convergence
rate for Adagrad in the non convex case. Despite being more practical, the diagonal version of AdaGrad
inherently loses information compared to the full-matrix version, especially in the case where the gradient
have coordinates highly correlated.

Our work focuses on the full-matrix version of AdaGrad, proposing a recursive method to estimate the
inverse of the square root of the covariance matrix Σ := E

[
∇θf(X, θ∗)∇θf(X, θ∗)T

]
, where θ∗ minimizes

the function F . Unlike the original Full AdaGrad, which uses Gt to estimate Σ and then computes G
−1/2
t ,

we will directly estimate Σ−1/2. Using the fact that

Σ−1/2ΣΣ−1/2 − Id = E
[
Σ−1/2∇θf(X, θ∗)∇θf(X, θ∗)TΣ−1/2 − Id

]
= 0,

we introduce a Robbins-Monro algorithm to estimate Σ−1/2. This estimator, denoted as At, is defined
recursively for all t ≥ 1, by:

At = At−1 − γt
(
At−1gt(θt−1)gt(θt−1)

TAt−1 − Id
)
,

where A0 = Id and (γt)t≥1 is a sequence of positive real numbers, decreasing towards 0. This estimate is
used in updating the estimate of θ:

θt = θt−1 − νtAt−1gt(θt−1).

Consequently, this approach enables us to avoid the expensive computation of the square root of the inverse
of Gt, enhancing the computational efficiency of the algorithm. Nevertheless, At is not necessarily positive
definite, and we so propose a slight modification in this sense. In addition, θt cannot be asymptotically
efficient, and we so introduced its (weighted) averaged version (Polyak and Juditsky, 1992; Pelletier, 2000;
Mokkadem and Pelletier, 2011; Boyer and Godichon-Baggioni, 2023).

Although the propose approach to estimate Σ−1/2 enables to reduce the calculus time, this only enables
to achieve a total complexity of order O(Nd2), where N is the sample size. Then, we propose a Streaming
version of our algorithm, updating the estimate of Σ−1/2 and θ only after observing every n gradients and
using their average. This approach further reduces the algorithm’s complexity, making it more practical
for large-scale applications. More precisely, a good choice of n (n = d for instance) enables to obtain
asymptotically efficient estimates with a complexity of order O(Nd), i.e. with the same complexity as for
Adagrad algorithm.

The paper is organized as follows. The general framework is introduced in Section 2. In Section 3,
we present a detailed description of the proposed Averaged Full AdaGrad algorithm before establishing its
asymptotic efficiency. Following this, we introduce a streaming variant of the Full AdaGrad algorithm in 4
and we obtain the asymptotic efficiency of the proposed estimates. In Section 5, we illustrate the practical
applicability of our algorithms through numerical studies. The proofs are postponed in Section 6.

2 Framework

Let us recall that the aim is to minimize the functional F : Rd −→ R defined for all θ ∈ Rd by:

F (θ) := E [f(X, θ)] ,

where f : X × Rd → R. In all the sequel, we suppose that the following assumptions are fulfilled:

Assumption 1 The function F is strictly convex, twice continuously differentiable, and there is θ∗ ∈ Rd

such that ∇F (θ∗) = 0.

2

This assumption ensures that θ∗ is the unique minimizer of the functional F and legitimates the use of
gradient-type methods.

Assumption 2 There exists an integer p ≥ 1 and a positive constant Cp < ∞ such that for all θ ∈ Rd

E
[
∥∇θf(X, θ)∥2p

]
≤ Cp + Cp (F (θ)− F (θ∗))p .

In the literature on stochastic gradient algorithms, it is common to consider moments of order 2 (p = 1) or
4 (p = 2) for the gradient of f (see, e.g., Pelletier (1998, 2000)). However, due to some hyperparameters
within our algorithm, we must strongly constraint the moment order of the gradient of f when determining
the convergence rate of our estimates. The specific value of p will be delineated in the theorem statements.

Assumption 3 The function Σ : θ 7−→ E
[
∇θf(X, θ)∇θf(X, θ)T

]
is LΣ-Lipschitz and Σ (θ∗) is positive.

This assumption is quite specific to our work on FullAdagrad as it ensures the convergence of estimates of
the variance, and more specifically in our case, of the square root of their inverse. It is worth noting that this
assumption is quite common in the literature, particularly when considering the estimation of asymptotic
covariance (Zhu et al., 2023; Godichon-Baggioni and Lu, 2024).

The above are assumptions regarding the first-order derivatives of F . Next, we present some necessary
assumptions concerning the second-order derivatives of the function.

Assumption 4 The Hessian of F is uniformly bounded by L∇F .

This assumption ensures that the gradient of F is L∇F -Lipschitz which is crucial to obtain the consistency
of the estimates (via a Taylor’s expansion of the gradient at order 2).

Assumption 5 The Hessian of F is Locally Lipschitz: there exists η > 0 and Lη > 0 such that for all
θ ∈ B (θ∗, η), ∥∥∇F (θ)−∇2F (θ∗) (θ − θ∗)

∥∥ ≤ Lη ∥θ − θ∗∥2 .

These assumptions are close to those found in the literature (Pelletier, 2000; Gadat and Panloup, 2023;
Boyer and Godichon-Baggioni, 2023). The main differences come from Assumption 2 and 3. These last ones
are crucial for the theoretical study of the estimates of Σ−1/2, i.e. to prove their strong consistency.

3 A Full AdaGrad algorithm with O(td2) operations

In this section, we introduce a Full AdaGrad algorithm with O(td2) operations. We focus on recur-
sively estimating Σ−1/2 using a Robbins-Monro algorithm, in order to refine estimates of θ∗ while ensuring
computational performance.

3.1 Estimating Σ−1/2 with the help of a Robbins-Monro algorithm

First, we focus on recursive estimates of the matrix Σ−1/2. In all the sequel, let X1, . . . , Xt, . . . be i.i.d.
copies of X and for all θ ∈ Rd, we denote gt(θ) := ∇θf(Xt, θ). Let us recall that the Robbins-Monro
algorithm for estimating Σ−1/2, described in the Introduction, is defined recursively for all t ≥ 0 by

At+1 = At − γt+1

(
Atgt+1(θt)gt+1(θt)

TAt − Id
)
,

where A0 is a symmetric positive definite matrix, (θt)t≥0 is a sequence of estimates of θ∗, and γt = cγt
−γ with

cγ > 0 and 1/2 < γ < 1. Observe that At+1gt(θt) is a vector, implying that the complexity of this operation
is of order O(d2). However, we cannot ensure that the matrix At is always positive definite. Nevertheless,
in Full AdaGrad, At must always be positive to guarantee that at each step, we go in the direction of the
gradient (in average). To address this issue, we propose a slightly modified version of At by defined for all
t ≥ 0 by

At+1 = At − γt+1

(
Atgt+1 (θt) gt+1 (θt)

T At − Id
)
1{gt+1(θt)

TAtgt+1(θt)≤βt+1},

where βt = cβt
β with 0 < β < 1/2 and 0 < cβcγ < 1. In fact, gt+1(θt)

TAtgt+1(θt) is the unique positive
eigenvalue of the rank-1 matrix Atgt+1(θt)gt+1(θt)

T . We update At only when this value is not excessively
large and thanks to this modification, At is positive definite for any t ≥ 0.

3

3.2 Full AdaGrad algorithms with O(td2) operations

We can now propose a Full AdaGrad algorithm defined for all t ≥ 0 by

θt+1 = θt − νt+1Atgt+1 (θt) , (2)

At+1 = At − γt+1

(
Atgt+1 (θt) gt+1 (θt)

T At − Id
)
1{gt+1(θt)

TAtgt+1(θt)≤βt+1}, (3)

where θ0 is arbitrarily chosen. Although our numerical studies show that this algorithm performs well (see
Section 5), the obtained estimates are not asymptotically efficient. Therefore, to ensure the asymptotic
optimality of the estimates, and to enhance the performance of the algorithm in practice, we follow the idea
of Mokkadem and Pelletier (2011); Boyer and Godichon-Baggioni (2023). More precisely, we introduce the
Weighted Averaged Full AdaGrad (WAFA for short) defined recursively for all t ≥ 0 by

θt+1 = θt − νt+1Atgt+1 (θt) (4)

θt+1,τ =

(
1− ln(t+ 1)τ∑t

k=0 ln(k + 1)τ

)
θt,τ +

ln(t+ 1)τ∑t
k=0 ln(k + 1)τ

θt+1 (5)

At+1 = At − γt+1

(
Atgt+1 (θt,τ) gt+1 (θt,τ)

T At − Id
)
1{gt+1(θt,τ)

TAtgt+1(θt,τ)≤βt+1} (6)

At+1,τ ′ =

(
1− ln(t+ 1)τ

′∑t
k=0 ln(k + 1)τ ′

)
At,τ ′ +

ln(t+ 1)τ
′∑t

k=0 ln(k + 1)τ ′
At+1 (7)

with θ0,τ = θ0, A0,τ ′ = A0 and τ, τ ′ ≥ 0. Note that when τ, τ ′ = 0, we obtain the usual averaged estimates.
However, taking both greater than zero allows to place more weight on the recent estimations, which are
supposed to be better. The following theorem gives the strong consistency of the Full Adagrad estimates of
θ∗.

Theorem 3.1 Suppose Assumptions 1, 2 and 4 hold. Suppose also that 2γ + 2ν > 3 and ν + β < 1. Then
θt and θt,τ defined by (4) and (5) converge almost surely to θ∗.

The proof is given in Section 6. The hyperparameters constraints introduced here are for technical reasons.
These conditions are not necessary in practice (see Section 5). In the following theorem, we establish the
strong consistency of the estimates of Σ−1 and the almost sure convergence rates of the estimates of θ∗.

Theorem 3.2 Suppose Assumptions 1, 3 and 4 hold as well as 2 with p > max
{

8−8γ
γ+β−1 , 2

(
1
γ − 1

)}
. Sup-

pose also that 2γ + 2ν > 3, ν + β < 1, 2γ − 2β > 1 and that γ + β > 1. Then

At
a.s−−−−→

t→+∞
Σ−1/2 and At,τ ′

a.s−−−−→
t→+∞

Σ−1/2

In addition,

∥θt − θ∗∥2 = O

(
ln t

tν

)
a.s. and ∥θt,τ − θ∗∥2 = O

(
ln t

tν

)
a.s.

The proof is given in Section 6. Observe that the conditions on γ, ν, β imply that ν < γ and γ > 3/4. These
conditions are due to the use of Robbins-Siegmund Theorem and should be certainly improved. Indeed, we
will see in Section 5 that these conditions do not need to be fulfilled in practice. Finally, under slightly
restricted conditions, the following theorem gives better convergence rates of θ∗.

Theorem 3.3 Suppose Assumptions 1, 3, 4 and 5 hold as well as 2 with p > max
{

8−8γ
γ+β−1 , 2

(
1
γ − 1

)}
.

Suppose also that 2γ + 2ν > 3, ν + β < 1, 2γ − 2β > 1 and that γ + β > 1. Then,

∥θt,τ − θ∗∥2 = O

(
ln t

t

)
a.s. and

√
t (θt,τ − θ∗)

L−−−−→
t→+∞

N
(
0, H−1ΣH−1

)
with Σ := Σ(θ∗) and H := ∇2F (θ∗).

The proof is given in Section 6. Thus, we obtain the asymptotic efficiency of the weighted averaged estimate.
In addition, these last ones only necessitates O(Nd2) operations, compare it a complexity of order O(Nd3)

operations if we directly calculate G−1/2
t .

4

4 A Streaming Full AdaGrad algorithm with O(Ntd) operations

In this section,, following the idea of Godichon-Baggioni and Werge (2023), we introduce a Streaming
Weighted Averaged Full AdaGrad algorithm (SWAFA for short) to reduce the computational complexity of
the algorithm. We consider that samples arrive (or are dealt with) by blocks of size n ∈ N. More precisely,
we suppose that at time t, we have n new i.i.d copies of X denoted as (Xt,1, . . . , Xt,n). Therefore, at time
t, we will have observed a total of Nt = nt i.i.d copies of X.

In this scenario, let us denote gt+1(θt) = 1
n

∑n
i=1∇θf(Xt+1,i, θt). Then, the streaming algorithm is

defined recursively for all t ≥ 0 by

θt+1 = θt − νt+1Atgt+1 (θt) (8)

θt+1,τ =

(
1− ln(t+ 1)τ∑t

k=0 ln(k + 1)τ

)
θt,τ +

ln(t+ 1)τ∑t
k=0 ln(k + 1)τ

θt+1 (9)

At+1 = At − γt+1

(
nAtgt+1 (θt,τ) gt+1 (θt,τ)

T At − Id
)
1{ngt+1(θt,τ)

TAtgt+1(θt,τ)≤βt+1} (10)

At+1,τ ′ =

(
1− ln(t+ 1)τ

′∑t
k=0 ln(k + 1)τ ′

)
At,τ ′ +

ln(t+ 1)τ
′∑t

k=0 ln(k + 1)τ ′
At+1 (11)

Then, we still have O(d2) operations for updating At, At,τ ′ and θt. Nevertheless, we only have t = Nt
n

iterations. This leads to total number of operations of order O(Ntd
2n−1) operations detailed as follows:

Ntd+
Ntd

2

n︸ ︷︷ ︸
updating θt,At,At,τ ′

+
Ntd

n︸︷︷︸
updating θt,τ

.

Considering n = d enables the complexity of the algorithm to be reduced to O(Ntd) operations, which
is equivalent to the complexity of the AdaGrad algorithm defined by (1). We next give three theorems that
establish the strong consistency, convergence rates, and asymptotic efficiency of the SWAFA estimates.

Theorem 4.1 Suppose Assumptions 1 and 4 hold. Suppose also that 2γ + 2ν > 3 and ν + β < 1. Then θt
and θt,τ defined by (8) and (9) converge almost surely to θ∗.

The proof is very similar to the one of Theorem 3.1 and is therefore not given.

Theorem 4.2 Suppose Assumptions 1, 3 and 4 hold as well as 2 with p > max
{

8−8γ
γ+β−1 , 2

}
. Suppose also

that 2γ + 2ν > 3, ν + β < 1, 2γ − 2β > 1, 6γ + 2ν > 7 and that γ + β > 1. Then

At
a.s−−−−→

t→+∞
Σ−1/2 and At,τ ′

a.s−−−−→
t→+∞

Σ−1/2

In addition, θt and θt,τ defined by (8) and (9) satisfy

∥θt − θ∗∥2 = O

(
ln t

tν

)
a.s. and ∥θt,τ − θ∗∥2 = O

(
ln t

tν

)
a.s.

The proof is given in Section 6. Again, the restricted conditions on γ, ν, β are due to the use of Robbins-
Siegmund Theorem and should be improved.

Theorem 4.3 Suppose Assumptions 1, 3, 4 and 5 hold as well as 2 for p > max
{

8−8γ
γ+β−1 , 2

}
. Suppose also

that 2γ + 2ν > 3, ν + β < 1, 2γ − 2β > 1, 6γ + 2ν > 7 and that γ + β > 1. Then θt,τ defined by (9) satisfy

∥θt,τ − θ∗∥2 = O

(
lnnt

nt

)
a.s. and

√
nt (θt,τ − θ∗)

L−−−−→
t→+∞

N
(
0, H−1ΣH−1

)
with Σ := Σ (θ∗) and H := ∇2F (θ∗).

The proof is very similar to the one of Theorem 3.3 and is therefore not given. Note that we ultimately

obtain ∥θt,τ − θ∗∥2 = O
(
lnNt
Nt

)
a.s., which means the convergence rate is the same as the one of the WAFA

algorithm and the estimates are still asymptotically efficient, but we drastically reduce the calculus time.

5

5 Applications

In this section, we carry out some numerical experiments to investigate the performance of our proposed
Full AdaGrad and Streaming Full AdaGrad algorithms. Our investigation begins with the application of
these algorithms to the linear regression model on simulated data. The choice of linear regression is strategic.
Indeed, with this model we are able to obtain the exact values of the matrix Σ = Σ(θ∗), which allows us
to also evaluate the performances of our estimates of Σ−1/2. Furthermore, we extend our experimentation
to real-world data by applying our algorithms to logistic regression tasks. It tests the adaptability of our
proposed methods in handling complex, real-life datasets. Throughout these comparative experiments, we
employ the AgaGrad algorithm defined in (1) and its weighted averaged version as a benchmark. The
Weighted Averaged AdaGrad (WAA) is formulated following the same principles as those outlined for θt,τ
in (5).

5.1 Discussion about the hyper-parameters involved in the different algorithms

Although in the previous sections, we imposed several restrictions on hyperparameters β, γ, and ν purely
for technical reasons to derive the convergence rates of the algorithms theoretically, in our experiments, we
simply set β = γ = ν = 3

4 . We will demonstrate that such a choice of hyperparameters does not affect
the practical performance of the algorithms. Furthermore, for Full AdaGrad, we choose cβ = cγ = cν = 1,
but for Full AdaGrad Streaming, while cβ and cγ are still set to 1, we set cν =

√
n. Since Full AdaGrad

Streaming updates θt only 1
n times as often as Full AdaGrad and AdaGrad , we increase the step size of

each θt update in Full AdaGrad Streaming by choosing a larger cν . However, for the AdaGrad algorithm
defined in (1), we set νt = t−1/4, since {Gt}−1/2 inherently converges to zero at a rate of 1/

√
t. For the Full

AdaGrad algorithms, we always initialize A0 as 0.1Id. Finally, we set τ, τ ′ = 2 for all weighted averaged
estimates.

5.2 Linear regression on simulated data

We first perform experiments with simulated data, considering the linear regression model. Let (X,Y)
be a random vector taking values in Rd × R. Consider the case where X is a centered Gaussian random
vector and

Y = XT θ∗ + ε,

where θ∗ is a parameter of Rd and ε ∼ N (0, 1) is independent from X. If the matrix E[XXT] is positive, θ∗

is the unique minimizer of the function F defined for all h ∈ Rp by

F (h) =
1

2
E
[
(Y − hTX)2

]
.

In the upcoming simulations, we fix d = 20. For each sample, we simulate N = 30, 000 i.i.d copies of
X ∼ N (0,ΣX), where ΣX is a positive definite covariance matrix given later. Note that in this case the
variance of the gradient satisfy Σ = ΣX . Parameter θ∗ is randomly selected as a realization from a uniform
distribution over the hypercube [−2, 2]d. We then estimate θ∗ using the different algorithms and compare
their performances.

5.2.1 AdaGrad vs. Full AdaGrad

We first compare the performance of Full AdaGrad, AdaGrad and their weighted averaged versions.
We consider two different structures for ΣX . The first one is ΣX = Id, leading to the case of independent
predictors. The second one is ΣX = R with Ri,j = 0.9|i−j|, leading to strong correlation between predictors.
To compare the two algorithms, we compute the mean-squared error of the distance from θt to θ

∗ by averaging
over 100 samples. We initialize θ0 as θ0 = θ∗+ 1

2E, where E ∼ N (0, Id) for both algorithms. Figure 1 shows
the evolution of the mean squared error with respect to the sample size for the four algorithms. When ΣX

is the identity matrix, AdaGrad and FullAdaGrad perform almost identically, and without surprise, the
weighted averaged estimates enables to accelerate the convergence. In this case, Σ is a diagonal matrix,
hence when AdaGrad only uses the diagonal elements, it does not lose any information. However, when

6

0.001

0.010

0.100

1.000

1 10 100 1000 10000

Sample size

M
S

E

ΣX = Id

0.01

0.10

1.00

1 10 100 1000 10000

Sample size

M
S

E

ΣX = R with Rij = 0.9i−j

AdaGrad WAA Full AdaGrad WAFA

Figure 1: Linear regression case with (N, d) = (30000, 20). Mean squared error with respect to the sample
size for AdaGrad and Full AdaGrad algorithms with their weighted averaged versions. Two values of ΣX

are considered: ΣX = Id (one the left) and ΣX = R (on the right).

there are strong correlations between predictors, as the off-diagonal elements of Σ are no longer zero, Full
AdaGrad significantly outperforms AdaGrad. This highlights the significance of using Full AdaGrad over
AdaGrad when addressing non-diagonal variance.

5.2.2 Study of the full Adagrad streaming version.

In this section, we demonstrate that the SWAFA can run in shorter time on the same dataset compared
to WAFA, while achieving comparable results. We consider three different block sizes: n = d = 20, n = 5,
and n = 1. Note that in the case n = 1, SWAFA and WAFA algorithms are the same. We simulate the data
in exactly the same manner as in the previous paragraph. Through 100 samples, we plot the algorithm’s
running time, and the estimation error of θ given by ∥θt,τ − θ∗∥ for the three different block sizes. Moreover,
since we have the exact values of Σ, we also evaluate the estimates of Σ−1/2 by computing the error defined
by
∥∥At,τ − Σ−1/2

∥∥
F
.

7

n=1 n=5 n=20

0.
4

0.
6

0.
8

1.
0

1.
2

Estimation Error for Σ−1/2

E
rr

or

n=1 n=5 n=20

0.
06

0.
08

0.
10

0.
12

0.
14

Estimation Error for θ*

E
rr

or

n=1 n=5 n=20

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

Running Time

T
im

e
(S

ec
on

ds
)

Figure 2: From the left to the right: boxplots of the estimation errors for Σ−1/2, boxplot of the estimation
errors for θ and boxplots of running time. In each case, ΣX = R, (N, d) = (30000, 20) and three possible
values of the streaming batch size are considered: n = 1, 5, 20.

n=1 n=5 n=20

0.
10

0.
15

0.
20

0.
25

0.
30

0.
35

Estimation Error for Σ−1/2

E
rr

or

n=1 n=5 n=20

0.
02

0
0.

02
5

0.
03

0
0.

03
5

0.
04

0

Estimation Error for θ*

E
rr

or

n=1 n=5 n=20

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

Running Time

T
im

e
(S

ec
on

ds
)

Figure 3: From the left to the right: boxplots of the estimation errors for Σ−1/2, boxplot of the estimation
errors for θ and boxplots of running time. In each case, ΣX = Id, (N, d) = (30000, 20) and three possible
values of the streaming batch size are considered: n = 1, 5, 20.

We can see from Figures 2 and 3 that SWAFA significantly reduced computation time. In fact, when
n = d = 20, the majority of computation time is spent on reading the data and estimating the gradient.
SWAFA has a larger estimation error for Σ−1/2 compared to WAFA, which is acceptable in practice, because
it can still accurately estimate θ∗.

Considering higher dimensions, we conducted the same experiments and obtained similar results which
are given in the Appendix.

8

5.3 Logistic regression on real data

Now, we apply algorithms to real-world data. We use the COVTYPE dataset, which was initially
collected by Blackard (1998). This dataset contains information on 581,011 areas and 54 different features
and is often used in research (Lazarevic and Obradovic, 2002; Toulis and Airoldi, 2017; Reagen et al., 2016).
Our focus is on the most common forest cover type, ”Spruce/Fir,” accounting for about half of the data set.
We have simplified the ”covertype” variable for our analysis by marking ”Spruce/Fir” as 1 and all other
types as 0. The objective is to use logistic regression to predict this binary variable. The data is split into
two portions: 50% for training and 50% for testing. We apply AdaGrad, Full AdaGrad, WAA, WAFA,
and SWAFA with n = d = 54. We calculate their accuracy on both the training and testing sets. For all
algorithms, we initialize θ0 = (0, . . . , 0).

Full AdaGrad WAFA SWAFA AdaGrad WAA

Training Accuracy(%) 75.67 75.58 75.59 75.71 75.56
Test Accuracy(%) 75.69 75.61 75.62 75.74 75.58

Table 1: Accuracy of AdaGrad, Full AdaGrad, WAA, WAFA, and SWAFA on ”COVTYPE” dataset.

Since this experiment is based on real data, the real parameter θ∗ remains unknown to us, making
it impossible to determine the accuracy of the estimations. However, all five algorithms achieved almost
identical correct classification rates, indicating that the proposed methods are applicable to real data.

Conclusion

This work propose novel approaches to Full AdaGrad algorithms. The core innovation lies in applying
a Robbins-Monro type algorithm for estimating the inverse square root of the variance of the gradient. By
proving the convergence rate of the proposed estimates, we lay a theoretical foundation that establishes the
reliability of our approach. Through numerical studies, we have shown that our approach offers substantial
advantages over traditional AdaGrad algorithms that rely solely on diagonal elements. Moreover, we intro-
duce a streaming variant of our method, which further reduces computational complexity. We show that
the streaming estimates are also asymptotically efficient. An extension of this work would be to understand
the possible impact of the dimension of the behavior of the estimates, maybe through a non asymptotic
theoretical study.

6 Proofs

To simplify our notation, in the following we denote Σ̂t = gt(θt−1,τ)gt(θt−1,τ)
T ,Wt := gt+1 (θt,τ) gt+1 (θt,τ)

T At

and Qt = A
1/2
t Σ̂t+1A

1/2
t with ∥Qt∥F = gt+1 (θt,τ)

T Atgt+1 (θt,τ).

6.1 Proof of Theorem 3.1

The aim is to apply Theorem 1 in Godichon-Baggioni and Werge (2023). Observe that in the proof of
this theorem, no assumption on the continuity of the function Σ is used. Then, we just have to control the
eigenvalues of the random stepsequence At,τ ′ . In this aim, we first give an upper bound of λmax(At) without
requiring knowledge on the behavior of the estimate θt.

Study on the largest eigenvalue of At and At,τ ′. It is obvious that the matrix AtΣ̂t+1At is positive
semi-definite, so that

λmax(At+1) ≤ λmax

(
At + γt+1Id1{∥Qt∥F≤βt+1}

)
≤ λmax (At + γt+1Id)

Therefore,

9

λmax(At+1) ≤ λmax (A0) +

t∑
k=0

γk+1 = O
(
t1−γ

)
, (12)

and one can derive that λmax (At,τ) = O
(
t1−γ

)
a.s.

Study on the smallest eigenvalue of At and At,τ ′. We now provide an asymptotic bound of λmin(At)
−1,

without necessitating knowledge on the behavior of the estimate θt. Thanks to the truncation term
(1∥Qt∥F≤βt+1

), one can easily verify that At is positive for all t ≥ 0. We now give a better lower bound of
its eigenvalues. First, remark that since At is symmetric and positive, one can rewrite At+1 as

At+1 = At − γt+1AtΣ̂t+1At1{∥Qt∥F≤βt+1} + γt+1Id1{∥Qt∥F≤βt+1}

= A
1/2
t

(
Id − γt+1A

1/2
t Σ̂t+1A

1/2
t 1{∥Qt∥F≤βt+1}

)
A

1/2
t + γt+1Id1{∥Qt∥F≤βt+1} (13)

Note that by definition of Σ̂t+1, the matrix A
1/2
t Σ̂t+1A

1/2
t is of rank 1 and∥∥∥A1/2

t Σ̂t+1A
1/2
t

∥∥∥
op

=
∥∥∥A1/2

t Σ̂t+1A
1/2
t

∥∥∥
F
= ∥Qt∥F .

Thus,

λmin(At+1) ≥ λmin

(
A

1/2
t

(
Id − γt+1A

1/2
t Σ̂t+1A

1/2
t 1{∥Qt∥F≤βt+1}

)
A

1/2
t

)
+ γt+11{∥Qt∥F≤βt+1}

≥ λmin(At)

(
1− γt+1

∥∥∥A1/2
t Σ̂t+1A

1/2
t

∥∥∥
op
1{∥Qt∥F≤βt+1}

)
+ γt+11{∥Qt∥F≤βt+1}

≥ λmin(At) (1− γt+1βt+1) + γt+11{∥Qt∥F≤βt+1}.

Let us now prove by induction that λmin (At) ≥ λ0
βt+1

where λ0 := min
{
1, λmin (A0)β

−1
1

}
. By definition

of λ0, the property is clearly satisfied for t = 0 and we suppose that is now the case for t ≥ 0, i.e that
λmin(At) >

1
βt+1

. Then, if ∥Wt∥F > βt+1, one has

λmin(At+1) = λmin(At) ≥
1

βt+1
>

1

βt+2
.

If ∥Wt∥F ≤ βt+1, one has

λmin(At+1) ≥ λmin(At) (1− γt+1βt+1) + γt+1

≥ λ0

βt+1
(1− γt+1βt+1) + γt+1

≥ λ0

βt+1
,

where the last inequality comes from the fact that λ0 ≤ 1. Then, one has

λmax

(
A−1

t,τ ′

)
= O(βt) a.s. (14)

Then, applying Theorem 1 in Godichon-Baggioni and Werge (2023), it comes that θt and θt,τ converge
almost surely to θ∗.

6.2 Proof of Theorem 3.2

Let (Dt) be a sequence defined by Dt := AtΣt−1At − Id where Σt := Σ (θt,τ). By definition of At+1, we
have

Dt+1 =
(
At − γt+1 (AtWt − Id)1{∥Qt∥F≤βt+1}

)
Σt

(
At − γt+1 (AtWt − Id)1{∥Qt∥F≤βt+1}

)
− Id

= AtΣtAt − Id − γt+1 ((AtWt − Id) ΣtAt −AtΣt (AtWt − Id))1{∥Qt∥F≤βt+1}
+ γ2t+1AtWtΣtAtWt1{∥Qt∥F≤βt+1} − γ2t+1 (AtWt − Id) Σt1{∥Qt∥F≤βt+1}
− γ2t+1Σt (AtWt − Id)1{∥Qt∥F≤βt+1} + γ2t+1Σt1{∥Qt∥F≤βt+1}.

10

In all the sequel let us denote

Rt =
∥∥∥γ2t+1AtWtΣtAtWt1{∥Qt∥F≤βt+1}

∥∥∥
F
+
∥∥∥γ2t+1 (AtWt − Id) Σt1{∥Qt∥F≤βt+1}

∥∥∥
F

+
∥∥∥γ2t+1Σt (AtWt − Id)1{∥Qt∥F≤βt+1}

∥∥∥
F
+
∥∥∥γ2t+1Σt1{∥Qt∥F≤βt+1}

∥∥∥
F
.

Then, applying inequality ab ≤ 1
2ca

2 + c
2b

2 (with a, b, c > 0), it comes

∥Dt+1∥2F ≤
(
1 + γ2t+1β

2
t+1

)
∥AtΣtAt − Id∥2F +

(
2 +

1

γ2t+1β
2
t+1

)
R2

t

− 2γt+1

〈
(AtWt − Id) ΣtAt1{∥Qt∥F≤βt+1}, AtΣtAt − Id

〉
F

+ 2γ2t+1 ∥(AtWt − Id) ΣtAt −AtΣt (AtWt − Id)∥2F 1{∥Qt∥F≤βt+1}

The aim is then to give an upper bound of the four terms composing Rt.

Upper bound of E
[∥∥∥γ2t+1AtWtΣtAtWt1{∥Qt∥F≤βt+1}

∥∥∥2
F
|Ft

]
. Thanks to Assumption 2, we have

E
[
∥AtWt∥4F 1{∥Qt∥F≤βt+1}|Ft

]
≤ E

[
∥gt+1 (θt,τ)∥4 ∥Atgt+1 (θt,τ)∥4 1{∥Qt∥F≤βt+1}|Ft

]
≤ E

[
∥gt+1 (θt,τ)∥4

∥∥∥A1/2
t QtA

1/2
t

∥∥∥2
F
1{∥Qt∥F≤βt+1}|Ft

]
≤ β2

t+1d
(
C4 + C4 (F (θt,τ)− F (θ∗))2

)
∥At∥2F

Then, remark that

1

γ2t+1β
2
t+1

E
[∥∥∥γ2t+1AtWtΣtAtWt1{∥Qt∥F≤βt+1}

∥∥∥2
F
|Ft

]
≤

γ2t+1

β2
t+1

E
[
∥AtWt∥4F |Ft

]
∥AtΣtAt∥2

≤ γ2t+1d
(
C4 + C4 (F (θt,τ)− F (θ∗))2

)
∥At∥2F ∥AtΣtAt∥2F

≤ 2γ2t+1d
(
C4 + C4 (F (θt,τ)− F (θ∗))2

)
∥At∥2F︸ ︷︷ ︸

R0,t

∥AtΣtAt − Id∥2F

+ 2γ2t+1d
2
(
C4 + C4 (F (θt,τ)− F (θ∗))2

)
∥At∥2F︸ ︷︷ ︸

R̃0,t

. (15)

Since ∥At∥2F = O
(
t1−γ

)
and γ > 3/4, one has∑
t≥0

R0,t < +∞ a.s. and
∑
t≥0

R̃0,t < +∞ a.s.

Upper bound of E
[∥∥∥γ2t+1Σt (AtWt − Id)1{∥Qt∥F≤βt+1}

∥∥∥2
F
|Ft

]
.

First, note that

E
[
∥AtWt − Id∥2F 1{∥Qt∥F≤βt+1}|Ft

]
≤ E

[
∥AtWt − Id∥2F |Ft

]
≤ 2∥At∥4FE

[
∥gt+1 (θt,τ) gt+1 (θt,τ)

T ∥2F |Ft

]
+ 2d.

Thanks to Assumption 2, one has

E
[
∥AtWt − Id∥2F |Ft

]
≤ 2∥At∥4F

(
C4 + C4 (F (θt,τ)− F (θ∗))2

)
+ 2d.

11

Observe that Σt converges almost surely to Σ which is positive, so that

∥At∥4F ≤ 4

λmin(Σ)2
∥AtΣtAt∥2F + ∥At∥4 1λmin(Σt)<λmin(Σ)/2

≤ 8

λmin(Σ)2
∥AtΣtAt − Id∥2F +

8

λmin(Σ)2
d+ ∥At∥4 1λmin(Σt)<λmin(Σ)/2. (16)

Then

E
[
∥AtWt − Id∥2F 1{∥Qt∥F≤βt+1}|Ft

]
≤

=:R̃1,t︷ ︸︸ ︷(
C4 + C4∥θt,τ − θ∥4

) 16

λ2
min(Σ)

∥AtΣtAt − Id∥2F (17)

+ Ct
16

λmin(Σ)2
d+ 2d+ 2∥At∥4F1λmin(Σt)<λmin(Σ)/2Ct︸ ︷︷ ︸

=:R̃2,t

(18)

where Ct = C4 + C4 (F (θt,τ)). Since 1λmin(Σt)<λmin(Σ)/2 converges almost surely to 0∑
t≥1

∥At∥4F
1

γ2t+1β
2
t+1

1λmin(Σt)<λmin(Σ)/2(C4 + C4 (F (θt,τ)− F (θ∗))2) < +∞ a.s.

Then,

1

γ2t+1β
2
t+1

E
[∥∥∥γ2t+1Σt (AtWt − Id)1{∥Qt∥F≤βt+1}

∥∥∥
F
|Ft

]
≤

=:R1,t︷ ︸︸ ︷
γ2t+1

β2
t+1

∥Σt∥2F R̃1,t ∥AtΣtAt − Id∥F

+
γ2t+1

β2
t+1

∥Σt∥2F R̃2,t︸ ︷︷ ︸
=:R2,t

(19)

with ∑
t≥0

R1,t < +∞ a.s and
∑
t≥0

R2,t < +∞ a.s

From ∥AtΣtAt − Id∥2F to ∥Dt∥2F . Observe that

∥AtΣtAt − Id∥F ≤ ∥AtΣt−1At − Id∥F + ∥At (Σt−1 − Σt)At∥F .

In addition, thanks to Assumption 3

∥At (Σt−1 − Σt)At∥2F ≤ ∥At∥4F ∥Σt−1 − Σt∥2F
≤ ∥At∥4F LΣ ∥θt,τ − θt−1,τ∥2

≤ ∥At∥4F LΣ
2 ln t2τ(∑t−1

k=0 ln(k + 1)τ
)2 (∥θt−1,τ − θ∗∥2 + ∥θt − θ∗∥2

)
With the same arguments as for inequality (16), it comes

∥At (Σt−1 − Σt)At∥2F ≤
(

16

λmin(Σ)2
∥At−1Σt−1At − Id∥4F +

16

λmin(Σ)2
d2 + ∥At∥4 1λmin(Σt−1)<λmin(Σ)/2

)
× LΣ

2 ln t2τ(∑t−1
k=0 ln(k + 1)τ

)2 (∥θt−1,τ − θ∗∥2 + ∥θt − θ∗∥2
)

In order to avoid problems in application of Robbins-Siegmund Theorem, we now have to prove that there
is a positive constant µ such that

∥θt − θ∗∥2 = O

(
1

tµ

)
a.s.

12

A first rate of convergence for θt. With the help of a Taylor’s expansion of the functional F and thanks
to Assumption 4, we obtain, denoting Vt = F (θt)− F (θ∗),

E [Vt+1|Ft] ≤ Vt − νt+1∇F (θt)
T At,τ ′∇F (θt) +

L∇F

2
ν2t+1E

[
∥At,τgt+1 (θt)∥2 |Ft

]
Then, thanks to Assumption 1

E [Vt+1|Ft] ≤
(
1 +

L∇FC

2
ν2t+1λmax(At,τ)

2

)
Vt − νt+1∇F (θt)

TAt,τ∇F (θt) +
L∇FC

2
ν2t+1λmax(At,τ)

2.

Thanks to Assumption 1, there exists a positive constant c0 such that

∥∇F (θt)∥2 ≥ c0λmin(At,τ) (F (θt)− F (θ)) .

Given 2γ + 2ν − 2 > 1, there exists µ > 0 such that µ < 2γ + 2ν − 3. We define Ṽt := tµVt, thus

E
[
Ṽt+1|Ft

]
=

(
t+ 1

t

)µ((
1 +

L∇FC

2
ν2t+1λmax(At,τ)

2

)
− c0νt+1λmin(At,τ)

)
Ṽt

+
L∇FC

2
ν2t+1λmax(At,τ)

2(t+ 1)µ.

Let ζt :=
(
t+1
t

)µ ((
1 + L∇FC

2 νt+1λmax(At,τ)
2
)
− c0ν

2
t+1λmin(At,τ)

)
, then

E
[
Ṽt+1|Ft

]
≤ Ṽt +

L∇FC

2
ν2t+1λmax(At,τ)

2(t+ 1)µ + Ṽt1ζt>1.

As ν + β < 1 and with the help of equality (14), it comes that 1ζt>1 converges almost surely to 0. Then,
applying Robbins-Siegmund Theorem, it follows that Ṽt converges almost surely to a random finite variable,
i.e

F (θt)− F (θ∗) = O(t−µ)

for all µ < 2γ + 2ν − 3. Due to the local strong convexity of G (Assumption 1), it leads to

∥θt − θ∗∥2 = O(t−µ) a.s and ∥θt,τ − θ∗∥2 = O(t−µ) a.s. (20)

Upper bound of ∥AtΣtAt − Id∥2F . Since

∥AtΣtAt − Id∥2F ≤
(
1 +

1

t1+µ/2

)
∥Dt∥2 +

(
1 +

1
t1+µ/2

)
∥At (Σt−1 − Σt)At∥2F

it comes

∥AtΣtAt − Id∥2F ≤ (1 +R3,t) ∥Dt∥2F +R4,t

with

R3,t =
1

t1+µ/2
+

16LΣ

λmin(Σ)2
t1+µ/2LΣ

ln t2τ(∑t−1
k=0 ln(k + 1)τ

)2 (∥θt−1,τ − θ∗∥2 + ∥θt − θ∗∥2
)

(21)

R4,t =
(
1 + t1+µ/2

)(16

λmin(Σ)2
d2 + ∥At∥4 1λmin(Σt−1)<λmin(Σ)/2

)
× LΣ

2 ln t2τ(∑t−1
k=0 ln(k + 1)τ

)2 (∥θt−1,τ − θ∗∥2 + ∥θt − θ∗∥2
)

(22)

and it comes from (20) that∑
t≥1

R3,t < +∞ a.s and
∑
t≥1

R4,t < +∞ a.s

13

Bounding (∗) := −2γt+1

〈
(AtWt − Id) ΣtAt1{∥Qt∥F≤βt+1}, AtΣtAt − Id

〉
F
. First, note that

(∗) = − 2γt+1 ⟨(AtWt − Id) ΣtAt, AtΣtAt − Id⟩F︸ ︷︷ ︸
=:K1,t

+2γt+1 ⟨(AtWt − Id) ΣtAt, AtΣtAt − Id⟩F 1{∥Qt∥F>βt+1}︸ ︷︷ ︸
=:K2,t

.

We now bound each term on the right-hand side of previous equality.

Upper bound of K2,t. Thanks to the Cauchy–Schwarz inequality, we have

E [|K2,t| |Ft] ≤ 2γt+1 ∥At∥F ∥Σt∥F ∥AtΣtAt − Id∥F E
[
∥AtWt − Id∥F 1{∥Qt∥F>βt+1}|Ft

]
In addition,

E
[
∥AtWt − Id∥F 1{∥Qt∥F>βt+1}|Ft

]
≤ ∥At∥2 E

[∥∥gt+1 (θt,τ) g
T
t+1 (θt,τ)

∥∥
F
1{∥Qt∥F>βt+1}|Ft

]
+
√
dP [∥Qt∥F > βt+1|Ft]

With the help of Assumption 2 and Markov’s inequality, since ∥Qt∥F ≤ ∥At∥F ∥gt+1(θt,τ)∥2 and since θt,τ
converges almost surely to θ∗,

P [∥Qt∥F > βt+1|Ft] ≤
E
[
∥Qt∥pF |Ft

]
βp
t+1

≤
∥At∥pF E

[
∥gt+1 (θt,τ)∥2p |Ft

]
βp
t+1

= O(np(1−γ−β)) a.s..

In a same way, one can check that

E
[∥∥gt+1 (θt,τ) g

T
t+1 (θt,τ)

∥∥
F
1{∥Qt∥F>βt+1}|Ft

]
= O(np(1−γ−β)/2) a.s.

Then, with the help of equality (12),

R5,t := E [|K2,t| |Ft] = O(n3−4γ+p(1−γ−β)/2) a.s. (23)

Note that p > 8−8γ
γ+β−1 gives us 3− 4γ + p(1− γ − β)/2 < −1.

Positivity of E [K1,t|Ft]. Let us denote D̃t := AtΣtAt−Id and remark that E [K1,t|Ft] = 2γt+1⟨AtΣtD̃t , D̃t⟩F .
One has, since D̃t and AtΣtAt commute and since D̃t is symmetric,

⟨AtΣtD̃t , D̃t⟩F = tr
(
AtΣtD̃

2
t

)
= tr

(
AtΣtAtA

−1
t D̃2

t

)
= tr

(
A−1

t AtΣtAtD̃
2
t

)
.

In a same way,

⟨AtΣtD̃t , D̃t⟩F = tr
(
A−1

t (AtΣtAtD̃t)D̃t

)
= tr

(
(AtΣtAt)(D̃tA

−1
t D̃t)

)
.

Both AtΣtAt and D̃tA
−1
t D̃t are positive symmetric matrix, so that

⟨AtΣtD̃t , D̃t⟩F = tr
(
(AtΣtAt)

1/2(D̃tA
−1
t D̃t)(AtΣtAt)

1/2
)
≥ 0.

Therefore, K1,t ≥ 0 for all t ≥ 0.

14

Upper bound of E
[
∥Dt+1∥2F |Ft

]
and first conclusions. Resuming all previous bounds, one has

E
[
∥Dt+1∥2F |Ft

]
≤ (1 + S1,t) ∥Dt∥2F + S2,t − E [K1,t|Ft]

with K1,t positive and

S1,t =
(
16γ2t+1β

2
t+1 (R0,t + 2R1,t) + 8 (R0,t + 2R1,t)

)
(1 +R3,t) +R3,t

S2,t = 16γ2t+1β
2
t+1

(
R̃0,t + 2R2,t

)
+ 8

(
R̃0,t + 2R2,t

)
+R4,t +R5,t

and we have seen that ∑
t≥1

S1,t < +∞ a.s and
∑
t≥1

S2,t < +∞ a.s.

Then, applying Robbins-Siemund Theorem, ∥Dt∥2F := ∥AtΣt−1At − Id∥2F converges almost surely to a finite
random variable. Observe that since Σt converges almost surely to Σ which is positive, this leads to

λmax (At) = O(1) a.s. (24)

In addition, Robbins-Siegmund Theorem ensures that∑
t≥1

E [K1,t|Ft] < +∞ a.s.

Remark that

E [K1,t|Ft] = 2γt+1tr
(
(AtΣtAt)

1/2(D̃tA
−1
t D̃t)(AtΣtAt)

1/2
)

≥ 2γt+1
λmin (At)

2

λmax (At)
∥AtΣtAt − Id∥2F .

Then, in order to conclude, one has to obtain a better lower bound of the smallest eigenvalue of At.

New lower bound of λmin (At). We denote β′
t = β1t

1−γ
4 for all t ≥ 0. With the same expression of At+1

that we have seen in (13), we can prove that

λmin(At+1) ≥ λmin(At)
(
1− γt+1β

′
t+1

)
+ γt+1 − γt+1 (1 + λmin(At) ∥Wt∥F)1{∥Qt∥F>β′

t+1}.

By induction, we have for all t ≥ 1 that

λmin(At) ≥
t∏

j=1

(
1− γjβ

′
j

)
λmin(A0) +

t∑
k=1

t∏
j=k+1

(1− γjβ
′
j)γk − Vt,

where

Vt :=
t∑

k=1

t∏
j=k+1

(1− γjβ
′
j)γk (1 + λmin(Ak−1) ∥Qk−1∥F)1{∥Qk−1∥F>β′

k}.

In addition, Vt = V ′
t +Mt with

V ′
t :=

t∑
k=1

t∏
j=k+1

(1− γjβ
′
j)γkE

[
(1 + λmin(Ak−1) ∥Wk−1∥F)1{∥Wk−1∥F>β′

k}|Fk−1

]

Mt :=

t∑
k=1

t∏
j=k+1

(1− γjβ
′
j)γkEk

and Ek = (1 + λmin(Ak−1) ∥Qk−1∥F)1{∥Qk−1∥F>β′
k} − E

[
(1 + λmin(Ak−1) ∥Qk−1∥F)1{∥Qk−1∥F>β′

k}|Fk−1

]
is

a sequence of martingale differences. Then, applying Theorem 6.1 in Cénac et al. (2020), one has since
∥At∥F = O(1) a.s.,

M2
t = O

(
γt
β′
t

)
a.s.

15

and this term is negligible since γ
2 − 1−γ

8 > 1−γ
4 (since γ > 3/7). In addition, following the same reasoning

as for the upper bound of R2,t and since we now know that ∥At∥F = O(1) a.s., one has

E
[
(1 + λmin(At−1) ∥Qt−1∥F)1{∥Qt−1∥F>β′

t}|Ft−1

]
= O

(
t−pβ′/2

)
a.s.

and applying Lemma 6.1 in Godichon-Baggioni et al. (2024), it comes that for any ap < pβ′/2,

V ′
t = o

(
t−ap

)
a.s

which is negligible as soon as p > 2.
Finally,

t∑
k=1

t∏
j=k+1

(1− γjβ
′
j)γk ≥

t∑
k=1

1

β′
k

t∏
j=k+1

(1− γjβ
′
j)γkβ

′
k

=
t∑

k=1

1

β′
k

 t∏
j=k+1

(1− γjβ
′
j)−

t∏
j=k

(1− γjβ
′
j)

≥ 1

β′
t

1−
t∏

j=1

(1− γjβ
′
j)

≥ γ1β1

β′
t

.

Since
∏t

j=0 (1− γtβ
′
t)λmin(A0) ≥ 0, we have

1

λmin(At)
= O(β′

t) = O(t
1−γ
4) a.s.

which means that lim inf λmin (At) t
1−γ
4 > 0 a.s so that∑

t≥1

γt+1λ
2
min(At) = +∞ a.s.

and since λmax (At) = O(1) a.s., it comes∑
t≥1

γt+1
λ2
min(At)

λmax (At)
= +∞ a.s.

Conclusion 1 Observe that

E [K1,t|Ft] ≥ 2γt+1
λmin (At)

2

λmax (At)
∥AtΣtAt − Id∥2F ≥ γt+1

λmin (At)
2

λmax (At)
∥Dt∥2F︸ ︷︷ ︸

K̃1,t

− 4γt+1
λmin (At)

2

λmax (At)
∥At (Σt − Σt−1)At∥2F︸ ︷︷ ︸
=:R6,t

and one can remark that

R6,t ≤ 4γt+1 ∥At∥5F
ln t2τ(∑t

k=0 ln(k + 1)τ
)2L2

Σ ∥θt − θt−1,τ∥2 = o

(
1

t2

)
a.s.

i.e
∑

t≥1R6,t < +∞ a.s. and rewriting

E
[
∥∆t+1∥2F |Ft

]
≤ (1 + S1,t) ∥∆t∥2F + S2,t +R6,t − K̃1,t

16

and applying Robbins-Siegmund Theorem, it comes∑
t≥1

γt+1
λmin (At)

2

λmax (At)
∥Dt∥2F < +∞ a.s.

Then, equality (6.2) implies that lim inf ∥Dt∥2F = 0 a.s, so that, since ∥Dt∥2F converges almost surely to a
finite random variable, ∥Dt∥2F converges almost surely to 0, i.e

AtΣt−1At − Id
a.s−−−−−→

n→+∞
0

and since Σt−1 converges almost surely to Σ,

At
a.s−−−−−→

n→+∞
Σ−1/2.

Conclusion 2 Applying Theorem 2 in Godichon-Baggioni and Werge (2023), it comes

∥θt − θ∗∥2 = O

(
ln t

tν

)
a.s.

6.3 Proof of Theorem 3.3

The aim is to apply Theorem 4 in Godichon-Baggioni and Werge (2023). Then, we just have to check
that equality (8) in Godichon-Baggioni and Werge (2023) is satisfied in our case, i.e that for some δ > 0,

1∑t
k=0 ln(k + 1)τ

t∑
k=0

ln(k + 1)τ+1/2+δ
∥∥∥A−1

k+1,τ −A−1
k,τ

∥∥∥
op
(k + 1)γ/2 = O

(
1

tν′

)
a.s.

for some ν ′ > 1/2.
First, observe that∥∥∥A−1

k+1,τ −A−1
k,τ

∥∥∥
op

≤
∥∥∥A−1

k+1,τ

∥∥∥∥∥∥A−1
k,τ

∥∥∥
op
∥Ak+1,τ −Ak,τ∥op ≤

ln(t+ 1)τ
′∑t

k=0 ln(k + 1)τ ′
∥Ak+1 −Ak,τ∥ .

Since At and At,τ converge almost surely to the positive matrix Σ−1/2, it comes that∥∥∥A−1
k+1,τ −A−1

k,τ

∥∥∥
op

= o

(
1

t

)
a.s.

which concludes the proof since γ < 1.

6.4 Proof of Theorem 4.2

The proof is analogous to the one of Theorem 3.2. We so just give the main difference here. Observe

that in this case, Wt =
1
n

(∑t
i=1∇θf (Xt+1,i, θt,τ)

) (∑t
i=1∇θf (Xt+1,i, θt,τ)

)T
.

New values of R̃1,t and R̃2,t Observe that in the streaming case, one has

E
[
∥AtWt − Id∥2F 1{∥Qt∥F≤βt+1}|Ft

]
≤ 2n2∥At∥4FE

[
∥gt+1 (θt,τ) gt+1 (θt,τ)

T ∥2F |Ft

]
+ 2d.

and

E
[
∥gt+1 (θt,τ) gt+1 (θt,τ)∥2F |Ft

]
≤

(
1

n

n∑
i=1

(
E
[
∥∇θ (f(Xt+1,i, θt,τ)∥4 |Ft

]) 1
4

)4

≤ C4 + C4 (F (θt,τ)− F (θ∗))2

Then, in the streaming case one has

R̃1,t := n
(
C4 + C4∥θt,τ − θ∗∥4

) 16

λ2
min(Σ)

(25)

R̃2,t := n
(
C4 + C4∥θt,τ − θ∗∥4

) 16

λmin(Σ)2
d+ 2d+ 2∥At∥4F1λmin(Σt)<λmin(Σ)/2

(
C4 + C4∥θt,τ − θ∗∥4

)
. (26)

17

New values in the upper bound of K2,t The only difference there is that

P [∥Qt∥F > βt+1|Ft] ≤
np ∥At∥p

(
Cp + Cp ∥θt,τ∥2p

)
βp
t+1

.

Main difference with the proof of Theorem 3.2 The main difference results in E [K1,t|Ft]. Indeed,
in the streaming case,

E [ngt+1 (θt,τ) gt+1 (θt,τ) |Ft] =
1

n

n∑
i=1

E
[
∇θf (Xt+1,i, θt,τ)∇θf (Xt+1,i, θt,τ)

T |Ft

]
+

1

n

n∑
i=1

∑
j ̸=i

E
[
∇θf (Xt+1,i, θt,τ)∇θf (Xt+1,j , θt,τ)

T |Ft

]
= Σt + (n− 1)∇F (θt,τ)∇F (θt,τ)

T .

Then, in the streaming case, one has

E [K1,t|Ft] ≥
〈
AtΣtD̃t, D̃t

〉
F
+ (n− 1)

〈
AtΣtAt∇F (θt,τ)∇F (θt,τ)

T At, D̃t

〉
F

Following the same reasoning as in the proof of Theorem 3.2, for all µ < 2γ + 2µ− 3,

∥θt − θ∗∥2 = o

(
1

tµ

)
a.s and ∥θt,τ − θ∗∥2 = o

(
1

tµ

)
a.s

and since ∇F is L∇F Lispchitz,

∥∇F (θt)∥2 = o

(
1

tµ

)
a.s and ∥∇F (θt,τ)∥2 = o

(
1

tµ

)
a.s.

In addition, for all µ′ > 0, one has

γt+1

∣∣∣〈AtΣtAt∇F (θt,τ)∇F (θt,τ)
T At, D̃t

〉
F

∣∣∣ ≤ (1 + 1

t1+µ′

)∥∥∥D̃t

∥∥∥2
F

+ t1+µ′
γ2t+1 ∥At∥6F ∥Σt∥F ∥∇F (θt,τ)∥4︸ ︷︷ ︸

=:Rn,t

Then,

Rn,t = o

(
1

t8γ−7+2µ−µ′

)
a.s

Taking µ > 4− 4γ (since µ < 2γ +2ν − 3, this is possible as soon as 6γ +2ν > 7) and µ′ < 8γ − 7+ 2µ− 1,
one has ∑

t≥1

Rn,t < +∞ a.s.

Conclusion One can so rewrite the upper bound of E
[
∥Dt∥2F

]
as

E
[
∥Dt+1∥2F |Ft

]
≤ (1 + S1,t) ∥Dt∥2F + S2,t − γt+1

〈
AtΣtD̃t, D̃t

〉
F

with

S1,t =

(
1

t1+µ′ + 16γ2t+1β
2
t+1 (R0,t + 2R1,t) + 8 (R0,t + 2R1,t)

)
(1 +R3,t) +R3,t

S2,t = Rn,t + 16γ2t+1β
2
t+1

(
R̃0,t + 2R2,t

)
+ 8

(
R̃0,t + 2R2,t

)
+R4,t +R5,t

and conclude as in the proof of Theorem 3.2.

18

A Simulations with higher dimensions

We provide here the numerical results for the linear model in the case where d = 80 and N = 120000.
More precisely, Figure 4 gives a comparison of the evolution of the mean squared errors of the estimates
obtained with Adagrad and Full Adagrad algorithms, as well as their weighted averaged versions.

1e−03

1e−02

1e−01

1e+00

1e+01

1e+01 1e+03 1e+05
Sample size

M
S

E

ΣX = Id

0.01

0.10

1.00

10.00

1e+01 1e+03 1e+05

Sample size

M
S

E

ΣX = R with Rij = 0.9i−j

AdaGrad Averaged AdaGrad Full AdaGrad Averaged Full AdaGrad

Figure 4: Linear regression case with (N, d) = (120000, 80). Mean squared error with respect to the sample
size for AdaGrad and Full AdaGrad algorithms with their weighted averaged versions. Two values of ΣX

are considered: ΣX = Id (one the left) and ΣX = R (on the right).

n=1 n=20 n=80

2
4

6
8

Estimation Error for Σ−1/2

E
rr

or

n=1 n=20 n=80

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

Estimation Error for θ*

E
rr

or

n=1 n=20 n=80

1
2

3
4

5
6

7

Running Time

T
im

e
(S

ec
on

ds
)

Figure 5: From the left to the right: boxplots of the estimation errors for Σ−1/2, boxplot of the estimation
errors for θ and boxplots of running time. In each case, ΣX = R, (N, d) = (120000, 80) and three possible
values of the streaming batch size are considered: n = 1, 20, 80.

19

n=1 n=20 n=80

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

1.
6

Estimation Error for Σ−1/2

E
rr

or

n=1 n=20 n=800.
02

0
0.

02
5

0.
03

0
0.

03
5

0.
04

0
0.

04
5

0.
05

0

Estimation Error for θ*

E
rr

or

n=1 n=20 n=80

2
4

6
8

Running Time

T
im

e
(S

ec
on

ds
)

Figure 6: From the left to the right: boxplots of the estimation errors for Σ−1/2, boxplot of the estimation
errors for θ and boxplots of running time. In each case, ΣX = Id, (N, d) = (120000, 80) and three possible
values of the streaming batch size are considered: n = 1, 20, 80.

In Figures 5 and 6, we focus on the comparison between the performance of the of the estimates of Σ−1/2

and θ∗ as well as the calculus time obtained with the SWAFA algorithm, with n = 1, 20 and 80.
We conducted the same experiment with d = 80 and N = 120000, considering the logistic model. In

Figure 7, we present a comparison of the evolution of the mean squared errors of the estimates obtained
with the Adagrad and Full Adagrad algorithms, along with their weighted-averaged versions.

0.3

1.0

3.0

10.0

1e+01 1e+03 1e+05

Sample size

M
S

E

ΣX = Id

1

3

10

1e+01 1e+03 1e+05

Sample size

M
S

E

ΣX = R with Rij = 0.9i−j

AdaGrad WAA Full AdaGrad WAFA

Figure 7: Logstic regression case with (N, d) = (120000, 80). Mean squared error with respect to the sample
size for AdaGrad and Full AdaGrad algorithms with their weighted averaged versions. Two values of ΣX

are considered: ΣX = Id (one the left) and ΣX = R (on the right).

20

References

Blackard, J. A. (1998). Comparison of neural networks and discriminant analysis in predicting forest cover
types. Colorado State University.

Bottou, L., Curtis, F. E., and Nocedal, J. (2018). Optimization methods for large-scale machine learning.
SIAM review, 60(2):223–311.

Boyer, C. and Godichon-Baggioni, A. (2023). On the asymptotic rate of convergence of stochastic new-
ton algorithms and their weighted averaged versions. Computational Optimization and Applications,
84(3):921–972.

Cénac, P., Godichon-Baggioni, A., and Portier, B. (2020). An efficient averaged stochastic gauss-newton
algorithm for estimating parameters of non linear regressions models. arXiv preprint arXiv:2006.12920.

Dean, J., Corrado, G., Monga, R., Chen, K., Devin, M., Mao, M., Ranzato, M., Senior, A., Tucker, P.,
Yang, K., et al. (2012). Large scale distributed deep networks. Advances in neural information processing
systems, 25.

Défossez, A., Bottou, L., Bach, F., and Usunier, N. (2022). A simple convergence proof of adam and adagrad.
Transactions on Machine Learning Research.

Duchi, J., Hazan, E., and Singer, Y. (2011). Adaptive subgradient methods for online learning and stochastic
optimization. Journal of machine learning research, 12(7).

Gadat, S. and Panloup, F. (2023). Optimal non-asymptotic analysis of the ruppert–polyak averaging stochas-
tic algorithm. Stochastic Processes and their Applications, 156:312–348.

Genevay, A., Cuturi, M., Peyré, G., and Bach, F. (2016). Stochastic optimization for large-scale optimal
transport. Advances in neural information processing systems, 29.

Godichon-Baggioni, A. and Lu, W. (2024). Online stochastic newton methods for estimating the geometric
median and applications. Journal of Multivariate Analysis, page 105313.

Godichon-Baggioni, A., Lu, W., and Portier, B. (2024). Online estimation of the inverse of the hessian
for stochastic optimization with application to universal stochastic newton algorithms. arXiv preprint
arXiv:2401.10923.

Godichon-Baggioni, A. and Werge, N. (2023). On adaptive stochastic optimization for streaming data: A
newton’s method with o (dn) operations. arXiv preprint arXiv:2311.17753.

Lazarevic, A. and Obradovic, Z. (2002). Boosting algorithms for parallel and distributed learning. Distributed
and parallel databases, 11:203–229.

Mokkadem, A. and Pelletier, M. (2011). A generalization of the averaging procedure: The use of two-time-
scale algorithms. SIAM Journal on Control and Optimization, 49(4):1523–1543.

Pelletier, M. (1998). On the almost sure asymptotic behaviour of stochastic algorithms. Stochastic processes
and their applications, 78(2):217–244.

Pelletier, M. (2000). Asymptotic almost sure efficiency of averaged stochastic algorithms. SIAM Journal on
Control and Optimization, 39(1):49–72.

Polyak, B. T. and Juditsky, A. B. (1992). Acceleration of stochastic approximation by averaging. SIAM
journal on control and optimization, 30(4):838–855.

Reagen, B., Whatmough, P., Adolf, R., Rama, S., Lee, H., Lee, S. K., Hernández-Lobato, J. M., Wei, G.-Y.,
and Brooks, D. (2016). Minerva: Enabling low-power, highly-accurate deep neural network accelerators.
ACM SIGARCH Computer Architecture News, 44(3):267–278.

21

Robbins, H. and Monro, S. (1951). A stochastic approximation method. The annals of mathematical
statistics, pages 400–407.

Ruder, S. (2016). An overview of gradient descent optimization algorithms. arXiv preprint arXiv:1609.04747.

Seide, F., Fu, H., Droppo, J., Li, G., and Yu, D. (2014). 1-bit stochastic gradient descent and its application
to data-parallel distributed training of speech dnns. In Fifteenth annual conference of the international
speech communication association.

Smith, L. N. (2017). Cyclical learning rates for training neural networks. In 2017 IEEE winter conference
on applications of computer vision (WACV), pages 464–472. IEEE.

Sun, S., Cao, Z., Zhu, H., and Zhao, J. (2019). A survey of optimization methods from a machine learning
perspective. IEEE transactions on cybernetics, 50(8):3668–3681.

Toulis, P. and Airoldi, E. M. (2017). Asymptotic and finite-sample properties of estimators based on
stochastic gradients.

Zhu, W., Chen, X., and Wu, W. B. (2023). Online covariance matrix estimation in stochastic gradient
descent. Journal of the American Statistical Association, 118(541):393–404.

22

	1 Introduction
	2 Framework
	3 A Full AdaGrad algorithm with O(td2) operations
	3.1 Estimating -1/2 with the help of a Robbins-Monro algorithm
	3.2 Full AdaGrad algorithms with O(td2) operations

	4 A Streaming Full AdaGrad algorithm with O (Ntd) operations
	5 Applications
	5.1 Discussion about the hyper-parameters involved in the different algorithms
	5.2 Linear regression on simulated data
	5.2.1 AdaGrad vs. Full AdaGrad
	5.2.2 Study of the full Adagrad streaming version.

	5.3 Logistic regression on real data

	6 Proofs
	6.1 Proof of Theorem 3.1
	6.2 Proof of Theorem 3.2
	6.3 Proof of Theorem 3.3
	6.4 Proof of Theorem 4.2

	A Simulations with higher dimensions

