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Abstract We introduce a new sequential algorithm for the Standard Quadratic Programming Problem
(StQP), which exploits a formulation of StQP as a Linear Program with Linear Complementarity Constraints
(LPLCC). The algorithm is finite and guarantees at least in theory a δ-approximate global minimum for
an arbitrary small δ, which is a global minimum in practice. The sequential algorithm has two phases. In
Phase 1, Stationary Points (SP) with strictly decreasing objective function values are computed. Phase 2
is designed for giving a certificate of global optimality for the last SP computed in Phase 1. Two different
Nonlinear Programming Formulations for LPLCC are proposed for each one of these phases, which are
solved by efficient enumerative algorithms. New procedures for computing a lower bound for StQP are also
proposed, which are easy to implement and give tight bounds in general. Computational experiments with a
number of test problems from known sources indicate that the two-phase sequential algorithm is, in general,
efficient in practice. Furthermore, the algorithm seems to be an efficient way to study the copositivity of a
matrix by exploiting an StQP with this matrix.

Keywords Quadratic Programming · Complementarity Problems · Global Optimization · Maximum Clique
Problem

1 Introduction

The Standard Quadratic Programming (StQP) problem consists of finding a (global) minimizer of a quadratic
form over the standard simplex. Hence, it can be written in the following form:

StQP :

{
min f(y) = yTQy
s.t. y ∈ ∆,

(1)

where Q ∈ Rn×n is a symmetric matrix and ∆ is the standard simplex in a Euclidean space Rn, i.e.,

∆ = {y ∈ Rn : y ≥ 0, eT y = 1}, (2)

with e being the n-dimensional vector of ones. StQP (1) has an optimal solution, as its objective func-
tion is continuous and its feasible set is nonempty and compact. Note that a general standard quadratic
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programming problem with objective function yTAy + 2dT y can be recast into the formulation (1) with
Q = A+ deT + edT .

The name was coined by Bomze in [3], where it is shown that a wide number of applications can be
recast as an StQP [5–10, 30], including the so-called Maximum Clique Problem that is quite relevant in
computer vision, pattern recognition and robotics [32], portfolio selection problems [1], and testing matrix
copositivity [6].

Finding a global optimal solution to StQP (1) when Q is an indefinite matrix, or even giving a certificate
of global optimality for a locally computed solution, is known to be NP-hard [24].

Branch-and-Bound (B&B) methods [4] are the algorithms that have been employed for computing a
global minimum of an StQP. These algorithms require efficient techniques to find good lower bounds; see [9]
and the references therein. In [35], an improved B&B method is proposed. This new version differs from the
classical one on the possibility of not expanding some nodes with upper bounds smaller than a dynamically
computed target value. This algorithm is applied to the maximum clique problem, and the lower bounds for
the algorithm are computed by exploiting the graph structure of the problem. In [12], the B&B method is
improved by the use of a combination of reformulation-linearization constraints and also cuts coming from
Motzkin-Straus clique theorem [30]. This algorithm is applied to specific classes of graphs with known clique
numbers. In [32], the computation of a global minimizer of the StQP is performed by an implicit enumeration
of all the cliques of the convexity graph associated to the objective function f(y). Another B&B algorithm
is proposed in [27], where an implicit enumeration of Karush-Kuhn-Tucker (KKT) points associated with
the StQP is performed based on the property of the convexity graph associated with the StQP. The authors
also provide a comparison of two new lower bounds with the best ones computed in [9]. In [20], the KKT
conditions associated with StQP (1) are reformulated as a mixed-integer linear programming constraints and
StQP is reduced to an equivalent Mixed Integer Linear Program. This program may be solved by well-known
solvers, such as CPLEX. Different mixed-integer formulations are compared and an extensive computational
experience is reported in that paper.

In this paper, we propose a two-phase sequential algorithm for computing a global minimum of StQP (1).
This algorithm exploits the reformulation of StQP as the following Linear Program with Linear Complemen-
tarity Constraints (LPLCC):

min λ
s.t. w = Qy − λe

0 = eT y − 1
y ≥ 0, w ≥ 0

yTw = 0.

(3)

This reformulation is a direct consequence of the KKT conditions associated to a global minimum of the
StQP. The main and new idea of this paper is to separate in two phases the computation of a global minimum
of the StQP from the certificate that assures that the possible global minimum computed in the first phase
is in fact a global minimum.

In the so-called Phase 1, a number of Stationary Points (SP) of the StQP with strictly decreasing values
of the objective function f(y) are sequentially obtained. Each one of these SPs is a solution of the following
parametric General Linear Complementarity Problem (GLCPu):

w = Qy − λe

0 = eT y − 1
y ≥ 0, w ≥ 0

yTw = 0
λ ≤ u.

(4)

The parameter u is updated by the formula

u = f(ȳ)− αmax{1, |f(ȳ)|}, (5)
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where ȳ is the computed SP before the update and α is a small positive number. By using this formula, the
computed solutions of the successive GLCPu lead to SPs with strictly decreasing objective function values.
At the end of this sequential procedure, a GLCPu is found that has no solution. In this case, the last SP ȳ
associated with the solution of the previous GLCPu is a δ-approximate global minimum of StQP (1) with

δ = αmax{1, |f(ȳ)|}. (6)

In practice, the last computed SP is a global minimum of the StQP provided α is chosen sufficiently small.
An enumerative algorithm is designed to compute a solution of each one of the GLCPu generated by the

sequential procedure. Unfortunately, this algorithm is in general unable to show that the last GLCPu has
no solution. In order to overcome this difficulty, we set a maximum number of iterations for the enumerative
algorithm to terminate with a solution. If this number is attained, then it is quite possible that this GLCPu

has no solution and the last computed SP is a δ-approximate global minimum for StQP.
Phase 2 comes to operation to show that the last SP computed in Phase 1 is in fact a δ-approximate global

minimum of StQP. A Convex Nonlinear Programming formulation based on the Reformulation Linearisation
Technique (RLT) [33] is constructed for the last GLCPu and either a local nonlinear programming solver in
the simplest case or an enumerative algorithm based on this solver is applied to this formulation to show
that this GLCPu has no solution. This gives the required certificate for the last computed SP in Phase 1 to
be a δ-approximate global minimum for StQP.

A number of improvements for this two-phase sequential algorithm are proposed. First, two new proce-
dures for computing a lower bound for StQP (1) are introduced. These two techniques are based on diagonal
dominance and on Cholesky decomposition and lead to better lower bounds than the popular diagonal lower
bound discussed in [9]. It is also shown that StQP (1) can be reduced to an StQP with a strictly copositive
matrix by using the computed lower bound. For this new StQP, GLCPu is shown to be equivalent to a
simpler GLCP, which is more appropriate to be used in the two phases of the algorithm. Finally, a Semi-
smooth Newton (SN) method can be used in a hybrid method with the enumerative algorithm of Phase 1
in a scheme similar to the one introduced in [17]. This hybrid algorithm is usually more efficient than the
simple enumerative algorithm to compute a solution for GLCPu, when it exists.

Computational experiments with a number of StQP test problems from known sources show that the
two-phase sequential algorithm is, in general, efficient for computing a global minimum by finding a sequence
of SPs with strictly decreasing objective function values. The new techniques for computing lower bounds
usually lead to tight lower bounds that allow the algorithm to give a certificate of global optimality in
Phase 1 for many instances. In the remaining cases, Phase 2 is efficient to give such a certificate when a
global minimum is in fact computed in Phase 1. For same hard instances, Phase 1 is not able to compute
an SP, that is a global minimum, and Phase 2 struggles, as it is unable to compute a better SP. This is
not surprising, as Phase 2 is not designed to compute an SP but instead to give a certificate of global
optimality for the last SP computed in Phase 1. Actually, this confirms our claim that StQP should be
processed in two separate phases. The algorithm has also be shown to be an efficient way to establish
whether a symmetric matrix is copositive or not by processing an StQP with this matrix and exploiting
some properties of copositive matrices. To have a better idea of the efficiency of the two-phase sequential
algorithm in practice, we have solved all the instances with a B&B method [27], which is considered to be the
best state-of-art algorithm for StQP. Numerical results reported in this paper indicate that the two-phase
sequential algorithm is, in general, competitive with and in some cases superior over the B&B algorithm for
computing a global minimum for an StQP and giving a certificate for such global minimum and also for
giving a certificate of copositivity for a symmetric matrix.

The structure of the paper is as follows. The sequential algorithm is introduced in Section 2. Section 3
is devoted to the new procedures for computing a lower bound for StQP (1). In Section 4, the reduction of
StQP (1) to an StQP with a strictly copositive matrix is discussed. The hybrid enumerative algorithm is
presented in Section 5. Phase 2 is discussed in Section 6, namely the RLT formulation and the algorithms
for giving a certificate of global optimality based on this formulation. The steps of the two-phase sequential
algorithm are presented in Section 7, Computational experience with a number of StQP test problems and
matrices to be tested for copositivity is reported in Section 8. Finally, some conclusions and hints for future
research are presented in the last section of the paper.
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1.1 Notation and properties

We introduce some notation and properties of the StQP that we will use in the sequel.

Let Rn, Rn
+ and Sn denote the n-dimensional Euclidean space, the nonnegative orthant and the space of

n× n real symmetric matrices, respectively.

For a vector x ∈ Rn, we denote its j-th component by xj , j ∈ N , where N is the index set of x, i.e.,
N = {1, 2, ..., n}. The element (i, j) of a matrix A ∈ Rn×n is denoted as aij .

Let A ∈ Rn×n. We use B = diag(A) to indicate a diagonal matrix whose diagonal elements are those of
A.

Let A,B ∈ Rn×n. We use the notation A ≥ B whenever aij ≥ bij for all i, j ∈ N .

The j-th standard basis vector in Rn is denoted by ej . We denote by e ∈ Rn the n-dimensional vector of
ones and by E = eeT ∈ Sn the matrix with all elements being equal to one.

We define the following convex subcones of Sn:

N = {A ∈ Sn : aij ≥ 0,∀i, j ∈ N}
SPSD = {A ∈ Sn : xTAx ≥ 0,∀x ∈ Rn}
SPD = {A ∈ Sn : xTAx > 0,∀x ∈ Rn \ {0}}
COP = {A ∈ Sn : xTAx ≥ 0,∀x ∈ Rn

+}
SCOP = {A ∈ Sn : xTAx > 0,∀x ∈ Rn

+ \ {0}}

that is, the cones of Symmetric Nonnegative, Positive Semi-Definite, Positive Definite, Copositive and Strictly
Copositive matrices, respectively.

Testing the copositivity of a given matrix can be formulated as an StQP according to the following
property, which is a direct consequence of the definitions of copositive and strictly copositive matrices:

Theorem 1 Let Q ∈ Sn and ȳ be a global minimum of StQP (1). Then

(i) Q ∈ COP if and only if f(ȳ) ≥ 0.
(ii) Q ∈ SCOP if and only if f(ȳ) > 0.
(iii) Q /∈ COP if and only if there exists an y ∈ ∆ such that f(y) < 0.
(iv) Q /∈ SCOP if and only if there exists an y ∈ ∆ such that f(y) ≤ 0.

Furthermore, the following properties are used later in this paper:

Theorem 2 [9]

(i) Let A ∈ Sn. Let f∗ and g∗ be the optimal values of StQP (1) with Q replaced by A and A + µE,
respectively. Then,

g∗ = f∗ + µ

for all µ ∈ R.

(ii) Let Q1, Q2 ∈ Sn, and f∗
1 and f∗

2 be the optimal values of StQP (1) with Q replaced by Q1 and Q2,
respectively. If Q2 −Q1 ∈ N , then f∗

1 ≤ f∗
2 .

2 A sequential algorithm

We propose a sequential algorithm for finding a global minimum of StQP, which solves a sequence of gener-
alized linear complementarity problems. The steps of the sequential algorithm are presented in Algorithm 1.
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Algorithm 1 : Sequential algorithm for StQP

▷ Step 0: Initialization
1: Let α be a given positive and small number (usually α = 10−3).
2: Compute a lower bound l for StQP (1).
3: Compute an SP ȳ for StQP (1).

▷ Step 1: Update u
4: Compute f(ȳ) and let u be given by (5).
5: If u− l ≤ 0, then terminate.

▷ Step 2: Compute a new SP or terminate
6: Find a solution (ỹ, λ̃) of GLCPu (4) or show that GLCPu has no solution.
7: if (GLCPu has no solution) then
8: ȳ is a δ-approximate global minimum of StQP (1), where δ is given by (6); terminate.
9: else
10: go to Step 1 with ȳ = ỹ.
11: end if

Next, we discuss some important issues about this algorithm.

(i) A lower bound l for StQP (1) should be computed in the initialization step, as the sequential algorithm
stops prematurely at Step 1 with a δ-approximate global minimum ȳ if u ≤ l. A number of techniques
have been discussed in [9] for computing a lower bound for StQP. The so-called Diagonal Lower Bound
is, in general, the one to be used in practice, as it is simple to implement and gives reasonable good
lower bounds for many instances. In Section 3, we introduce new procedures for such a goal. These
techniques maintain the simplicity of the diagonal lower bound. Furthermore, they provide a lower
bound that is shown to be in theory at least as good as the diagonal lower bound and is in general
better for almost all the instances. This issue is discussed in the next section.

(ii) In the initialization step, a local solver such as FilterSD [18] is used to compute an SP of StQP (1).
The computed SP depends on the initial point y0 that is used by the local solver. Two obvious choices
are the barycenter of the simplex y0 = 1/ne and y0 = er, where

er = argmin{f(ei) : i = 1, ..., n}, (7)

where ei, i = 1, ..., n, are the standard basis vectors in Rn. Another good choice is to set y0 as the
vector that is used to compute the lower bound l. If yt, yr and ys are the three SPs computed by the
local solver with these three initial points, then the SP ȳ computed in the initialization step is given by

ȳ = argmin{f(yt), f(yr), f(ys)}. (8)

(iii) GLCPu is an NP-hard problem [24]. Then only an enumerative algorithm is able, in general, to efficiently
process it. This approach is fully discussed in Section 5. The algorithm is usually efficient for computing
a solution to GLCPu when it exists, but faces too many difficulties to show that GLCPu does not have
a solution.

(iv) Showing that the last GLCPu investigated by the sequential method has no solution gives a certificate
for the last computed SP to be a δ-approximate global minimum for StQP (1). Since the enumerative
algorithm is unable to terminate in reasonable time with such a certificate, we stop it after a given
maximum number of iterations. If this number is attained, the sequential algorithm terminates the
so-called Phase 1 with an SP that has a good chance for being a δ-approximate global minimum. Then
the algorithm moves to Phase 2, which looks for a certificate of global optimality for this SP. An RLT
convex nonlinear programming formulation of GLCPu is constructed. A nonlinear programming solver
in the simplest case or an enumerative algorithm is applied to this optimization problem in order to
get the required certificate. This issue is discussed in Section 6.

(v) We show that StQP (1) can be reduced to an StQP with a SCOP matrix, by using the lower bound
computed in the initialization step. Then, we can apply a new version of Algorithm 1 to this new StQP
instead of StQP (1). This improvement is justified by the fact that GLCPu is shown to be equivalent
to a simpler GLCP when the matrix of StQP is SCOP. The whole issue is fully discussed in Section 4.
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(vi) The sequential nature of Algorithm 1 seems to be interesting for showing that a matrix Q is not COP
(not SCOP). In fact, it is sufficient to compute an SP ȳ of StQP (1) such that f(ȳ) < 0 (f(ȳ) ≤ 0)
to achieve this goal. So, it is not necessary to give a certificate of global optimality in this case and
Phase 2 is not required. On the other hand, showing that a matrix Q is COP (SCOP) is harder to do,
as it is necessary to compute an SP ȳ such that f(ȳ) ≥ 0 (f(ȳ) > 0) and give a certificate of global
optimality for this SP. So, the two phases of the algorithm are usually required.

3 Computing a lower bound for StQP

In this section, we present several procedures for computing a lower bound for StQP (1). These are designed
by using a shifted nonnegative matrix H and applying Theorem 2(i). Then, an SPD or an SPSD matrix A
is derived from this H, such that A ≤ H. Finally, a lower bound for the StQP (1) is obtained by globally
solving a convex StQP (1) with Q = A.

3.1 Reduction to an StQP with a nonnegative matrix

Consider StQP (1) and let

l0 = min{qij : i, j = 1, ..., n}. (9)

If l0 is attained at a diagonal element qrr, then er is a global minimum of StQP (1). So, we assume that l0
is attained at an off-diagonal element of Q. Hence, qii > l0 for all i. Consider the matrix

H = Q− l0E,

where E is the matrix of ones. Then, H ∈ N , hii > 0 for all i = 1, ..., n, and

yTQy = l0 + yTHy. (10)

The procedures to be described in this section for computing a lower bound l for StQP (1) start by considering
the matrix H as follows:

H =

{
Q, if l0 ≥ 0

Q− l0E, otherwise.
(11)

Then, a lower bound l̄ is computed for the following StQP:

min
y∈∆

yTHy. (12)

Finally, a lower bound l for StQP (1) can be derived as follows

l =

{
l̄, if l0 ≥ 0

l0 + l̄, otherwise.
(13)

In order to compute l̄, we solve the convex StQP

min
y∈∆

yTAy, (14)

where A ∈ SPSD or A ∈ SPD such that

0 ≤ A ≤ H. (15)

Hence, by Theorem 2(ii), the global optimal value of StQP (14) gives a lower bound l̄ for StQP (12).
Since A ∈ SPSD, then StQP (14) is a convex program, that can be easily solved by a local solver.

The main issue is the matrix A that should be simple to construct and should imply that StQP (14) can
be solved with a relatively small effort. The simplest choice is to set A = diag(H). This leads to the very
popular Diagonal Lower Bound [9]. Next, we introduce some procedures for constructing the matrix A that
provide lower bounds for StQP (12) where A strictly contains the diagonal of H. Hence, by Theorem 2(ii),
these techniques provide, in general, better lower bounds than the Diagonal Lower Bound.
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3.2 Lower bounds based on diagonal dominance

The following property holds [14]

Theorem 3 If A ∈ N and aii ≥
n∑

j = 1
j ̸= i

aij for all i = 1, ..., n, then A ∈ SPSD.

We construct a symmetric nonnegative matrix A satisfying the hypothesis of Theorem 3 and the condi-
tion (15). First, we set aii = hii, for all i = 1, ..., n. Then,

(i) the elements aij , j > i of the strictly upper triangular part of A are the values of the variables a(ij) of
an optimal solution of one of the two following optimization problems:

(a) Linear Program (LP):

LP : min

n∑
i=1

n∑
j=i+1

(hij − a(ij))

s.t. hii ≥
n∑

j = 1
j ̸= i

a(ij), i = 1, ..., n

0 ≤ a(ij) ≤ hij , i = 1, ..., n, j = i+ 1, ..., n.

(16)

(b) Convex Quadratic Program (CQP):

CQP : min

n∑
i=1

n∑
j=i+1

(hij − a(ij))
2

s.t. hii ≥
n∑

j = 1
j ̸= i

a(ij), i = 1, ..., n,

0 ≤ a(ij) ≤ hij , i = 1, ..., n, j = i+ 1, ..., n.

(17)

(ii) The elements of the strictly lower triangular part of A are given by:

aji = a(ij), for j > i.

The last constraints in the optimization problems above imply that A ∈ SPSD and 0 ≤ A ≤ H.
These two optimization problems have an optimal solution since the constraint set is convex, compact, and
nonempty. They can be efficiently solved by a linear programming or a local nonlinear programming solver,
such as GUROBI [21]. Furthermore, both LP and CQP have nonzero optimal solutions, which means that A
strictly contains the diagonal of H.

3.3 Lower bound based on Cholesky factorization

Next, we introduce another procedure for computing the matrix A, that uses a modification of the so-called
Bordering Method for computing the LDLT decomposition (or Cholesky factorization) of an SPD matrix [29].
It is designed to build a matrix A ∈ SPD such that AFF = HFF where F is a set with cardinality p ≤ n
and all rows Ar• (resp., columns A•r) for r /∈ F are given by Ar• = hrr(e

r)T (resp., Ar• = hrre
r), where

er is is the r-th standard basis vector in Rn. Note that p = n if and only if H ∈ SPD. The steps of this
procedure are presented in Algorithm 2.
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Algorithm 2 : Modified Bordering Algorithm

▷ Step 0: Initialization
1:

A := H

F := {1}
G := {2, ..., n}

ā11 = a11

▷ Step 1: Iterative step
2: while |G| > 0 do:
3: Let r = min{i ∈ G} and set G := G \ {r}.
4: Solve for ĀFr

AFF ĀFr = AFr

5: Compute

ārr = arr −AT
FrĀFr

If ārr > 0, then

F = F ∪ {r}
else

arj = ajr = 0, j ̸= r, j = 1, ..., n

ārr = arr

end if

6: end while

The Modified Bordering Method computes the diagonal elements āii, i = 1, ..., n of the LDLT decompo-
sition of a matrix A. Since all these elements are positive, then A ∈ SPD.

At the end of the procedure, we obtain a matrix A that is given by

PTAP =

[
HFF 0
0 diag(HF̄ F̄ )

]
, (18)

where P is a permutation matrix and F̄ = {1, ..., n} \ F . Note that F ̸= ∅, which implies that A strictly
contains the diagonal of H.

In many cases, the set F may have a small number of elements. Next, we introduce a modification that
looks for a matrix A with a set F of bigger cardinality. Let

K = {(i, j) ∈ N ×N : h2
ij ≥ hiihjj and i ̸= j}, (19)

and consider the matrix H = [h̄ij ], where

h̄ij =

{
hij if (i, j) /∈ K

hij − αij if (i, j) ∈ K
, (20)

where αij satisfies

0 < αij < hij . (21)

Then

0 ≤ H ≤ H,
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and

min
y∈∆

yTHy ≤ min
y∈∆

yTHy.

Then, the optimal value of the following StQP

min
y∈∆

yTHy (22)

gives a lower bound for StQP (12). Note that, the closer αij are to zero the closer H is to H and the better
the lower bound is. In practice, αij for each (i, j) ∈ K are computed by

αij = γ + hij −
√

hiihjj (23)

where γ > 0.
As before, the matrix A is obtained by applying Algorithm 2 to the matrix H.
Numerical experiments showed that the choice of γ is an important issue for the Modified Bordering

method to compute a matrix A that is close to H. We suggest to use γ = min{
√
hiihjj : (i, j) ∈ K}−10−p >

0, with p ∈ {0, 1, 2, 3, 4}. An alternative could be to use γ = γij , where γij =
√

hiihjj − 10−p > 0, with
p ∈ {0, 1, 2, 3, 4} for each (i, j) ∈ K.

Computational experiments on a number of test problems indicate that there is not a clear winner when
the matrix A is chosen by the two diagonal dominance LP and CQP procedures or by the modified Cholesky
method applied to the matrix H given by (20). For this reason, we compute the lower bounds by these
three procedures and then we chose the largest of the three values to be the lower bound for StQP (1).
Furthermore, these experiments also show that the lower bound computed by this procedure is better than
the diagonal lower bound for almost all the test problems.

4 An equivalent StQP with a strictly copositive matrix

Consider StQP (1) and let l be a lower bound for this problem. If l > 0, then Q ∈ SCOP and we set M = Q.
If l ≤ 0, then we set

M = Q− (l − η)E, (24)

where η > 0. Then

yTMy ≥ η > 0, ∀y ∈ ∆

and M ∈ SCOP. Furthermore,

min
y∈∆

yTQy = min
y∈∆

yTMy + (l − η) (25)

So, after the initialization step, the sequential algorithm can be applied to the following StQP with a
SCOP matrix:

min
y∈∆

fM (y) = yTMy, (26)

instead of StQP (1). This simply amounts to replace the matrix Q by the matrix M , and the lower bound l
by

l :=

{
l if l > 0

η otherwise.
(27)



10 Joaquim Júdice et al.

An optimal solution of StQP (26) satisfies the KKT conditions, which are given by the following Mixed
Linear Complementarity Problem (LCP):

w = My − λe (28a)

y ≥ 0, w ≥ 0 (28b)

yTw = 0 (28c)

eT y = 1, (28d)

where w ∈ Rn and λ ∈ R are the dual variables associated with the constraints y ≥ 0 and eT y = 1,
respectively, scaled by a factor 1/2. Note that (28a), (28c), and (28d) imply fM (y) = λ in each solution of
(28).

Next, we show that a solution of the Mixed LCP (28) can be retrieved from the solution of a Linear
Complementarity Problem (LCP), which has one less variable and one less constraint. Consider the LCP

v = Mx− e (29a)

x ≥ 0, v ≥ 0 (29b)

xT v = 0. (29c)

Then the following property holds.

Theorem 4 x̄ is a solution of LCP (29) if and only if
(
ȳ =

x̄

eT x̄
, λ̄ =

1

eT x̄

)
is a solution of Mixed LCP (28).

Proof (i) Let x̄ be a solution of LCP (29) and v̄ = −e+Mx̄. Then 0 ̸= x̄, eT x̄ > 0 and

v̄

eT x̄
= M

x̄

eT x̄
− 1

eT x̄
e

x̄

eT x̄
≥ 0,

v̄

eT x̄
≥ 0( x̄

eT x̄

)T( v̄

eT x̄

)
= 0

So
(
ȳ =

x̄

eT x̄
, λ̄ =

1

eT x̄

)
is a solution of the Mixed LCP (28).

(ii) Let (ȳ, λ̄) be a solution of the Mixed LCP (28) and w̄ = Mȳ − λ̄e. Then

ȳT w̄ = 0 = ȳTMȳ − λ̄eT ȳ.

So

λ̄ = ȳTMȳ > 0 (30)

as M ∈ SCOP. Moreover, we have

w̄

λ̄
= M

ȳ

λ̄
− e

w̄

λ̄
≥ 0,

ȳ

λ̄
≥ 0(

w̄

λ̄

)T
ȳ

λ̄
= 0.

So x̄ =
ȳ

λ̄
is a solution of LCP (29). ⊓⊔
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It follows from the proof of Theorem 4 that for a solution x̄ of LCP (29) and a solution (ȳ, λ̄) of Mixed
LCP (28), we have

λ̄ =
1

eT x̄
> 0. (31)

Then, StQP (26) can be reformulated as the following Linear Program with Linear Complementarity Con-
straints (LPLCC):

max eTx
s.t. v = Mx− e

x ≥ 0, v ≥ 0

xT v = 0.

(32)

Now, suppose that we apply Algorithm 1 to StQP (26). Then, instead of solving GLCPu, we solve GLCPr

v = Mx− e (33a)

x ≥ 0, v ≥ 0 (33b)

xT v = 0 (33c)

eTx ≥ r, (33d)

where

r =
1

u
. (34)

The reformulated Algorithm 1 to StQP (26) instead of the original StQP is shown below.

Algorithm 1’ : Sequential algorithm for StQP (26)

▷ Step 0: Initialization
1: Let α be a given positive and small number (usually α = 10−3).
2: Compute a lower bound lQ to StQP (1) by the procedure described in Section 3.
3: if lQ ≤ 0 then
4: set M = Q− (lQ − η)E and l = η.
5: else
6: set M = Q and l = lQ.
7: end if
8: Compute an SP ȳ of StQP (26).

▷ Step 1: Update u
9: Compute fM (ȳ) and let r = 1/u, where u is given by

u = fM (ȳ)− αmax{1, |fM (ȳ)|}. (35)

10: If u− l ≤ 0, then terminate.

▷ Step 2: Compute a new SP or terminate
11: Find a solution x̄ of GLCPr (33) or show that GLCPr has no solution.
12: if (GLCPr has no solution) then
13: ȳ is a δ-approximate global minimum of StQP (26), where δ is given by (6); terminate.
14: else
15: go to Step 1 with ȳ = x̄/eT x̄.
16: end if
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In the next section, we propose an enumerative algorithm for solving GLCPr. This algorithm is applied
to the following Quadratic Program, QPr, associated to GLCPr:

min c(x, v) := xT v (36a)

s.t. v = Mx− e (36b)

x ≥ 0, v ≥ 0 (36c)

eTx ≥ r. (36d)

Note that QPr is bounded from below by zero on its feasible set. Therefore, it has a nonnegative global
optimal value provided it is feasible. The following properties hold:

Theorem 5 (x̄, v̄) is an SP of QPr with c(x̄, v̄) = 0 if and only if (x̄, v̄) is a solution of GLCPr.

Proof (i) If (x̄, v̄) is an SP of QPr with c(x̄, v̄) = 0 , then (x̄, v̄) satisfies all the linear constraints of GLCPr

and the complementarity condition. Hence, (x̄, v̄) is a solution of GLCPr.
(ii) Let (x̄, v̄) a solution of GLCPr. Since the linear constraints of GLCPr are the constraints of QPr, then

this program is feasible. Since QPr is bounded from below by zero, then (x̄, v̄) is a global optimal
solution of QPr. Hence, (x̄, v̄) is an SP of QPr with c(x̄, v̄) = 0.

⊓⊔

Theorem 6 (x̄, v̄) is an SP of QPr with c(x̄, v̄) = 0 if and only of ȳ = x̄/eT x̄ is an SP of StQP (26) with

fM (ȳ) =
1

eT x̄
≤ 1

r
.

Proof (i) Let (x̄, v̄) be an SP of QPr and c(x̄, v̄) = 0. Hence, (x̄, v̄) is a solution of LCP (29). By Theorem 4(
ȳ =

x̄

eT x̄
, λ̄ =

1

eT x̄

)
is a solution of Mixed LCP (28). Since any solution of this Mixed LCP is an SP

of StQP (26), then ȳ is an SP of StQP (26) with fM (ȳ) = λ̄. As λ̄ =
1

eT x̄
and x̄ satisfies (36d), then

fM (ȳ) ≤ 1

r
.

(ii) Let ȳ be an SP of StQP (26) such that fM (ȳ) ≤ 1

r
. Then, (ȳ, λ̄ = ȳTMȳ) is a solution of Mixed

LCP (28) and λ̄ ≤ 1

r
. By Theorem 4, x̄ =

ȳ

λ̄
is a solution of LCP (29) and λ̄ =

1

eT x̄
, which gives

eT x̄ ≥ r. Then, (x̄, v̄ = −e + Mx̄) is a solution of GLCPr and by Theorem 5 (x̄, v̄) is an SP of QPr

with c(x̄, v̄) = 0.
⊓⊔

Theorem 7 GLCPr has no solution if and only if QPr is infeasible or has a positive global optimal value.

Proof (i) If GLCPr has no solution, then either its linear constraints are inconsistent or any feasible
solution (x̄, v̄) of GLCPr satisfies c(x̄, v̄) > 0. Hence, either QPr is infeasible or it has a positive global
optimal value.

(ii) If QPr is infeasible, then GLCPr is infeasible and has no solution. If QPr has a positive global optimal
value, then there exists no feasible solution (x̄, v̄) such that c(x̄, v̄) = 0. Then GLCPr has no solution.

⊓⊔

5 An enumerative algorithm for Phase 1

The enumerative algorithm to be described in this section explores a binary tree, which is constructed by
using a branching strategy based on the complementarity conditions between the variables vi and xi, i.e.,
either vi = 0 or xi = 0 for each i = 1, . . . , n in GLCPr. Each node k of the tree is associated with a QPk

r

defined by QPr and some variables xi = 0 or vi = 0 that have been fixed to generate this node k. Note that
at the root node k := 1 and QP1

r = QPr. The algorithm computes an SP (x̄, v̄) for this QPk
r and there are

two cases:
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(i) c(x̄, v̄) = 0 (i.e., smaller than a tolerance ϵ). Then by Theorem 5, (x̄, v̄) is a solution of GLCPr and the
algorithm stops.

(ii) c(x̄, v̄) > 0 and two nodes are generated from node k by fixing xi = 0 or vi = 0, where the index i is
chosen according to some heuristic rule.

The algorithm constructs such a binary tree and either finds a solution of GLCPr at a certain node or
terminates with no more nodes to visit and a message that GLCPr has no solution. The steps of Algorithm 3
are presented below.

Algorithm 3 : Enumerative algorithm for GLCPr in Phase 1

▷ Step 0: Initialization
1: Set ϵ1, ϵ2 > 0 (ϵ1 = 10−4, ϵ2 = 10−6 by default).
2: If QPr is infeasible, then GLCPr has no solution; terminate.
3: Compute an SP (x̄, v̄) of QPr and let

θ = max{min{x̄j , v̄j} : j = 1, . . . , n}. (37)

4: If c(x̄, v̄) ≤ ϵ1 OR θ ≤ ϵ2, then terminate: (x̄, v̄) is a solution of GLCPr and ȳ = x̄/eT x̄ is an SP of StQP (26) (and of
StQP (1)).

5: Otherwise, let P = {1} be the set of open nodes and N = 1 be the number of nodes generated by the algorithm.
6: Set k = 1, UB(1) = c(x̄, v̄) and i(1) = j∗ with j∗ being the index where θ is achieved in (37).

▷ Step 1: Choice of node
7: If P = ∅, terminate: QPr (36) has a positive global optimal value and GLCPr has no solution.
8: Otherwise, select k ∈ P such that UB(k) = min{UB(i) : i ∈ P}, set j∗ = i(k) and P = P \ {k}.
9: Branch on the complementary variables x̄j∗ and v̄j∗ (i.e., fix each one of these variables to zero) and generate two new

nodes N + 1 and N + 2.

▷ Step 2: Solve, Update and Queue
10: For p = N + 1 and p = N + 2, find a stationary point (x̄, v̄) of QPp

r .
11: If QPp

r is feasible, then
(i) If c(x̄, v̄) ≤ ϵ1 OR θ ≤ ϵ2, then terminate: (x̄, v̄) is a solution of GLCPr and ȳ = x̄/eT x̄ is an SP of StQP (26) (and of

StQP (1)).
(ii) Else, set P = P ∪ {p}, UB(p) = c(x̄, v̄) and i(p) = j∗, with j∗ being the index where θ is achieved in (37).

12: Return to Step 1.

Note that if Algorithm 3 terminates in Step 0, then either the current SP of QPr is a solution of GLCPr,
or QPr is infeasible and GLCPr has no solution. In these two simple cases, the algorithm stops without
branching, i.e., with a number of nodes equal to zero.

Termination in Step 1 with an empty list of open nodes usually requires too many iterations. So, in
practice, a maximum number of iterations nitermax is considered. This number should be chosen with care,
as a large value implies too much computational work. On the other hand, the computation of a new SP of
StQP (26) may be lost if this value is too small. The value nitermax = 100 seems to work well in practice
and is used by default.

As shown by our numerical experiments, Algorithm 3 is usually efficient to find a new SP of StQP (26),
since it has only to compute an SP of a QPk

r with zero objective function value. On the contrary, the
algorithm is usually unable to give a certificate of global optimality for StQP (26) by showing that GLCPr

has no solution.

A semi-smooth Newton (SN) method can also be used to help the computation of a solution of a GLCPr

in a hybrid scheme with the enumerative algorithm that is explained later in this section. In order to use
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the SN method, we consider the following LCP that is equivalent to GLCPr:

v = Mx− e (38a)

vn+1 = −r + eTx− xn+1 (38b)

x ≥ 0, v ≥ 0, xT v = 0, (38c)

xn+1 ≥ 0, vn+1 ≥ 0, xT
n+1vn+1 = 0 (38d)

Consider the Fischer-Burmeister (FB) function φFB(a, b) = a + b −
√

a2 + b2 with a, b ∈ R to replace
each complementarity constraint (vi ≥ 0, xi ≥ 0, vixi = 0) by an equation. This means that we write the
n+ 1 complementarity constraints as

[
ΦFB(x, v)

ΦFB(xn+1, vn+1)

]
=


φFB(x1, v1)

...
φFB(xn, vn)

φFB(xn+1, vn+1)

 = 0. (39)

If we use the Fischer-Burmeister function to represent the complementarity constraints, then system (38)
can be written as:

Ψ(x, xn+1, v, vn+1) =


v −Mx+ e

xn+1 + vn+1 + r − eTx
ΦFB(x, v)

ΦFB(xn+1, vn+1)

 = 0. (40)

In each iteration of the SN method, a direction is computed by considering the following system:

Jd = q, (41)

with

d =


dx

dxn+1

dv
dvn+1

 and q =


−v̄ +Mx̄− e

−x̄n+1 − v̄n+1 − r + eT x̄
−ΦFB(x, v)

−ΦFB(xn+1, vn+1)

 ,

where (x̄, x̄n+1, v̄, v̄n+1) is the current Newton iterate that satisfies eT x̄ ≥ r. Moreover, J is the Clarke
Generalized Jacobian J(x̄, x̄n+1, v̄, v̄n+1) given by

J(x̄, x̄n+1, v̄, v̄n+1) =


−M 0 In 0

−eT 1 0 1
V 0 W 0
0 Vn+1 0 Wn+1

 ∈ R(2n+2)×(2n+2), (42)

where the diagonal elements of the diagonal matrices V and W and the elements Vn+1 and Wn+1 are
computed as follows:

(Vi,Wi) =


(
1− x̄i√

x̄2
i + v̄2i

, 1− v̄i√
x̄2
i + v̄2i

)
if (x̄i, v̄i) ̸= 0

(1− ξi, 1− ηi) if (x̄i, v̄i) = 0

∀i = 1, . . . , n+ 1, (43)

with ξ2i + η2i = 1. In practice, we use (ξi, ηi) = (0, 1) for all i = 1, . . . , n+ 1.
Now there are two cases:

(i) J is nonsingular and d is the unique solution of system (41).
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(ii) J is singular and d is the minimum norm solution of the Linear Least Squares (LSQ) problem

min ∥Jd− q∥2 (44)

associated with the system (41). Alternatively, we can compute d by using the Levenberg-Marquardt
(LM) formula

min

∥∥∥∥∥
[
J
µI

]
d−

[
q
0

] ∥∥∥∥∥
2

, (45)

where µ is a real number and I is the identity matrix. Note that the LM formula (45) reduces to the
formula (44) when µ = 0.

Then, a new iterate is computed by:

x̃ = x̄+ dx, x̃n+1 = x̄n+1 + dxn+1 , ṽ = v̄ + dv, ṽn+1 = v̄n+1 + dvn+1 , (46)

where the Newton direction d is uniquely determined by solving (41) or (44) (or (45)).

Stopping Criterion:
An iterate (x, v) is a solution of GLCPr if and only if it satisfies (38a) and (38c), and eTx ≥ r. Hence, we
suggest the following Stopping Criterion for the SN method:

∥v −Mx+ e∥ ≤ ϵ (47)

max{|min{xi, vi}|, i = 1, ..., n+ 1} ≤ ϵ (48)

eTx ≥ r + ϵ, (49)

where ϵ is a tolerance for zero (ϵ = 10−6 by default).
Note that it is also possible to develop an SN algorithm with line search similar to the one described

in [25] in order to overcome the case of the singularity of the Clarke Generalized Jacobian. However, nu-
merical results reported in [25] indicate that this new version of the SN method does not seem to perform
better in practice than the simple version described in this section. So, we do not use this version of the SN
method with line search in practice.

Initial point:
An initial point (x, xn+1, v, vn+1) for the SN method can be chosen as

x = x̃, v = ṽ, xn+1 = 0, and vn+1 = −r + eTx,

where (x̃, ṽ) is the current point used at node k.

Improved Enumerative Algorithm:
Next, we explain how the hybrid scheme works. Suppose that Algorithm 3 is used in Step 2 of Algorithm 1’
with a node k and a point (x̃, ṽ). If θ given by (37) satisfies θ ≤ ϵ̄ (where ϵ̄ =

√
ϵ2), then move to the SN

method. Now there are two cases:

(i) SN method terminates with a solution x∗ of GLCPr. As before, ȳ = x∗/eTx∗ is an SP of StQP (26)
with an objective function value smaller than or equal to u. This SP is given to the two-phase sequential
Algorithm 4 and the enumerative algorithm terminates.

(ii) SN method terminates with a maximum number of iterations nmaxit (100 by default) and Algorithm 3
continues in Step 2 with the same node k and the same point (x̃, ṽ).

From then on, we consider as the enumerative algorithm the hybrid scheme involving Algorithm 3 and
the SN method in the way explained above.
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6 Phase 2: giving a certificate of global optimality

Phase 1 usually terminates with an SP of StQP (26) that is a δ-approximate global minimum (and usually a
global minimum) of StQP (26), where δ is given by (6). However, this phase usually fails in giving a certificate
of global optimality as Algorithm 3 is, in general, unable to show that the last GLCPr has no solution. In
this section, we discuss the so-called Phase 2, which gives a certificate of global optimality for the last SP
computed in Phase 1.

A Nonlinear Programming Problem (NLPr) is constructed based on the so-called Reformulation-Linearization
Technique (RLT) [33] applied to QPr (36). This NLPr is a convex program with a compact constraint set,
whence a global minimum for NLPr exists and can be computed by a local solver. Furthermore, the optimal
value of this program gives a lower bound for QPr. Then, one of the following cases occurs:

(i) If NLPr is infeasible, or has a positive optimal value, then QPr is infeasible or has a positive optimal
value. Then, by Theorem 7, GLCPr has no solution and a certificate of global optimality for the last
computed SP computed in Phase 1 is given.

(ii) NLPr has an optimal solution (x̄, v̄) with a null optimal value and satisfying c(x̄, v̄) = 0. Then ȳ = x̄/eT x̄
is a new SP for StQP (26). Then we update u by (35) and apply Phase 2 again for this new SP.

(iii) NLPr has an optimal solution (x̄, v̄) such that c(x̄, v̄) > 0. Then no conclusion about global optimality
of the last SP computed in Phase 1 can be stated.

When the last case occurs, we propose an enumerative algorithm, that is able at least in theory to give a
certificate or to find a better SP than the last SP computed in Phase 1. As before, in this case Phase 2 is
applied again for this new SP. In the next subsections, we introduce the RLT convex formulation NLPr and
the enumerative algorithm.

6.1 An RLT convex formulation

The RLT formulation NLPr of QPr (36) takes the following form:

NLPr : min g(x, v, z, τ, t) = eT z (50a)

s.t. v = Mx− e (50b)

zi =

n∑
j=1

mijt(ij) − xi, ∀i ∈ N (50c)

r ≤ eTx ≤ s (50d)

rxi ≤
n∑

j=1

t(ij) ≤ sxi, ∀i ∈ N (50e)

x2
i ≤ t(ii), ∀i ∈ N (50f)

(xi + xj)
2 ≤ t(ii) + 2t(ij) + t(jj), ∀ (i, j) with i < j, ∀i, j ∈ N (50g)

(xi − xj)
2 ≤ t(ii) − 2t(ij) + t(jj), ∀ (i, j) with i < j, ∀i, j ∈ N (50h)

v2i ≤ τi, i ∈ N, (50i)

(xi + vi)
2 ≤ t(ii) + 2zi + τi, ∀ i ∈ N, (50j)

(xi − vi)
2 ≤ t(ii) − 2zi + τi, ∀ i ∈ N (50k)

0 ≤ τi ≤ βivi, ∀ i ∈ N (50l)

0 ≤ vi ≤ βi, ∀ i ∈ N (50m)

xi ≥ 0, ∀ i ∈ N (50n)

zi ≥ 0, ∀ i ∈ N (50o)

t(ij) ≥ 0, i ≤ j, ∀i, j ∈ N (50p)
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where z = (zi) ∈ Rn, τ = (τi) ∈ Rn, t = (tij) ∈ Rn(n+1)/2, βi (i ∈ N) and s are to be defined later in this
section.

Next we show how to construct this NLPr from QPr (36) by using RLT. First, we add the following
redundant constraints for GLCPr:

(i)

eTx ≤ s, (51)

where

s =
1

l
,

and l is a lower bound for StQP (26) given by (27). Since r =
1

u
and u ≥ l, then (50d) holds.

(ii)

vi ≤ βi, ∀i ∈ N (52)

where βi is computed by

βi = −1+max

n∑
j=1

mijxj

s.t. r ≤ eTx ≤ s

xi ≥ 0, ∀i ∈ N,

where mij are the elements of the matrix M . By adding these two constraints to the definition of QPr, we
come to the conclusion that the constraint set of QPr is compact.

The RLT technique is now used for constructing NLPr that gives a lower bound for QPr. To do that,
the reformulation and the linearization phases are applied. These two phases are presented below.

(i) In the reformulation phase, the following products are constructed:
– The i-th row of (36b) is multiplied by xi, ∀i ∈ N , that is,

vixi =

n∑
j=1

mijxjxi − xi, ∀i ∈ N, (53)

where mij are the elements of the matrix M .

– The constraints r ≤ eTx ≤ s are multiplied by vi,∀i ∈ N .

– The i-th constraint (52) is multiplied by vi,∀i ∈ N

(ii) In the linearization phase, the following variables are introduced to substitute the nonlinear terms as
follows:

zi = vixi, i ∈ N (54a)

t(ij) = xixj = xjxi, i, j ∈ N, i ≤ j (54b)

τi = v2i , i ∈ N. (54c)

(iii) Constraints (54b) are equivalent to:

x2
i = t(ii), ∀i ∈ N

(xi + xj)
2 = t(ii) + 2t(ij) + t(jj), ∀ (i, j) with i < j, ∀i, j ∈ N

(xi − xj)
2 = t(ii) − 2t(ij) + t(jj), ∀ (i, j) with i < j, ∀i, j ∈ N.

Then, constraints (50f)–(50h) are convex relaxations of these three equalities.



18 Joaquim Júdice et al.

(iv) Constraints (54a) and (54c) are equivalent to

v2i = τi, i ∈ N,

(xi + vi)
2 = t(ii) + 2zi + τi, ∀ i ∈ N

(xi − vi)
2 = t(ii) − 2zi + τi, ∀ i ∈ N.

Then, constraints (50i)–(50k) are convex relaxations of these three equalities.
(v) Note also that condition (50l) implies that

τi ≤ β2
i , ∀i ∈ N. (56)

So, the variables τi are bounded. Furthermore, the variables t(ij) and zi are also bounded by (50e)
and (50c), respectively. So, the constraint set of NLPr is compact and NLPr has an optimal solution
provided it is feasible.

6.2 An enumerative algorithm for Phase 2

Let ȳ be the last SP of StQP (26) computed in Phase 1. If NLPr (50) is infeasible, then ȳ is a δ-approximate
global minimum of StQP (26) and Phase 2 terminates with the required certificate of global optimality.
Otherwise, as the constraint set of NLPr is compact, NLPr (50) has an optimal solution (x̄, v̄, z̄, τ̄ , t̄). Let
ḡ be the optimal value of NLPr (50). If ḡ > 0, then ȳ is a δ-approximate global minimum of StQP (26). If
ḡ = 0 and x̄T v̄ = 0, then x̄/eT x̄ is a better SP than ȳ. In this case, we set ȳ = x̄/eT x̄, update u by (35)
and apply Phase 2 for the new SP. If ḡ = 0 and x̄T v̄ > 0, then no conclusion can be stated about ȳ to be a
global minimum of this StQP. In this case, we apply an enumerative algorithm that is based on a branching
strategy similar to the one used in Algorithm 3, that is, on xi = 0 and vi = 0. For each node k ≥ 1, let I0
and J0 be the sets of the fixed v- and x-variables respectively, that is,

vi = 0, ∀i ∈ I0, (57a)

xi = 0, ∀i ∈ J0. (57b)

and I0 ∩ J0 = ∅. Furthermore, let

K0 = I0 ∪ J0 (58)

and consider the NLPk
r given by NLPr and the constraints:

zi = 0, ∀i ∈ K0, xi = 0, ∀i ∈ J0, vi = 0, ∀i ∈ I0 (59a)

τi = 0, ∀i ∈ I0, t(ij) = 0, if i ∈ J0 or j ∈ J0. (59b)

For the root node k = 1, we have NLPk
r = NLPr. For the remaining nodes k > 1, NLPk

r is exactly NLPr

with null lower and upper bounds for all the fixed variables in (59).
In each node k, a global minimum of the convex program NLPk

r is computed and there are three possible
cases:

(i) NLPk
r is infeasible or has a positive optimal value. Then the node k is removed from the list of open

nodes.
(ii) NLPk

r has an optimal solution (x̄, v̄, z̄, τ̄ , t̄) with a null optimal value and c(x̄, v̄) = 0. Then, we terminate
the enumerative algorithm with a new SP ȳ = x̄/eT x̄.

(iii) NLPk
r has an optimal solution (x̄, v̄, z̄, τ̄ , t̄) with a null optimal value and c(x̄, v̄) > 0. Then there are at

least a pair of complementary variables (x̄i, v̄i) such that x̄i and v̄i are both positive. Node k is removed
and two new nodes are generated from node k by fixing to zero each one of the variables of this pair.
These two nodes are added to the list of open nodes.
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The algorithm is finite and terminates either with a new SP of StQP (26) or with a certificate of global
optimality when there are no nodes to be investigated in the list of open nodes.

The enumerative algorithm requires to solve a convex NLP at each node of the tree. A good solver for
convex NLP should be used at this aim. In our experiments, we use GUROBI [21]. The steps of the enumerative
algorithm are presented in Algorithm 4.

Algorithm 4 : Enumerative algorithm for NLPr in Phase 2

▷ Step 0: Initialization
1: Set ϵ1, ϵ2 > 0 and k = 1.
2: Let I0 and J0 be the sets of fixed v- and x-variables (usually I0 = J0 = ∅) and K0 be the set defined by (58).
3: Find an optimal solution (x̄, v̄, z̄, τ̄ , t̄) of NLPk

r .
4: If NLPk

r is infeasible or g(x̄, v̄, z̄, τ̄ , t̄) > ϵ2, terminate: GLCPr has no solution.
5: Otherwise, let P = {1} be the set of open nodes and N = 1 be the number of generated nodes.
6: Set k = 1, CG(1) = c(x̄, v̄), where c(x, v) is the objective function of QPr (36) and i(1) = j∗, with j∗ being the index where

θ = max{min{x̄i, w̄i} : i ∈ K̄0} (60)

is achieved.
7: If c(x̄, v̄) ≤ ϵ1 OR θ ≤ ϵ2, then terminate: (x̄, v̄) is a solution of GLCPr and ȳ = x̄/eT x̄ is an SP of StQP (26) (and of

StQP (1)).

▷ Step 1: Choice of node
8: If P = ∅, terminate: GLCPr has no solution.
9: Otherwise, select k ∈ P such that CG(k) = min{CG(i) : i ∈ P}, set j∗ = i(k) and P = P \ {k}.
10: Branch on the complementary variables x̄i∗ and v̄i∗ associated with θ and generate two nodes p = N + 1 and p = N + 2.

▷ Step 2: Solve, Update and Queue
11: For each of p = N + 1 and p = N + 2:

Find an optimal solution (x̄, v̄, z̄, τ̄ , t̄) of NLPp
r defined by (50) and (59) and compute θ by (60).

(i) If NLPp
r is infeasible OR g(x̄, v̄, z̄, τ̄ , t̄) > ϵ1, then node p is not generated.

(ii) If θ ≤ ϵ2 OR c(x̄, v̄) < ϵ1, then terminate: (x̄, v̄) is a solution of GLCPr and ȳ = x̄/eT x̄ is an SP of StQP (26)
(and of StQP (1)).

(iii) Else, set P = P ∪ {p}, CG(p) = c(x̄, v̄) and let i(p) be the index where θ is achieved in (60).
12: Return to Step 1.

Notes:

(i) We set the tolerances ϵ1 = 10−4 and ϵ2 = 10−6 by default.
(ii) In practice, we can use the l∞ norm of z, that is, ∥z∥∞ = max{zi : i = 1, ..., n}, instead of the l1 norm

eT z for deciding whether a node should be pruned. In this case, we set the tolerance ϵ1 = 10−6 by
default.

7 The two-phase sequential algorithm

In this section, we present in Algorithm 5 the steps of a two-phase sequential algorithm that exploits the
ideas discussed so far.

Algorithm 5 : Two-phase sequential algorithm for StQP

▷ Step 0: Initialization
1: Let nmaxiter1 and nmaxiter2 be the maximum number of iterations allowed for the enumerative algorithms in Phase 1

and Phase 2 (nitermax1 = 100 and nitermax2 = 2000 by default). Furthermore, let α be a small positive real number
(α = 10−3 by default).

2: Set Enum = 1 (logical variable which takes the value 1 or 2 depending on the phase to be applied).
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3: Compute a lower bound lQ to StQP (1) by the procedure described in Section 3.

4:
(i) Compute f(er) = min{f(ei) = qii, i = 1, . . . , n}, ei being the i-th standard basis vector in Rn and f(y) = yTQy.

Compute an SP yr of StQP (1) by using a local solver with y0 = er as the initial point.
(ii) Compute an SP ys of StQP (1) by using a local solver with y0 as the barycenter.
(iii) Compute an SP yt of StQP (1) by using a local solver with y0 as the vector which provides the lower bound computed

in instruction 3:.
(iv) Let ȳ = argmin{f(yr), f(ys), f(yt)}.

5: Let uQ = ȳTQȳ. If uQ − lQ ≤ 0, then ȳ is a global minimum of StQP (1); terminate.

6: if lQ ≤ 0 then
7: set M = Q− (lQ − η)E, l = η, u = uQ − lQ + η, where η > 0 is a parameter to be chosen (η = 1 by default) and E is a

matrix of all ones. Go to Step 1.
8: else
9: set M = Q, l = lQ, and u = uQ. Go to Step 1.
10: end if
11: Set ū = u.

▷ Step 1: Update u Compute:

u = ū− αmax{1, ū}. (61)

12: If u−l ≤ 0, ȳ is a δ-approximate global minimum (usually a global minimum) of StQP (1), where δ is given in (6); terminate.
13: Let ūQ = ȳTQȳ and uQ = ūQ −αmax{1, ūQ}. If uQ − lQ ≤ 0, ȳ is a δ-approximate global minimum of StQP (1), where δ

is given by (6); terminate.

14: if Enum = 2 then
15: go to Step 3.
16: end if

▷ Step 2: Phase 1

17: Let r =
1

u
. Solve GLCPr (33) by Algorithm 3.

18: if Algorithm 3 terminates with a solution x̄ of GLCPr then

19: ȳ =
x̄

eT x̄
is a new SP of StQP (26) and go to Step 1 with ȳ and ū = ȳTMȳ.

20: end if
21: if Algorithm 3 shows that GLCPr has no solution then
22: ȳ is a δ-approximate global minimum (usually a global minimum) for StQP (1); terminate.
23: end if
24: if Algorithm 3 stops with number of iterations > nitermax1 then
25: set Enum = 2 and go to Step 3.
26: end if

▷ Step 3: Phase 2

27: Let r =
1

u
and s =

1

l
. Apply Algorithm 4 for solving NLPr (50).

28: if Algorithm 4 terminates with a solution x̄ of GLCPr then

29: ȳ =
x̄

eT x̄
is a new SP of StQP (26) and go to Step 1 with ȳ and ū = ȳTMȳ.

30: end if
31: if Algorithm 4 terminates showing that GLCPr has no solution then
32: ȳ is a δ-approximate global minimum (usually a global minimum) for StQP (1); terminate.
33: end if
34: if Algorithm 4 attains the maximum number of iterations nitermax2 then
35: Phase 2 is unable to give a certificate of global optimality; terminate with a failure.
36: end if

Notes:

(i) In Step 0, instruction 4:(i), if the same minimum value is obtained by several points ei, i ∈ {1, 2, ..., k},
k ≤ n, then we choose y0 = er, where r is randomly selected in the set {1, 2, ..., k}.
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(ii) In Step 1, instruction 13:, we use the gap between the bounds of the original StQP (1) as another
stopping criterion for the algorithm.

(iii) In practice, 0 is replaced by a positive tolerance ϵ in the stopping criteria presented in instructions 5:,
12: and 13:. We set ϵ = 10−6 by default.

8 Computational experiments

In this section, we report the numerical experiments for solving StQPs from known sources and for estab-
lishing copositivity of some matrices that have been used in the past by several authors. In the tables to be
presented in this section, we indicate the instance reference, the dimension of the matrix Q, and we use the
following notation:

– lQ and uQ: lower and the upper bounds for StQP (1) computed in the initialization step of Algorithm 5.
– min: information about the possible termination of the algorithm before the activation of the two main

phases. The possible values appearing in this column are:
– ‘gm’ indicates that the algorithm guarantees a global minimum (or a certificate of copositivity) at

Step 0, because the difference between the upper bound and the lower bound is smaller than or equal
to a tolerance.

– ‘dgm’ indicates that the algorithm guarantees at least a δ-approximate global minimum after the first
computation of u in Step 1 without using the enumerative algorithm of Phase 1.

– ‘−’ is written otherwise.
– fph1: value of the objective function of StQP (1) at the last SP computed in Phase 1. A ‘np1’ is written

when Phase 1 is not required, as an SP that is at least a δ-approximate global minimum is computed in
Step 0 or Step 1.

– fph2: value of the objective function of StQP (1) at the last SP computed by the enumerative algorithm
in Phase 2. The other possible values appearing in this column are:
– ‘−’ is written when no better SP was computed in Phase 2.
– ‘np2’ indicates that Phase 2 is not required, as a certificate of global optimality is given in Phase 1.

– CallEn1: number of times that the enumerative algorithm in Phase 1 is called. A ‘−’ is written when an
SP that is at least a δ-approximate global minimum is computed in Step 0 or after the first computation
of u in Step 1 without using the enumerative algorithm of Phase 1.

– ItEn1: number of iterations performed in Phase 1 (0 means that only Step 0 of the enumerative algorithm
is applied and − means that this algorithm is not called).

– CallEn2: number of times that the enumerative algorithm in Phase 2 is called. We use a − when Phase 2
is not required because a certificate of global optimality is given in Phase 1.

– ItEn2: number of iterations required by the enumerative algorithm in Phase 2 (0 means that only Step 0
of the enumerative algorithm is applied and − means that this algorithm is not called).

– opt: best value of the objective function of StQP (1) computed by the two-phase sequential algorithm.
– CPU: computational time in seconds. An ‘∗’ following a test problem name means that the algorithm

cannot terminate within the limit of CPU time allowed (7200 seconds).

The numerical experiments were performed on an Intel Core i7 clocked at 2 GHz (32 GB RAM). The
StQPs required for computing the upper bounds in Step 0 and by the enumerative algorithm of Phase 1 are
solved by the solver FilterSD [18] distributed in the OPTI toolbox [15]. However, we use IPOPT [37] for the
enumerative algorithm of Phase 1 for instances concerning copositivity tests of given matrices. The convex
NLPs (50) required by the enumerative algorithm of Phase 2 are solved by GUROBI [21]. For the test problems
with dimension n ≥ 200, the quadratic constraints (50f)-(50h) are not considered in the NLP formulation
due to the limited memory of the computer used in our experiments.

As a benchmark for our analysis, we solved the same test problems by the best state-of-art B&B algorithm
for StQP [27]. The code of this algorithm is available in Julia [2], and we use it by considering the best
setting presented in [27], that is, a non-binary branching strategy with best-bound selection strategy. In the
corresponding tables, we show the lower bound computed in the root node, the best upper bound computed
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by the algorithm, the explored number of nodes, and the computational time in seconds. A ‘*’ appears when
the computational time is bigger than 7200 seconds, which is set as the maximum CPU time allowed or when
numerical troubles are encountered in GUROBI in Phase 2. We use the notation [gu] for this last occurrence.

8.1 Solution of StQPs from known sources

8.1.1 StQP with complex pattern

We consider StQP (1) with complex pattern where the matrix Q is generated as in [11]. Let A,B1, ..., Bn be
symmetric matrices of order n̄, k1, ..., kn̄, respectively. In particular, the matrix A is a symmetric randomly
generated with elements uniformly distributed in the intervals [−1, 1], [−10, 10] and [−100, 100] and dimension
n = 2, 3, and 4, whereas Bi are identity matrices of dimension k1, ..., kn̄. Let us define

U =


ηTk1

0T · · · 0T
0T ηTk2

· · · 0T

. . . . . .
. . . . . .

0T 0T · · · ηTkn̄

 ,

where ηk is the all ones vector in Rk and 0 are zero vectors of appropriate dimension. Then both Ā = UTAU

and B̄ = diag(B1, ..., Bn̄) are symmetric matrices of order n =

n̄∑
i=1

ki. Finally, we generate

Q = µĀ+ B̄,

where µ is a large positive number. The values of k1, ..., kn̄ are specified in the following tables right after
the collection name (e.g., the problem named Bomze20 30 has n = 50, k1 = 20 and k2 = 30).

The performance of Algorithm 5 for solving these problems is presented in Table 1. For all the test
problems, the upper bound procedure in Step 0 gives a global minimum of StQP. The proposed algorithm
guarantees a global minimum for nine test problems as the difference between the upper and lower computed
in Step 0 is smaller than or equal to the tolerance. For the other three test problems, a δ-approximate global
minimum is guaranteed without requiring the enumerative algorithm in Phase 1, as Phase 1 terminates in
Step 1 after updating the upper bound. For the three instances requiring the sequential algorithm, Phase 1
cannot give a certificate of global optimality, but Phase 2 can. Only the root node is generated by the
enumerative algorithm of Phase 2, that is, the optimal solution of NLPr gives the certificate.

As shown in Table 2, the B&B algorithm computes a global optimum for all problems. For only one
instance, indicated by an ∗, the algorithm could not terminate in the maximum CPU time allowed. We can
observe that the new techniques proposed in this paper lead to very tight lower bounds which allow our
algorithm to terminate with a certificate of global optimality in a short computational time. This makes
Algorithm 5 to be much more efficient than B&B algorithm for the test problems of this set.

8.1.2 StQP with indefinite matrices from collections

In this section, we report the solution of StQP test problems whose matrixQ is an indefinite symmetric matrix
from the Harwell-Boeing collection [28] or from the QPlib collection [19]. The performance of Algorithm 5
and the B&B algorithm for solving these problems are presented in Tables 3 and 4, respectively.

The results show that the two-phase algorithm is quite efficient for computing a global minimum and
giving a certificate of global optimality for all these test problems. In particular, for all the test problems, the
upper bound computed in Step 0 is a global minimum of StQP. Moreover, for one test problem, Algorithm 5
guarantees a global minimum as the difference between the upper and lower bounds computed in Step 0 is
smaller than or equal to the tolerance. For two test problems, a δ-approximate global minimum is guaranteed
without requiring the enumerative algorithm in Phase 1. For the other instances requiring the sequential
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Problem n lQ uQ min fph1 fph2 callEn1 ItEn1 callEn2 ItEn2 opt CPU
Bomze20-30 50 1.7600e+00 1.7600e+00 gm np1 np2 - - - - 1.7600e+00 2.8886e-01
Bomze25-25-25-25 100 -1.8021e+01 -3.0787e+00 -3.0787e+00 - 1 [100 ] 1 [ 0 ] -3.0787e+00 1.1553e+02
Bomze50-50-100 200 -1.3866e+01 -1.3862e+01 dgm np1 np2 - - - - -1.3862e+01 5.8300e-01
Bomze100-50-150-100 400 -3.2119e+01 -3.2118e+01 dgm np1 np2 - - - - -3.2118e+01 2.0984e+00
Bomze200-200-200 600 -1.3877e+01 -1.3877e+01 gm np1 np2 - - - - -1.3877e+01 5.0419e+00
Bomze20-30 50 1.7415e+01 1.7415e+01 gm np1 np2 - - - - 1.7415e+01 2.9936e-01
Bomze25-25-25-25 100 -1.8040e+02 -3.0968e+01 -3.0968e+01 - 1 [100 ] 1 [ 0 ] -3.0968e+01 1.4735e+02
Bomze50-50-100 200 -1.3880e+02 -1.3880e+02 dgm np1 np2 - - - - -1.3880e+02 7.1503e-01
Bomze100-50-150-100 400 -3.2136e+02 -3.2136e+02 gm np1 np2 - - - - -3.2136e+02 2.1336e+00
Bomze200-200-200 600 -1.3882e+02 -1.3882e+02 gm np1 np2 - - - - -1.3882e+02 5.3684e+00
Bomze20-30 50 1.7396e+02 1.7396e+02 gm np1 np2 - - - - 1.7396e+02 2.8901e-01
Bomze25-25-25-25 100 -1.8042e+03 -3.0986e+02 -3.0986e+02 - 1 [100 ] 1 [ 0 ] -3.0986e+02 2.3920e+02
Bomze50-50-100 200 -1.3882e+03 -1.3882e+03 gm np1 np2 - - - - -1.3882e+03 6.6804e-01
Bomze100-50-150-100 400 -3.2137e+03 -3.2138e+03 gm np1 np2 - - - - -3.2138e+03 2.1234e+00
Bomze200-200-200 600 -1.3882e+03 -1.3882e+03 gm np1 np2 - - - - -1.3882e+03 5.8058e+00

Table 1: Performance of Algorithm 5 for solving StQP with complex patterns.

Problem n lQ opt Nodes CPU
Bomze20-30 50 -7.3165e+00 1.7600e+00 335 1.0001e+01
Bomze25-25-25-25 100 -1.9743e+01 -3.0787e+00 333 2.6121e+01
Bomze50-50-100 200 -1.9320e+01 -1.3862e+01 211 8.0694e+01
Bomze100-50-150-100 400 -3.8435e+01 -3.2117e+01 199 5.6183e+02
Bomze200-200-200* 600 -2.0078e+01 -1.3877e+01 799 7.2392e+03
Bomze20-30 50 -7.3287e+01 1.7414e+01 255 9.1680e+00
Bomze25-25-25-25 100 -1.9760e+02 -3.0967e+01 337 2.8712e+01
Bomze50-50-100 200 -1.9724e+02 -1.3880e+02 266 7.3694e+01
Bomze100-50-150-100 400 -3.8863e+02 -3.2135e+02 199 5.7822e+02
Bomze200-200-200 600 -2.0185e+02 -1.3881e+02 799 6.6497e+03
Bomze20-30 50 -7.3319e+02 1.7395e+02 255 1.3446e+01
Bomze25-25-25-25 100 -1.9762e+03 -3.0985e+02 339 2.8774e+01
Bomze50-50-100 200 -1.9818e+03 -1.3882e+03 267 5.5823e+01
Bomze100-50-150-100 400 -3.8907e+03 -3.2137e+03 199 5.4191e+02
Bomze200-200-200 600 -2.0209e+03 -1.3882e+03 395 2.4357e+03

Table 2: Performance of the B&B algorithm for solving StQP with complex patterns.

Problem n lQ uQ min fph1 fph2 callEn1 ItEn1 callEn2 ItEn2 opt CPU
bcspwr01 39 4.6512e-02 4.7619e-02 4.7619e-02 - 1 [100 ] 1 [ 2 ] 4.7619e-02 9.2820e+00
bcspwr02 49 3.6364e-02 3.7037e-02 dgm np1 np2 - - - - 3.7037e-02 5.5960e-01
can 62 62 3.0769e-02 3.2258e-02 3.2258e-02 - 1 [100 ] 1 [ 0 ] 3.2258e-02 2.4078e+01
dwt 59 59 3.3898e-02 4.1667e-02 4.1667e-02 - 1 [100 ] 1 [ 0 ] 4.1667e-02 1.6330e+01
lund a 147 1.2162e+02 1.2162e+02 dgm np1 np2 - - - - 1.2162e+02 2.0728e+01
lund b 147 9.9422e-03 9.9422e-03 gm np1 np2 - - - - 9.9422e-03 6.8047e+00
QPLIB 0018 50 -1.8474e+01 -1.2772e+01 -1.2772e+01 - 1 [100 ] 1 [ 16 ] -1.2772e+01 2.3835e+02
QPLIB 0343 50 -1.8474e+01 -1.2772e+01 -1.2772e+01 - 1 [100 ] 1 [ 0 ] -1.2772e+01 1.2785e+01
QPLIB 2712 200 2.6517e-03 2.5738e-02 2.5738e-02 - 1 [100 ] 1 [ 42 ] 2.5738e-02 1.5003e+03

Table 3: Performance of Algorithm 5 for solving StQP with Q chosen from collections.

algorithm, Phase 1 cannot give a certificate of global optimality, but Phase 2 provides it. Few nodes are
generated by the enumerative algorithm of Phase 2 to give this certificate.

The B&B algorithm computes a global minimum for all test problems, but it can give a certificate only
to four of them. Moreover, a numerical error due to GUROBI in the lower bound computation is encountered
for one instance. Note that the new techniques proposed in this paper lead to better lower bounds for all
the problems but two. As before, Algorithm 5 is shown more efficient than the B&B algorithm for the test
problems in this set.

8.1.3 StQP Nowak’s problems

We consider StQPs generated by the two routines presented in [31]. In particular, we generate StQPs with
known optimal value presented in [31] and used as test instances in several papers such as [32]. We set
s/n = 0.2, 0.5, and 0.8 where s is the number of negative eigenvalues of the Hessian of f(y), and we choose
the number of non-binding constraints k at the optimal solution equal to 0.1n. We also generate StQPs with
known density of the convexity graphs. We set the density equal to 0.25, 0.5, and 0.75 as in [32] and [27]
and we choose n = 100.
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Problem n lQ opt Nodes CPU
bcspwr01 39 0.0000e+00 4.7619e-02 123789 2.5743e+03
bcspwr02* 49 0.0000e+00 3.7037e-02 333979 7.2000e+03
can 62* 62 0.0000e+00 3.1249e-02 153983 7.2001e+03
dwt 59* 59 0.0000e+00 4.1666e-02 27889 7.2012e+03
lund a* 147 -6.4998e+07 1.2160e+02 3902 [gu] 3.0025e+03
lund b* 147 -1.6414e+03 9.9420e-03 9625 7.2020e+03
QPLIB 0018 50 -1.4813e+01 -1.2772e+01 104 2.8565e+01
QPLIB 0343 50 -1.4813e+01 -1.2772e+01 104 7.0434e+01
QPLIB 2712 200 -2.8074e-01 2.5736e-02 81 1.1581e+02

Table 4: Performance of the B&B algorithm for solving StQP with Q chosen from collections.

The results for the first set of test problems obtained by Algorithm 5 are presented in Table 5 and show
that the algorithm easily finds a global minimum and easily gives a certificate of global optimality for all
the test problems. For all the test problems, the upper bound procedure in Step 0 gives a global minimum
of StQP. A δ-approximate global minimum is guaranteed without requiring the enumerative algorithm of
Phase 1 for six test problems. For the remaining test problems, the enumerative algorithm in Phase 1 can
give a certificate of global optimality, and Phase 2 is not required. The last column shows the accuracy
of the solution computed by Algorithm 5. In particular, it reports the maximum relative error, that is,

%MRE = 100
f(ȳ)−Opt

Opt
, where Opt is the optimal global value given by the collection, and ȳ is the

δ-approximate global optimal solution computed by one of the algorithms. The values of %MRE indicate
that Algorithm 5 was able to calculate an accurate global minimum for each test problem. Moreover, the
performance of Algorithm 5 seems to comparable to a special purpose heuristic algorithm discussed in [32]
for all the test problems of this set. Finally, we mention here that B&B algorithm is unable to solve all these
test problems for numerical troubles in the initialization phase.

The numerical results corresponding to the second set of test problems solved by Algorithm 5 are given
in Table 6. We observed that the computational effort required by GUROBI to solve NLP (50) is quite high
in this case. Hence, we excluded the constraints (50g)-(50h). Algorithm 5 can compute a global solution and
give a certificate for all problems but one. A global minimum was computed in Phase 1 for all instances,
but one. For this instance, Phase 2 was able to improve the optimal value and give the certificate of global
optimality. Table 7 indicates that the B&B algorithm has a very good performance for the test problems in
this set both in terms of computational time and in the computed lower bounds.

Problem n lQ uQ min fph1 fph2 callEn1 ItEn1 callEn2 ItEn2 opt CPU %MRE
s/n = 0.2, k/n = 0.1

Nowak-30 30 -2.2012e+05 -2.2010e+05 dgm np1 np2 - - - - -2.2010e+05 3.8439e-01 3.6000e-05
Nowak-50 50 -2.5319e+05 -2.5314e+05 dgm np1 np2 - - - - -2.5314e+05 7.9577e-01 6.0000e-05
Nowak-100 100 -1.2120e+05 -1.2039e+05 -1.2039e+05 np2 1 [ 0 ] - - -1.2039e+05 8.1662e+00 1.1993e-04
Nowak-200 200 -2.8489e+05 -2.8362e+05 -2.8362e+05 np2 1 [ 0 ] - - -2.8362e+05 4.0712e+00 2.4000e-04
Nowak-250 250 -4.1050e+05 -4.0884e+05 -4.0884e+05 np2 1 [ 0 ] - - -4.0884e+05 8.3094e+00 2.9999e-04

s/n = 0.5, k/n = 0.1
Nowak-30 30 -2.2012e+05 -2.2010e+05 dgm np1 np2 - - - - -2.2010e+05 1.2317e-01 4.6000e-05
Nowak-50 50 -2.5315e+05 -2.5314e+05 dgm np1 np2 - - - - -2.5314e+05 2.7950e-01 7.6000e-05
Nowak-100 100 -1.2112e+05 -1.2039e+05 -1.2039e+05 np2 1 [ 0 ] - - -1.2039e+05 2.8861e+00 1.5000e-04
Nowak-200 200 -2.8439e+05 -2.8362e+05 -2.8362e+05 np2 1 [ 0 ] - - -2.8362e+05 3.6474e+00 3.0000e-04
Nowak-250 250 -4.1008e+05 -4.0884e+05 -4.0884e+05 np2 1 [ 0 ] - - -4.0884e+05 2.0717e+00 3.7600e-04

s/n = 0.8, k/n = 0.1
Nowak-30 30 -2.2010e+05 -2.2010e+05 dgm np1 np2 - - - - -2.2010e+05 8.6664e-02 5.4000e-05
Nowak-50 50 -2.5314e+05 -2.5314e+05 dgm np1 np2 - - - - -2.5314e+05 1.2023e-01 9.0000e-05
Nowak-100 100 -1.2061e+05 -1.2039e+05 -1.2039e+05 np2 1 [ 0 ] - - -1.2039e+05 2.0521e+00 1.8000e-04
Nowak-200 200 -2.8400e+05 -2.8362e+05 -2.8362e+05 np2 1 [ 0 ] - - -2.8362e+05 1.2127e+00 3.6000e-04
Nowak-250 250 -4.0945e+05 -4.0884e+05 -4.0884e+05 np2 1 [ 0 ] - - -4.0884e+05 2.5126e+00 4.5000e-04

Table 5: Performance of Algorithm 5 for solving StQP Nowak’s problems with known optimal solution.
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Problem n lQ uQ min fph1 fph2 callEn1 ItEn1 callEn2 ItEn2 opt CPU
Problem(0.25) 100 -9.4108e+00 -5.4743e+00 -5.4743e+00 - 1 [200 ] 1 [474 ] -5.4743e+00 7.8767e+02
Problem(0.25)1 100 -9.3889e+00 -5.8544e+00 -5.8544e+00 - 1 [200 ] 1 [392 ] -5.8544e+00 7.0618e+02
Problem(0.25)2 100 -9.4505e+00 -5.2993e+00 -5.5553e+00 - 4 [ 29 29 99 200 ] 1 [498 ] -5.5553e+00 8.8649e+02
Problem(0.25)3 100 -9.4145e+00 -5.3129e+00 -5.6151e+00 - 2 [ 35 200 ] 1 [442 ] -5.6151e+00 7.6792e+02
Problem(0.25)4 100 -9.4731e+00 -5.4722e+00 -5.6801e+00 -5.6856e+00 2 [ 2 200 ] 2 [270 500 ] -5.6856e+00 1.4973e+03
Problem(0.25)5 100 -9.4480e+00 -6.0688e+00 -6.0688e+00 - 1 [200 ] 1 [304 ] -6.0688e+00 5.5442e+02
Problem(0.5) 100 -9.5458e+00 -6.0815e+00 -6.2514e+00 - 4 [106 194 137 200 ] 1 [1300 ] -6.2514e+00 2.4098e+03
Problem(0.5)1 100 -9.4119e+00 -6.0793e+00 -6.0793e+00 - 1 [200 ] 1 [1346 ] -6.0793e+00 2.4267e+03
Problem(0.5)2 100 -9.5519e+00 -5.7899e+00 -6.2773e+00 - 3 [ 1 129 200 ] 1 [1252 ] -6.2773e+00 2.6472e+03
Problem(0.5)3 100 -9.5853e+00 -5.9070e+00 -6.0745e+00 - 2 [ 81 200 ] 1 [1858 ] -6.0745e+00 3.6210e+03
Problem(0.5)4 100 -9.4666e+00 -5.9700e+00 -6.2675e+00 - 3 [ 5 0 200 ] 1 [950 ] -6.2675e+00 1.8655e+03
Problem(0.5)5 100 -9.5706e+00 -5.7478e+00 -6.1810e+00 - 3 [ 6 19 200 ] 1 [1536 ] -6.1810e+00 2.5471e+03
Problem(0.75) 100 -9.5459e+00 -6.6027e+00 -6.6027e+00 - 1 [200 ] 1 [3138 ] -6.6027e+00 5.4217e+03
Problem(0.75)1 100 -9.4121e+00 -6.4670e+00 -6.5740e+00 - 3 [178 22 200 ] 1 [2258 ] -6.5740e+00 3.9578e+03
Problem(0.75)2* 100 -9.5520e+00 -6.2129e+00 -6.3892e+00 nocert 3 [ 0 11 200 ] 1 [4215 ] -6.3892e+00 7.2020e+03
Problem(0.75)3 100 -9.5854e+00 -6.6184e+00 -6.6184e+00 - 1 [200 ] 1 [2918 ] -6.6184e+00 4.7676e+03
Problem(0.75)4 100 -9.4669e+00 -6.2836e+00 -6.5648e+00 - 3 [ 27 7 200 ] 1 [2262 ] -6.5648e+00 3.9174e+03
Problem(0.75)5 100 -9.5706e+00 -6.6382e+00 -6.8131e+00 - 4 [ 3 100 64 200 ] 1 [2130 ] -6.8131e+00 3.7538e+03
Problem(0.9) 100 -9.4122e+00 -6.7290e+00 -7.0148e+00 - 2 [153 200 ] 1 [1866 ] -7.0148e+00 3.5066e+03
Problem(0.9)1 100 -9.5524e+00 -6.9327e+00 -6.9327e+00 - 1 [200 ] 1 [2776 ] -6.9327e+00 4.8708e+03
Problem(0.9)2 100 -9.5854e+00 -6.8662e+00 -6.8662e+00 - 1 [200 ] 1 [3490 ] -6.8662e+00 6.0075e+03
Problem(0.9)3 100 -9.4669e+00 -6.7313e+00 -6.7313e+00 - 1 [200 ] 1 [3426 ] -6.7313e+00 6.0854e+03
Problem(0.9)4 100 -9.5705e+00 -7.1489e+00 -7.1489e+00 - 1 [200 ] 1 [2184 ] -7.1489e+00 4.0196e+03
Problem(0.9)5 100 -9.4683e+00 -6.4806e+00 -6.7201e+00 - 3 [ 1 24 200 ] 1 [4202 ] -6.7201e+00 7.1497e+03

Table 6: Performance of Algorithm 5 for solving StQP Nowak’s problems with known density of the convexity
graph.

Problem n lQ opt Nodes CPU
Problem(0.25) 100 -7.1500e+00 -5.4743e+00 201 7.1330e+00
Problem(0.25)1 100 -7.1553e+00 -5.8544e+00 128 3.6700e+00
Problem(0.25)2 100 -7.0667e+00 -5.5553e+00 190 4.5010e+00
Problem(0.25)3 100 -6.9246e+00 -5.6151e+00 138 3.6180e+00
Problem(0.25)4 100 -7.2308e+00 -5.6885e+00 174 3.9530e+00
Problem(0.25)5 100 -7.1861e+00 -6.0688e+00 89 2.6230e+00
Problem(0.5) 100 -7.6569e+00 -6.2799e+00 373 1.5282e+01
Problem(0.5)1 100 -7.5291e+00 -6.1407e+00 319 1.3204e+01
Problem(0.5)2 100 -7.5743e+00 -6.2773e+00 348 1.4833e+01
Problem(0.5)3 100 -7.6626e+00 -6.2793e+00 343 1.4427e+01
Problem(0.5)4 100 -7.5391e+00 -6.2675e+00 218 1.0259e+01
Problem(0.5)5 100 -7.6700e+00 -6.1810e+00 454 1.8281e+01
Problem(0.75) 100 -7.9236e+00 -6.6304e+00 884 7.8136e+01
Problem(0.75)1 100 -7.8189e+00 -6.5740e+00 578 5.4983e+01
Problem(0.75)2 100 -7.8316e+00 -6.5390e+00 867 8.1292e+01
Problem(0.75)3 100 -7.9395e+00 -6.6311e+00 697 6.5352e+01
Problem(0.75)4 100 -7.8225e+00 -6.5648e+00 584 5.8637e+01
Problem(0.75)5 100 -7.8890e+00 -6.8131e+00 381 4.3505e+01
Problem(0.9) 100 -7.9664e+00 -7.0148e+00 317 5.5809e+01
Problem(0.9)1 100 -7.9537e+00 -6.9327e+00 619 1.0117e+02
Problem(0.9)2 100 -8.0346e+00 -6.8661e+00 882 1.4635e+02
Problem(0.9)3 100 -7.9242e+00 -6.7313e+00 922 1.5392e+02
Problem(0.9)4 100 -8.0069e+00 -7.1489e+00 315 6.4388e+01
Problem(0.9)5 100 -7.9429e+00 -6.7201e+00 1386 2.3096e+02

Table 7: Performance of the B&B algorithm for solving StQP Nowak’s problems with known density of the
convexity graph.

8.1.4 StQP BLST problems

In this section, we report the performance of the two-phase sequential and the B&B algorithms on the test
problems introduced in [12] and [20]. These test problems consist of random matrices generated from a
triangular distribution characterized by the following parameters: minimum value a, maximum value b and
mode c. These values are indicated in the title of each instance. Moreover, we set all the diagonal elements
of the matrix Q of the StQP to be nonnegative.

In Tables 8 and 9, we report the solution by Algorithm 5 and the B&B algorithm for this set of test
problems when the density of the matrix Q is equal to 0.5. For all instances, the two-phase sequential
algorithm computes a global minimum in Phase 1 and Phase 2 gives a certificate of global optimality. In
general, few nodes are generated by the enumerative algorithm in Phase 2. For ten instances, the upper bound
computed in the initialization step is the global optimum value. For the remaining instances, the enumerative
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algorithm of Phase 1 was called, in general, more than once in order to compute a global minimum. For
these instances, the B&B algorithm shows to have a similar performance in terms of CPU time.

We performed additional numerical experiments, not reported in this paper, by considering the density
of the matrix Q to be equal to 0.75 and 1 (full dense matrix). In the first case, the two algorithms showed
a similar performance, and successfully computed a global minimum and provide a certificate of global
optimality for all the instances. On the other hand, for the full dense matrices, Algorithm 5 was able to solve
all the instances, while the B&B algorithm fails on ten instances.

As a final conclusion of the solution of all these StQP test problems, we claim that the two-phase
sequential algorithm is, in general, efficient for computing a global minimum by a finding a sequence of SPs
with strictly decreasing function values. The (hybrid) enumerative algorithm of Phase 1 performs well for all
these instances with no branching or a small number of nodes. When Phase 1 is not able to compute a better
SP, the enumerative algorithm attains the limit number of 100 nodes and Phase 2 comes to operation. This
explains the occurrence of the number 100 for the last GLCPr processed in Phase 1 when Phase 2 is required.
The new techniques for computing lower bounds usually lead to tight values. This allowed the algorithm to
terminate in Phase 1 in many cases. Phase 2 has shown to be efficient to give a certificate of global optimality
for the last SP computed in Phase 1, when such an SP is, in fact, a global minimum. Otherwise, Phase 2
may struggle, as it has difficulties to compute a better SP. This is not surprising, as Phase 2 is not designed
to compute an SP, but instead to give a certificate of global optimality for an SP. This confirms our claim to
have two separate phases for dealing with global optimization problems. Furthermore, the algorithm seems to
be competitive with and in many cases superior to the best state-of-art B&B algorithm and a special-purpose
heuristic algorithm that has been proposed for the solution of Nowak’s test problems.

Problem n lQ uQ min fph1 fph2 callEn1 ItEn1 callEn2 ItEn2 opt CPU
BSLT tri -10 0 -5 0.5 pos 1 50 -8.5085e+00 -4.2656e+00 -4.4259e+00 - 2 [ 43 100 ] 1 [ 12 ] -4.4259e+00 1.8212e+02
BSLT tri -10 0 -5 0.5 pos 2 50 -8.1998e+00 -3.9555e+00 -4.0061e+00 - 3 [ 0 1 100 ] 1 [ 18 ] -4.0061e+00 2.3401e+02
BSLT tri -10 0 -5 0.5 pos 3 50 -8.3982e+00 -4.5122e+00 -4.5122e+00 - 1 [100 ] 1 [ 2 ] -4.5122e+00 3.4932e+01
BSLT tri -10 0 -5 0.5 pos 4 50 -8.3105e+00 -4.0147e+00 -4.0147e+00 - 1 [100 ] 1 [ 0 ] -4.0147e+00 1.8136e+01
BSLT tri -10 0 -5 0.5 pos 5 50 -8.2830e+00 -4.3635e+00 -4.4868e+00 - 3 [ 3 41 100 ] 1 [ 6 ] -4.4868e+00 8.5029e+01
BSLT tri -10 0 -5 0.5 pos 6 50 -8.0470e+00 -4.2651e+00 -4.3528e+00 - 2 [ 1 100 ] 1 [ 12 ] -4.3528e+00 1.6591e+02
BSLT tri -10 0 -5 0.5 pos 7 50 -8.7647e+00 -4.0004e+00 -4.1372e+00 - 2 [ 0 100 ] 1 [ 0 ] -4.1372e+00 1.4046e+01
BSLT tri -10 0 -5 0.5 pos 8 50 -8.2495e+00 -4.0666e+00 -4.0666e+00 - 1 [100 ] 1 [ 10 ] -4.0666e+00 1.4062e+02
BSLT tri -10 0 -5 0.5 pos 9 50 -7.7966e+00 -4.0373e+00 -4.0373e+00 - 1 [100 ] 1 [ 22 ] -4.0373e+00 2.8114e+02
BSLT tri -10 0 -5 0.5 pos 10 50 -8.6071e+00 -4.6547e+00 -4.6547e+00 - 1 [100 ] 1 [ 6 ] -4.6547e+00 1.0505e+02
BSLT tri -10 10 0 0.5 pos 1 50 -7.6226e+00 -2.7461e+00 -3.1713e+00 - 3 [ 1 3 100 ] 1 [ 0 ] -3.1713e+00 1.5240e+01
BSLT tri -10 10 0 0.5 pos 2 50 -7.0798e+00 -2.6494e+00 -2.8420e+00 - 2 [ 17 100 ] 1 [ 0 ] -2.8420e+00 1.4776e+01
BSLT tri -10 10 0 0.5 pos 3 50 -7.4269e+00 -2.1799e+00 -2.9611e+00 - 3 [ 15 3 100 ] 1 [ 2 ] -2.9611e+00 4.7019e+01
BSLT tri -10 10 0 0.5 pos 4 50 -7.3634e+00 -2.4781e+00 -2.8376e+00 - 5 [ 5 21 33 11 100 ] 1 [ 2 ] -2.8376e+00 4.1805e+01
BSLT tri -10 10 0 0.5 pos 5 50 -7.2315e+00 -3.3573e+00 -3.3840e+00 - 2 [ 0 100 ] 1 [ 0 ] -3.3840e+00 1.7237e+01
BSLT tri -10 10 0 0.5 pos 6 50 -6.7586e+00 -2.7076e+00 -3.1663e+00 - 2 [ 33 100 ] 1 [ 0 ] -3.1663e+00 1.5184e+01
BSLT tri -10 10 0 0.5 pos 7 50 -8.1759e+00 -3.4282e+00 -3.4282e+00 - 1 [100 ] 1 [ 0 ] -3.4282e+00 2.0146e+01
BSLT tri -10 10 0 0.5 pos 8 50 -7.1920e+00 -2.9463e+00 -2.9463e+00 - 1 [100 ] 1 [ 0 ] -2.9463e+00 1.6082e+01
BSLT tri -10 10 0 0.5 pos 9 50 -6.2954e+00 -2.8618e+00 -3.1471e+00 - 2 [ 47 100 ] 1 [ 4 ] -3.1471e+00 8.6013e+01
BSLT tri -10 10 0 0.5 pos 10 50 -7.8872e+00 -2.7692e+00 -2.7934e+00 - 2 [ 1 100 ] 1 [ 0 ] -2.7934e+00 1.6197e+01
BSLT tri -10 10 3 0.5 pos 1 50 -7.3438e+00 -1.9440e+00 -2.8516e+00 - 4 [ 9 27 47 100 ] 1 [ 0 ] -2.8516e+00 1.7279e+01
BSLT tri -10 10 3 0.5 pos 2 50 -6.7343e+00 -2.5291e+00 -2.5985e+00 - 2 [ 9 100 ] 1 [ 0 ] -2.5985e+00 1.4930e+01
BSLT tri -10 10 3 0.5 pos 3 50 -7.1412e+00 -1.8034e+00 -2.6586e+00 - 3 [ 1 35 100 ] 1 [ 0 ] -2.6586e+00 1.8562e+01
BSLT tri -10 10 3 0.5 pos 4 50 -7.0520e+00 -1.8630e+00 -2.8524e+00 - 5 [ 3 43 34 19 100 ] 1 [ 0 ] -2.8524e+00 1.7799e+01
BSLT tri -10 10 3 0.5 pos 5 50 -6.8932e+00 -2.8298e+00 -2.9833e+00 - 2 [ 11 100 ] 1 [ 0 ] -2.9833e+00 1.7645e+01
BSLT tri -10 10 3 0.5 pos 6 50 -6.3678e+00 -2.3127e+00 -2.6482e+00 - 2 [ 25 100 ] 1 [ 4 ] -2.6482e+00 8.6206e+01
BSLT tri -10 10 3 0.5 pos 7 50 -7.9756e+00 -2.9443e+00 -2.9607e+00 - 2 [ 3 100 ] 1 [ 0 ] -2.9607e+00 1.6216e+01
BSLT tri -10 10 3 0.5 pos 8 50 -6.8768e+00 -2.2799e+00 -2.6085e+00 - 2 [ 0 100 ] 1 [ 2 ] -2.6085e+00 4.1576e+01
BSLT tri -10 10 3 0.5 pos 9 50 -5.8343e+00 -2.8371e+00 -2.8371e+00 - 1 [100 ] 1 [ 0 ] -2.8371e+00 1.8506e+01
BSLT tri -10 10 3 0.5 pos 10 50 -7.6444e+00 -1.9770e+00 -1.9980e+00 - 2 [ 7 100 ] 1 [ 2 ] -1.9980e+00 4.7498e+01
BSLT tri -10 10 -3 0.5 pos 1 50 -7.9202e+00 -3.5612e+00 -3.5612e+00 - 1 [100 ] 1 [ 0 ] -3.5612e+00 1.5705e+01
BSLT tri -10 10 -3 0.5 pos 2 50 -7.4659e+00 -2.9786e+00 -3.0892e+00 - 2 [ 89 100 ] 1 [ 2 ] -3.0892e+00 3.8080e+01
BSLT tri -10 10 -3 0.5 pos 3 50 -7.7488e+00 -2.6736e+00 -2.8318e+00 - 4 [ 3 5 11 100 ] 1 [ 4 ] -2.8318e+00 6.5798e+01
BSLT tri -10 10 -3 0.5 pos 4 50 -7.6926e+00 -3.0085e+00 -3.0654e+00 - 2 [ 0 100 ] 1 [ 0 ] -3.0654e+00 1.6276e+01
BSLT tri -10 10 -3 0.5 pos 5 50 -7.5896e+00 -3.7874e+00 -3.7874e+00 - 1 [100 ] 1 [ 4 ] -3.7874e+00 6.9104e+01
BSLT tri -10 10 -3 0.5 pos 6 50 -7.2036e+00 -3.0431e+00 -3.5962e+00 - 3 [ 1 21 100 ] 1 [ 0 ] -3.5962e+00 1.5255e+01
BSLT tri -10 10 -3 0.5 pos 7 50 -8.3825e+00 -2.9327e+00 -3.6633e+00 - 2 [ 1 100 ] 1 [ 0 ] -3.6633e+00 2.0998e+01
BSLT tri -10 10 -3 0.5 pos 8 50 -7.5364e+00 -2.8684e+00 -3.0397e+00 - 2 [ 23 100 ] 1 [ 4 ] -3.0397e+00 8.5044e+01
BSLT tri -10 10 -3 0.5 pos 9 50 -6.7908e+00 -3.0606e+00 -3.3740e+00 - 3 [ 15 61 100 ] 1 [ 2 ] -3.3740e+00 6.0388e+01
BSLT tri -10 10 -3 0.5 pos 10 50 -8.1545e+00 -3.3386e+00 -3.3425e+00 - 2 [ 26 100 ] 1 [ 0 ] -3.3425e+00 1.6003e+01

Table 8: Performance of Algorithm 5 for solving StQP BLST problems (density = 0.5).
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Problem n lQ opt Nodes CPU
BSLT tri -10 0 -5 0.50 pos 1 50 -5.8924e+00 -4.4259e+00 427 1.7036e+01
BSLT tri -10 0 -5 0.50 pos 2 50 -5.8535e+00 -4.2548e+00 629 3.0387e+01
BSLT tri -10 0 -5 0.50 pos 3 50 -5.8848e+00 -4.5122e+00 227 1.3754e+01
BSLT tri -10 0 -5 0.50 pos 4 50 -5.5622e+00 -4.0147e+00 1215 4.6621e+01
BSLT tri -10 0 -5 0.50 pos 5 50 -6.0958e+00 -4.4868e+00 823 3.2455e+01
BSLT tri -10 0 -5 0.50 pos 6 50 -5.8460e+00 -4.3528e+00 665 2.6039e+01
BSLT tri -10 0 -5 0.50 pos 7 50 -5.8188e+00 -4.1372e+00 1069 4.1723e+01
BSLT tri -10 0 -5 0.50 pos 8 50 -5.9052e+00 -4.0666e+00 1943 8.0810e+01
BSLT tri -10 0 -5 0.50 pos 9 50 -5.7516e+00 -4.0373e+00 2871 1.1146e+02
BSLT tri -10 0 -5 0.50 pos 10 50 -5.9550e+00 -4.6547e+00 235 1.0341e+01
BSLT tri -10 10 0 0.50 pos 1 50 -4.1227e+00 -3.1714e+00 33 2.2320e+00
BSLT tri -10 10 0 0.50 pos 2 50 -3.5692e+00 -2.8420e+00 59 2.9900e+00
BSLT tri -10 10 0 0.50 pos 3 50 -3.8532e+00 -2.9611e+00 45 2.4040e+00
BSLT tri -10 10 0 0.50 pos 4 50 -3.6324e+00 -2.8376e+00 43 2.0260e+00
BSLT tri -10 10 0 0.50 pos 5 50 -4.0926e+00 -3.3840e+00 56 2.4930e+00
BSLT tri -10 10 0 0.50 pos 6 50 -3.8729e+00 -3.1663e+00 32 2.0710e+00
BSLT tri -10 10 0 0.50 pos 7 50 -3.7651e+00 -3.4282e+00 27 1.8460e+00
BSLT tri -10 10 0 0.50 pos 8 50 -3.6987e+00 -2.9463e+00 33 1.9880e+00
BSLT tri -10 10 0 0.50 pos 9 50 -3.5891e+00 -3.1471e+00 20 1.4900e+00
BSLT tri -10 10 0 0.50 pos 10 50 -3.9576e+00 -2.7934e+00 81 3.5570e+00
BSLT tri -10 10 3 0.50 pos 1 50 -3.7011e+00 -2.8516e+00 50 2.3370e+00
BSLT tri -10 10 3 0.50 pos 2 50 -3.1781e+00 -2.5985e+00 26 1.9060e+00
BSLT tri -10 10 3 0.50 pos 3 50 -3.2674e+00 -2.6586e+00 25 1.6810e+00
BSLT tri -10 10 3 0.50 pos 4 50 -3.1202e+00 -2.8524e+00 16 1.2010e+00
BSLT tri -10 10 3 0.50 pos 5 50 -3.6767e+00 -2.9833e+00 41 2.0360e+00
BSLT tri -10 10 3 0.50 pos 6 50 -3.2711e+00 -2.6482e+00 26 1.5410e+00
BSLT tri -10 10 3 0.50 pos 7 50 -3.2148e+00 -2.9607e+00 19 1.4390e+00
BSLT tri -10 10 3 0.50 pos 8 50 -3.3619e+00 -2.6085e+00 45 2.1240e+00
BSLT tri -10 10 3 0.50 pos 9 50 -3.1374e+00 -2.8371e+00 13 1.1840e+00
BSLT tri -10 10 3 0.50 pos 10 50 -3.2306e+00 -2.2663e+00 60 2.9390e+00
BSLT tri -10 10 -3 0.50 pos 1 50 -4.5201e+00 -3.5612e+00 46 2.5210e+00
BSLT tri -10 10 -3 0.50 pos 2 50 -4.1886e+00 -3.0892e+00 151 5.6150e+00
BSLT tri -10 10 -3 0.50 pos 3 50 -4.3327e+00 -3.6029e+00 32 2.1020e+00
BSLT tri -10 10 -3 0.50 pos 4 50 -4.1512e+00 -3.0654e+00 90 3.6510e+00
BSLT tri -10 10 -3 0.50 pos 5 50 -4.6555e+00 -3.7874e+00 51 2.5780e+00
BSLT tri -10 10 -3 0.50 pos 6 50 -4.4631e+00 -3.5962e+00 39 2.0780e+00
BSLT tri -10 10 -3 0.50 pos 7 50 -4.2149e+00 -3.6633e+00 29 1.9540e+00
BSLT tri -10 10 -3 0.50 pos 8 50 -4.1511e+00 -3.0397e+00 79 3.8270e+00
BSLT tri -10 10 -3 0.50 pos 9 50 -4.0899e+00 -3.3740e+00 33 1.8250e+00
BSLT tri -10 10 -3 0.50 pos 10 50 -4.6101e+00 -3.3425e+00 98 4.2090e+00

Table 9: Performance of the B&B algorithm for solving StQP BLST problems (density = 0.5).

8.2 Verifying copositivity of matrices from collections

Algorithm 5 can be adapted to verify whether Q is a copositive matrix, i.e., verify if Q ∈ COP. In particular,
the algorithm terminates with a conclusion about copositivity of the matrixQ in the two situations mentioned
in the following property:

Property 1 Let lQ and uQ be a lower bound and an upper bound for StQP (1).

(i) If lQ ≥ 0, then Q ∈ COP.
(ii) If uQ < 0, then Q /∈ COP.

So, in Step 0 of Algorithm 5, we either have a certificate of copositivity or

lQ < 0 ≤ uQ. (62)

Property 2 Let η and u be given in Step 0 and Step 1 of Algorithm 5. If u− η ≤ 0, then Q ∈ COP.

So, Algorithm 5 terminates in Step 1, after updating the upper bound u by (61) if this property holds.

Property 3 (i) Assume that GLCPr has a solution x̄, and let ȳ =
x̄

eT x̄
, ū = ȳTMȳ and let lQ be a lower

bound for StQP (1). If ū− η + lQ < 0, then Q /∈ COP.
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(ii) If a GLCPr has no solution, then Q ∈ COP.

Notes:

(i) In practice, 0 is replaced by a positive tolerance ϵ for verifying these properties. We use ϵ = 10−6 by
default.

(ii) We implemented the conditions of these three properties in the B&B algorithm that we use to compare
with Algorithm 5.

In our experiments, we start by investigating the copositvity of seven matrices that have been introduced
in some papers on this subject. These matrices are presented below.

(a) Noncopositive matrices [13,26]:

Q1 =


1 −0.72 −0.59 1

−0.72 1 −0.6 −0.46
−0.59 −0.6 1 −0.6

1 −0.46 −0.6 1

 and Q2 =


1 −0.72 −0.59 −0.6

−0.72 1 0.21 −0.46
−0.59 0.21 1 −0.6
−0.6 −0.46 −0.6 1


(b) Strictly copositive matrices [26]:

Q3 =


1 0.9 −0.54 0.21
0.9 1 −0.03 0.78

−0.54 −0.03 1 0.52
0.21 0.78 0.52 1

 and Q4 =

 1 0.9 −0.54
0.9 1 −0.03

−0.54 −0.03 1


(c) Copositive matrices that are not strictly copositive matrices [22,23,36]:

Q5 =


1 −1 1 2 −3
−1 2 −3 −3 4
1 −3 5 6 −4
2 −3 6 5 −8
−3 4 −4 −8 16

 , Q6 =


1 −1 1 1 −1
−1 1 −1 1 1
1 −1 1 −1 1
1 1 −1 1 −1
−1 1 1 −1 1


and

Q7 =



1 −1 1 0 0 1 −1
−1 1 −1 1 0 0 1
1 −1 1 −1 1 0 0
0 1 −1 1 −1 1 0
0 0 1 −1 1 −1 1
1 0 0 1 −1 1 −1
−1 1 0 0 1 −1 1


For all the test problems, a conclusion about the copositivity of the corresponding matrices was estab-

lished. For the first two instances, Algorithm 5 terminates in Step 0 as the computed upper bound is negative.
Then the matrices are declared to be not copositive. The algorithm guarantees a global minimum for the two
test problems in (b) as the difference between the upper and the lower bounds computed in Step 0 is smaller
than or equal to the tolerance. Furthermore, since the computed bounds are nonnegative, then the matrices
are declared to be copositive. For the last three test problems, the enumerative algorithm in Phase 1 can
give a certificate of global optimality, and Phase 2 is not required. Since the global optimal value is zero, the
matrices are copositive.

Table 11 shows that also the B&B algorithm correctly verifies the copositivity of the matrices. The
performance of the two algorithms is comparable for these instances.
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Problem n lQ uQ min fph1 fph2 callEn1 ItEn1 callEn2 ItEn2 opt test CPU
Q1 4 -9.4836e-02 -9.1859e-02 - np1 np2 - - - - -9.1859e-02 Q /∈ COP 2.4099e-01
Q2 4 -1.1638e-01 -1.1638e-01 - np1 np2 - - - - -1.1638e-01 Q /∈ COP 2.5181e-01
Q3 4 2.3000e-01 2.3000e-01 gm np1 np2 - - - - 2.3000e-01 Q ∈ COP 2.6005e-01
Q4 3 2.3000e-01 2.3000e-01 gm np1 np2 - - - - 2.3000e-01 Q ∈ COP 2.4135e-01
Q5 5 -3.0476e+00 5.2979e-16 5.2979e-16 np2 1 [ 20 ] - - 5.2979e-16 Q ∈ COP 9.1113e-01
Q6 5 -2.0000e-01 1.0526e-16 1.0526e-16 np2 1 [ 20 ] - - 1.0526e-16 Q ∈ COP 1.7594e+00
Q7 7 -4.2857e-01 0.0000e+00 0.0000e+00 np2 1 [ 28 ] - - 0.0000e+00 Q ∈ COP 2.2952e+00

Table 10: Performance of Algorithm 5 for testing copositivity of Q1-Q7.

Problem n lQ opt Nodes test CPU
Q1 4 -5.9276e-01 -9.1859e-02 0 Q /∈ COP 5.5050e+00
Q2 4 -5.9532e-01 -1.1638e-01 0 Q /∈ COP 1.6000e+00
Q3 4 1.0338e-01 2.3000e-01 0 Q ∈ COP 3.0500e-01
Q4 3 -2.3906e-01 2.3000e-01 7 Q ∈ COP 2.4199e-01
Q5 5 -2.6745e+00 -1.1091e-08 23 Q ∈ COP 6.4999e-01
Q6 5 -1.0000e+00 -1.9980e-08 21 Q ∈ COP 4.1400e-01
Q7 7 -3.4315e-01 -1.9960e-08 27 Q ∈ COP 5.3200e-01

Table 11: Performance of the B&B algorithm for testing copositivity of Q1-Q7.

As already stated, StQP (1) can be also used to find the maximum clique of a graph G = (V,R) with
node set V = {1, . . . , n} and edge set R. A clique C is defined as a subset of V such that every pair of nodes
in C is connected by an edge in R. A clique C is said to be a maximum clique if it contains the largest
number of nodes among all cliques, and its size ω(G) is called the (maximum) clique number. The maximum
clique problem can be written as the following copositive optimization problem [34]

ω(G) = min{σ ∈ N|σ(E −DG)− E ∈ COP}, (63)

with E being the n-dimensional matrix of all-ones and DG = [dij ]i,j being the adjacency matrix of the
graph G, i.e., dij = 1 if {i, j} ∈ R, and dij = 0 otherwise for all i, j ∈ {1, . . . , n}. So for σ = ω(G) − 1,
Q = σ(E −DG)− E /∈ COP, or equivalently the StQP

min
x∈∆

xT (σ(E −DG)− E)x (64)

has a negative global optimal value. Then, finding an SP of StQP (64) with a negative function value allows
us to conclude that this matrix is not copositive.

We considered small and large adjacency matrices from DIMACS collection [16], and generated by [38].

In Table 12, we report the results of small instances from DIMACS collection with σ = w(G)−1 obtained
by applying Algorithm 5. For all the test problems, a conclusion about the copositivity of the corresponding
matrices was established. For all the instances, Algorithm 5 terminates in Step 0 as the computed upper
bound is negative. Then the matrices are declared to be not copositive, as expected.

The B&B algorithm faces numerical troubles in its Initialization Phase for five test problems and is
not able to give a copositive certificate for the corresponding matrices. For the remaining matrices the
B&B algorithm gives a certificate of copositivity by computing a global optimal solution for the corresponding
StQPs. It is interesting to see that the upper bound computed in Step 0 of Algorithm 5 is the global optimal
value for all these instances.
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Problem n lQ uQ min fph1 fph2 callEn1 ItEn1 callEn2 ItEn2 opt test CPU
c-fat14-1 14 -2.6250e-01 -1.6667e-01 - np1 np2 - - - - -1.6667e-01 Q /∈ COP 2.5633e-01
Brock14 14 -3.7477e-01 -2.0000e-01 - np1 np2 - - - - -2.0000e-01 Q /∈ COP 3.3327e-01
Brock16 16 -3.3697e-01 -2.0000e-01 - np1 np2 - - - - -2.0000e-01 Q /∈ COP 4.4794e-01
Brock18 18 -4.8566e-01 -2.0000e-01 - np1 np2 - - - - -2.0000e-01 Q /∈ COP 5.5470e-01
Brock20 20 -5.4426e-01 -2.0000e-01 - np1 np2 - - - - -2.0000e-01 Q /∈ COP 5.9638e-01
Morgen14 14 -4.2857e-01 -2.0000e-01 - np1 np2 - - - - -2.0000e-01 Q /∈ COP 5.0205e-01
Morgen16 16 -3.7396e-01 -2.0000e-01 - np1 np2 - - - - -2.0000e-01 Q /∈ COP 4.2047e-01
Morgen18 18 -4.7396e-01 -2.0000e-01 - np1 np2 - - - - -2.0000e-01 Q /∈ COP 6.5630e-01
Morgen20 20 -5.4501e-01 -2.0000e-01 - np1 np2 - - - - -2.0000e-01 Q /∈ COP 3.5639e-01
Morgen22 22 -4.2669e-01 -2.0000e-01 - np1 np2 - - - - -2.0000e-01 Q /∈ COP 3.6509e-01
Johnson6-2-4 15 -7.3333e-01 -3.3333e-01 - np1 np2 - - - - -3.3333e-01 Q /∈ COP 2.5481e-01
Johnson6-4-4 15 -7.3333e-01 -3.3333e-01 - np1 np2 - - - - -3.3333e-01 Q /∈ COP 2.4275e-01
Johnson7-2-4 21 -8.0952e-01 -3.3333e-01 - np1 np2 - - - - -3.3333e-01 Q /∈ COP 2.6012e-01
Jagota14 14 -2.0154e-01 -1.6667e-01 - np1 np2 - - - - -1.6667e-01 Q /∈ COP 2.8346e-01
Jagota16 16 -1.2500e-01 -1.2500e-01 - np1 np2 - - - - -1.2500e-01 Q /∈ COP 3.0587e-01
Jagota18 18 -1.0000e-01 -1.0000e-01 - np1 np2 - - - - -1.0000e-01 Q /∈ COP 3.0492e-01
sanchis14 14 -3.4243e-01 -2.0000e-01 - np1 np2 - - - - -2.0000e-01 Q /∈ COP 3.2105e-01
sanchis16 16 -5.0000e-01 -2.0000e-01 - np1 np2 - - - - -2.0000e-01 Q /∈ COP 3.7275e-01
sanchis18 18 -5.5556e-01 -2.0000e-01 - np1 np2 - - - - -2.0000e-01 Q /∈ COP 2.9353e-01
sanchis20 20 -6.0000e-01 -2.0000e-01 - np1 np2 - - - - -2.0000e-01 Q /∈ COP 3.4803e-01
sanchis22 22 -6.3636e-01 -2.0000e-01 - snp1 np2 - - - - -2.0000e-01 Q /∈ COP 3.9897e-01

Table 12: Performance of Algorithm 5 for testing copositivity of Q of StQP(64) with σ = ω(G)− 1 for small
instances from DIMACS collection.

Problem n lQ opt Nodes test CPU
c-fat14-1 14 -1.0000e+00 -1.6667e-01 0 Q /∈ COP 7.6610e-01
Brock14 14 -1.0000e+00 -2.0000e-01 0 Q /∈ COP 7.8139e-01
Brock16 16 -1.0000e+00 -2.0000e-01 0 Q /∈ COP 7.8110e-01
Brock18 18 -1.0000e+00 -2.0000e-01 0 Q /∈ COP 6.8200e-01
Brock20 20 -1.0000e+00 -2.0000e-01 0 Q /∈ COP 6.9080e-01
Morgen14 14 -1.0000e+00 -2.0000e-01 0 Q /∈ COP 6.0310e-01
Morgen16 16 -1.0000e+00 -2.0000e-01 0 Q /∈ COP 7.4120e-01
Morgen18 18 -1.0000e+00 -2.0000e-01 0 Q /∈ COP 8.1210e-01
Morgen20* 20 - - - [gu] ? 3.0820e+00
Morgen22 22 -1.0000e+00 -3.3333e-01 0 Q /∈ COP 8.7899e-01
Johnson6-2-4 15 -1.0000e+00 -3.3333e-01 0 Q /∈ COP 8.3800e-01
Johnson6-4-4 15 -1.0000e+00 -3.3333e-01 0 Q /∈ COP 8.1300e-01
Johnson7-2-4* 21 - - - [gu] ? 6.8599e-01
Jagota14* 14 - - - [gu] ? 9.3400e-01
Jagota16* 16 - - - [gu] ? 7.3499e-01
Jagota18* 18 - - - [gu] ? 7.3499e-01
sanchis14 14 -1.0000e+00 -2.0000e-01 0 Q /∈ COP 8.9599e-01
sanchis16 16 -1.0000e+00 -2.0000e-01 0 Q /∈ COP 2.0750e+00
sanchis18 18 -1.0000e+00 -2.0000e-01 0 Q /∈ COP 7.6000e-01
sanchis20 20 -1.0000e+00 -2.0000e-01 0 Q /∈ COP 7.5000e-01
sanchis22 22 -1.0000e+00 -2.0000e-01 0 Q /∈ COP 1.9430e+00

Table 13: Performance of the B&B algorithm for testing copositivity of Q of StQP (64) with σ = ω(G)− 1
for small instances from DIMACS collection.

The numerical results showing the performance of Algorithm 5 and the B&B algorithm with matrices
of larger orders are presented in Tables 14 and 15, respectively. For this set of test problems, we set the
maximum number of iterations for the enumerative algorithm in Phase 1 to be equal to 200. Moreover, we
set α = 10−2 in our algorithm. For all the test problems but two, a conclusion about the copositivity of the
corresponding matrices was established by Algorithm 5. For these two failures, none of the two phases of
Algorithm 5 is able to improve the initial nonnegative upper bound due to the limited CPU time. Then the
copositivity test is not conclusive. For six instances, the two-phase sequential algorithm terminates in Step
0 as the computed upper bound is negative. Then the matrices are declared to be not copositive. For the
instance ‘Mann-a9’, the enumerative algorithm in Phase 1 is called twice. In the first call of the algorithm,
a new SP with a smaller function value is computed, and in the second call, Phase 1 gives a certificate of
global optimality. Hence, Phase 2 is not required. Since the optimal value is negative, then the corresponding
matrix is declared to be not copositive.
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The results displayed in Table 15 indicate that the B&B algorithm is unable to give a copositivity
certificate for the same two matrices where Algorithm 5 failed to give one. Furthermore, the B&B algorithm
failed to give such a certificate for five more matrices. The maximum computational time allowed is reached
for four instances, whereas the algorithm terminates with a memory issue for the other three problems.

Problem n lQ uQ min fph1 fph2 callEn1 ItEn1 callEn2 ItEn2 opt test CPU
Brock200-1 200 -6.5666e-01 7.1798e-13 -2.4061e-05 np2 1 [ 1 ] - - -2.4061e-05 Q /∈ COP 1.7805e+01
Brock200-2* 200 -8.9000e-01 2.1362e-13 7.6424e-13 - 3 [1 1 200] 1 [123] ? 7.2480e+03
Brock200-3* 200 -5.5876e-01 7.6923e-02 7.6923e-02 - 1 [200 ] 1 [189 ] ? 7.4647e+03
Brock200-4 200 -5.9504e-01 6.6667e-02 -2.2355e-06 np2 1 [ 13 ] - - -2.2355e-06 Q /∈ COP 6.7230e+01
c-fat200-1 200 -8.7532e-01 -8.3334e-02 np1 np2 - - - - -8.3334e-02 Q /∈ COP 8.9532e-01
c-fat200-2 200 -7.1371e-01 -4.1667e-02 np1 np2 - - - - -4.1667e-02 Q /∈ COP 8.8655e-01
c-fat200-5 200 -3.4536e-01 -1.7241e-02 np1 np2 - - - - -1.7241e-02 Q /∈ COP 8.4581e-01
hamming6-2 64 -3.1250e-02 4.0909e-01 -3.1250e-02 np2 1 [ 0 ] - - -3.1250e-02 Q /∈ COP 4.9620e-01
hamming6-4 64 -9.0625e-01 -2.5000e-01 np1 np2 - - - - -2.5000e-01 Q /∈ COP 3.0529e-01
hamming8-2 256 -7.8125e-03 -7.8125e-03 np1 np2 - - - - -7.8125e-03 Q /∈ COP 8.8724e-01
hamming8-4 256 -8.8281e-01 -6.2500e-02 np1 np2 - - - - -6.2500e-02 Q /∈ COP 9.3569e-01
Johnson8-2-4 28 -4.6429e-01 1.2500e-01 -1.0000e-01 np2 2 [ 1 0 ] - - -1.0000e-01 Q /∈ COP 4.5640e-01
Johnson8-4-4 70 -5.8571e-01 1.1667e+00 -7.1429e-02 np2 1 [ 2 ] - - -7.1429e-02 Q /∈ COP 7.6972e-01
Johnson16-2-4 120 -7.0833e-01 5.0862e-01 -4.5455e-02 np2 1 [ 0 ] - - -4.5455e-02 Q /∈ COP 1.2295e+00
Johnson32-2-4 496 -8.4879e-01 7.3781e-01 -6.2500e-02 np2 1 [ 0 ] - - -6.2500e-02 Q /∈ COP 1.3419e+02
Keller4 171 -8.8304e-01 4.2857e-01 -9.0909e-02 np2 1 [ 25 ] - - -9.0909e-02 Q /∈ COP 4.5253e+01
Mann-a9 45 -3.3333e-01 2.9606e-17 -6.2500e-02 np2 2 [ 0 9 ] - - -6.2500e-02 Q /∈ COP 1.3182e+00
Mann-27 378 -3.3862e-01 5.9322e-02 -5.7902e-06 np2 1 [ 86 ] - - -5.7902e-06 Q /∈ COP 1.3698e+03

Table 14: Performance of Algorithm 5 for testing copositivity of Q of StQP (64) with σ = ω(G)− 1 for large
instances from DIMACS collection.

Problem n lQ opt Nodes test CPU
Brock200-1 200 -1.0000e+00 -1.4638e-05 0 Q /∈ COP 3.8555e+01
Brock200-2* 200 -1.0000e+00 9.9983e-02 112839 ? 7.2002e+03
Brock200-3* 200 -1.0000e+00 7.6907e-02 64783 ? 7.2006e+03
Brock200-4* 200 -1.0000e+00 6.6650e-02 31755 ? 7.2004e+03
c-fat200-1 200 -1.0000e+00 -8.3370e-02 0 Q /∈ COP 1.4490e+00
c-fat200-2 200 -1.0000e+00 -4.1739e-02 0 Q /∈ COP 1.9400e+00
c-fat200-5 200 -1.0000e+00 -1.7367e-02 0 Q /∈ COP 2.1440e+00
hamming6-2 64 -1.0000e+00 -3.1253e-02 0 Q /∈ COP 7.7099e-01
hamming6-4 64 -1.0000e+00 -2.5000e-01 0 Q /∈ COP 8.1399e-01
hamming8-2 256 -1.0000e+00 -7.8302e-03 0 Q /∈ COP 2.2520e+00
hamming8-4 256 -1.0000e+00 -6.2523e-02 0 Q /∈ COP 6.2850e+00
Johnson8-2-4 28 -1.0000e+00 -6.2500e-02 0 Q /∈ COP 6.1500e-01
Johnson8-4-4 70 -1.0000e+00 -7.1431e-02 0 Q /∈ COP 1.9050e+00
Johnson16-2-4* 120 -1.0000e+00 3.6111e-01 1996 ? [gu: ofm] 1.1912e+02
Johnson32-2-4* 496 -1.0000e+00 6.4249e-01 10481 ? [gu: ofm] 4.3892e+03
Keller4* 171 -1.0000e+00 0.0000e+00 120707 ? 7.2002e+03
Mann-a9 45 -1.0000e+00 -6.2500e-02 0 Q /∈ COP 1.4740e+00
Mann-27* 378 -1.0000e+00 5.9319e-02 12014 ? [gu: ofm] 5.1789e+03

Table 15: Performance of the B&B algorithm for testing copositivity of Q of StQP (64) with σ = ω(G)− 1
for large instances from DIMACS collection.

We have also generated another set of test problems that differs from the previous one on considering
σ = ω(G) instead of ω(G) − 1. Note that the resulting matrix Q of the StQP (64) is copositive and not
strictly copositive for σ = ω(G). This implies that StQP (64) has a global optimal solution with zero optimal
value.

We considered again small instances from DIMACS collection and we solved them by using Algorithm 5.
The results are shown in Table 16. For all the test problems, a conclusion about the copositivity of the
corresponding matrices was established. For two instances, Algorithm 5 guarantees a global minimum in
Step 0 as the difference between the computed upper and lower bounds is smaller than or equal to the
tolerance. Since the values of these bounds are null, then the corresponding matrices are copositive. For
sixteen test problems, the enumerative algorithm in Phase 1 is called once, but it is not able to give a
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Problem n lQ uQ min fph1 fph2 callEn1 ItEn1 callEn2 ItEn2 opt test CPU
c-fat14-1 14 -1.4286e-01 -3.6932e-17 -3.6932e-17 -3.6932e-17 1 [100 ] 1 [ 4 ] -3.6932e-17 Q ∈ COP 4.5006e+00
Brock14 14 -2.8117e-01 9.7811e-16 9.7811e-16 9.7811e-16 1 [100 ] 1 [ 12 ] 9.7811e-16 Q ∈ COP 4.2493e+00
Brock16 16 -2.5704e-01 5.3474e-15 5.3474e-15 5.3474e-15 1 [100 ] 1 [ 16 ] 5.3474e-15 Q ∈ COP 4.8890e+00
Brock18 18 -3.2864e-01 8.1649e-15 8.1649e-15 8.1649e-15 1 [100 ] 1 [ 32 ] 8.1649e-15 Q ∈ COP 8.3837e+00
Brock20 20 -3.3316e-01 5.4083e-15 5.4083e-15 5.4083e-15 1 [100 ] 1 [ 46 ] 5.4083e-15 Q ∈ COP 1.3748e+01
Morgen14 14 -2.8551e-01 3.2025e-16 3.2025e-16 3.2025e-16 1 [100 ] 1 [ 12 ] 3.2025e-16 Q ∈ COP 4.8646e+00
Morgen16 16 -2.8329e-01 7.7252e-15 7.7252e-15 7.7252e-15 1 [100 ] 1 [ 14 ] 7.7252e-15 Q ∈ COP 5.7398e+00
Morgen18 18 -3.0229e-01 5.6185e-15 5.6185e-15 5.6185e-15 1 [100 ] 1 [ 16 ] 5.6185e-15 Q ∈ COP 7.1364e+00
Morgen20 20 -3.2037e-01 3.3811e-15 3.3811e-15 3.3811e-15 1 [100 ] 1 [ 16 ] 3.3811e-15 Q ∈ COP 7.7931e+00
Morgen22 22 -1.9216e-01 9.3555e-15 9.3555e-15 9.3555e-15 1 [100 ] 1 [ 14 ] 9.3555e-15 Q ∈ COP 9.7637e+00
Johnson6-2-4 15 -2.6667e-01 3.6364e-01 1.1833e-29 1.1833e-29 3 [ 3 0 100 ] 1 [ 34 ] 1.1833e-29 Q ∈ COP 5.5478e+00
Johnson6-4-4 15 -2.6667e-01 3.6364e-01 -1.8504e-17 -1.8504e-17 3 [ 3 0 100 ] 1 [ 34 ] -1.8504e-17 Q ∈ COP 5.1785e+00
Johnson7-2-4 21 -3.8095e-01 2.3529e-01 1.9234e-15 1.9234e-15 3 [ 3 6 100 ] 1 [122 ] 1.9234e-15 Q ∈ COP 2.3351e+01
Jagota14 14 -7.9189e-02 1.2753e-14 1.2753e-14 1.2753e-14 1 [100 ] 1 [ 0 ] 1.2753e-14 Q ∈ COP 3.4846e+00
Jagota16 16 0.0000e+00 3.0997e-14 gm np1 np2 - - - - 3.0997e-14 Q ∈ COP 2.5657e-01
Jagota18 18 6.6613e-16 3.9497e-14 gm np1 np2 - - - - 3.9497e-14 Q ∈ COP 3.3670e-01
sanchis14 14 -2.5687e-01 1.3889e-15 1.3889e-15 1.3889e-15 1 [100 ] 1 [ 8 ] 1.3889e-15 Q ∈ COP 4.6145e+00
sanchis16 16 -2.3319e-01 1.5551e-15 1.5551e-15 1.5551e-15 1 [100 ] 1 [ 6 ] 1.5551e-15 Q ∈ COP 4.5696e+00
sanchis18 18 -4.4444e-01 1.9481e-15 1.9481e-15 1.9481e-15 1 [100 ] 1 [ 6 ] 1.9481e-15 Q ∈ COP 5.1598e+00
sanchis20 20 -5.0000e-01 5.3549e-15 5.3549e-15 5.3549e-15 1 [100 ] 1 [ 10 ] 5.3549e-15 Q ∈ COP 5.8213e+00
sanchis22 22 -5.4545e-01 2.3335e-15 2.3335e-15 2.3335e-15 1 [100 ] 1 [ 8 ] 2.3335e-15 Q ∈ COP 7.2289e+00

Table 16: Performance of Algorithm 5 for testing copositivity of Q of StQP (64) with σ = ω(G) for small
instances from DIMACS collection.

Problem n lQ opt Nodes test CPU
c-fat14-1 14 -1.0000e+00 -4.9992e-07 99 Q ∈ COP 1.6970e+00
Brock14 14 -1.0000e+00 -2.9992e-07 143 Q ∈ COP 6.5850e+00
Brock16 16 -1.0000e+00 -3.5989e-07 169 Q ∈ COP 3.3060e+00
Brock18 18 -1.0000e+00 -4.1987e-07 255 Q ∈ COP 5.4630e+00
Brock20 20 -1.0000e+00 -5.5985e-07 293 Q ∈ COP 6.9490e+00
Morgen14 14 -1.0000e+00 -2.7991e-07 171 Q ∈ COP 3.5930e+00
Morgen16 16 -1.0000e+00 -3.9989e-07 153 Q ∈ COP 3.9240e+00
Morgen18 18 -1.0000e+00 -6.1987e-07 159 Q ∈ COP 4.1960e+00
Morgen20 20 -1.0000e+00 -8.5985e-07 177 Q ∈ COP 2.6640e+00
Morgen22* 22 - - - [gu] ? 1.0940e+00
Johnson6-2-4 15 -1.0000e+00 -2.3988e-07 127 Q ∈ COP 2.3370e+00
Johnson6-4-4 15 -1.0000e+00 -2.3988e-07 131 Q ∈ COP 2.4060e+00
Johnson7-2-4 21 -1.0000e+00 -2.3984e-07 379 Q ∈ COP 5.7370e+00
Jagota14* 14 - - - [gu] ? 9.1700e-01
Jagota16* 16 - - - [gu] ? 8.0000e-01
Jagota18* 18 - - - [gu] ? 9.5000e-01
sanchis14 14 -1.0000e+00 -3.9991e-07 161 Q ∈ COP 4.0090e+00
sanchis16 16 -1.0000e+00 -5.3989e-07 157 Q ∈ COP 2.6520e+00
sanchis18 18 -1.0000e+00 -6.3987e-07 191 Q ∈ COP 3.2350e+00
sanchis20 20 -1.0000e+00 -7.1985e-07 281 Q ∈ COP 4.5440e+00
sanchis22 22 -1.0000e+00 -8.3983e-07 311 Q ∈ COP 4.5180e+00

Table 17: Performance of the B&B algorithm for testing copositivity of Q of StQP (64) with σ = ω(G) for
small instances from DIMACS collection.

certificate of global optimality. Then Phase 2 is called once and gives this certificate. For the other three
instances, the enumerative algorithm in Phase 1 is called three times and improves the initial upper bound,
but it cannot give the certificate of global optimality. This certificate is given in Phase 2. The B&B algorithm
was also able to compute a global minimum and give a certificate of global optimality for all these test
problems but four. These failures are due to numerical troubles in the initialization phase as shown in
Table 17.

Finally, the copositivity of Q in (64) with σ = ω(G) for large instances is tested and the results are shown
in Tables 18 and 19 for Algorithms 5 and B&B Algorithm, respectively. As before, we set the maximum
number of iterations for enumerative algorithm in Phase 1 equal to 200 and we use α = 10−2. As shown
by the results obtained by both the algorithms, this set of problems is quite challenging. Table 18 shows
that the two-phase sequential algorithm correctly verifies the copositivity of ten matrices. For two instances,
Algorithm 5 guarantees a global minimum in Step 0 as the difference between the computed upper and
lower bounds is smaller than or equal to the tolerance. Since the values of these bounds are null, then the
corresponding matrices are copositive. The enumerative algorithm in Phase 1 is called more than once for
seven test problems, but it is not able to give a certificate of global optimality. Then Phase 2 is called once
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Problem n lQ uQ min fph1 fph2 callEn1 ItEn1 callEn2 ItEn2 opt test CPU
Brock200-1* 200 -6.5105e-01 5.0000e-02 - 5.0000e-02 - 1 [200 ] 1 [392 ] 5.0000e-02 ? 7.2647e+03
Brock200-2* 200 -8.3502e-01 2.0000e-01 - 2.0000e-01 - 1 [200 ] 1 [249 ] 2.0000e-01 ? 7.2360e+03
Brock200-3* 200 -5.5133e-01 1.5385e-01 - 1.5385e-01 - 1 [200 ] 1 [323 ] 1.5385e-01 ? 7.2144e+03
Brock200-4* 200 -5.8866e-01 1.3333e-01 - 1.3333e-01 - 1 [200 ] 1 [245 ] 1.3333e-01 ? 7.2374e+03
c-fat200-1 200 -8.1250e-01 -3.2382e-17 -3.2382e-17 - 1 [200 ] 1 [138 ] -3.2382e-17 Q ∈ COP 5.2773e+03
c-fat200-2 200 -6.8146e-01 -6.4753e-17 -6.4753e-17 - 1 [200 ] 1 [165 ] -6.4753e-17 Q ∈ COP 6.2108e+03
c-fat200-5 200 -3.1936e-01 3.2541e-17 3.2541e-17 - 1 [200 ] 1 [261 ] 3.2541e-17 Q ∈ COP 6.9248e+03
hamming6-2 64 0.0000e+00 -1.7694e-16 gm np1 np2 - - - - -1.7694e-16 Q ∈ COP 3.1460e-01
hamming6-4 64 -8.7500e-01 -5.5469e-17 -5.5469e-17 - 1 [200 ] 1 [323 ] -5.5469e-17 Q ∈ COP 6.2026e+03
hamming8-2 256 4.4409e-16 1.6480e-16 gm np1 np2 - - - - 1.6480e-16 Q ∈ COP 7.1521e-01
hamming8-4 256 -8.7500e-01 -8.3262e-17 -8.3262e-17 - 1 [200 ] 1 [ 19 ] -8.3262e-17 Q ∈ COP 2.2087e+03
Johnson8-2-4 28 -4.2857e-01 5.0000e-01 8.3267e-17 - 7 [ 5 1 0 6 0 1 200 ] 1 [282 ] 8.3267e-17 Q ∈ COP 8.3198e+01
Johnson8-4-4 70 -5.7143e-01 1.3333e+00 1.2822e-20 - 3 [ 1 0 200 ] 1 [216 ] 1.2822e-20 Q ∈ COP 6.2430e+03
Johnson16-2-4 120 -7.0000e-01 7.2414e-01 -4.1633e-17 - 3 [ 0 0 200 ] 1 [2813 ] -4.1633e-17 ? 7.2032e+03
Johnson32-2-4 496 -8.4677e-01 8.5366e-01 -1.0396e-17 - 12 [ 0 0 0 0 0 0 1 0 4 1 0 200 ] 1 [ 0 ] -1.0396e-17 [gu]? 1.1662e+04
Keller4 171 -8.7135e-01 5.7143e-01 2.9630e-12 - 4 [ 19 11 10 200 ] 1 [683 ] 2.9630e-12 ? 7.2078e+03
Mann-a9 45 -2.8889e-01 6.6667e-02 3.9669e-14 - 2 [ 0 200 ] 1 [498 ] 3.9669e-14 Q ∈ COP 3.5659e+03
Mann-27 378 -3.3333e-01 6.7797e-02 7.9947e-03 - 4 [ 6 0 40 200 ] 1 [ 0 ] 7.9947e-03 [gu]? 3.0986e+03

Table 18: Performance of Algorithm 5 for testing copositivity of Q of StQP (64) with σ = ω(G) for large
instances from DIMACS collection.

Problem n lQ opt Nodes test CPU
Brock200-1* 200 -1.0000e+00 4.9984e-02 20669 ? 7.2004e+03
Brock200-2* 200 -1.0000e+00 1.9998e-01 106191 ? 7.2004e+03
Brock200-3* 200 -1.0000e+00 1.5383e-01 60413 ? 7.2003e+03
Brock200-4* 200 -1.0000e+00 1.3332e-01 41237 ? 7.2009e+03
c-fat200-1 200 -1.0000e+00 -4.0038e-05 1731 Q /∈ COP 8.0240e+01
c-fat200-2 200 -1.0000e+00 -7.5678e-05 1593 Q /∈ COP 1.1437e+02
c-fat200-5 200 -1.0000e+00 -1.2882e-04 1847 Q /∈ COP 2.9362e+02
hamming6-2* 64 -1.0000e+00 -3.1997e-06 442239 ? 7.2000e+03
hamming6-4 64 -1.0000e+00 0.0000e+00 3017 Q ∈ COP 8.7308e+01
hamming8-2* 256 -1.0000e+00 -1.7918e-05 4191 ? 7.2032e+03
hamming8-4* 256 -1.0000e+00 -2.4638e-05 12023 ? 7.2027e+03
Johnson8-2-4 28 -1.0000e+00 0.0000e+00 1191 Q ∈ COP 2.3916e+01
Johnson8-4-4* 70 -1.0000e+00 -3.3594e-06 394529 ? 7.2000e+03
Johnson16-2-4* 120 -1.0000e+00 0.0000e+00 77125 ? 7.2003e+03
Johnson32-2-4* 496 -1.0000e+00 0.0000e+00 6805 ? 7.2059e+03
Keller4* 171 -1.0000e+00 0.0000e+00 25677 ? 7.2006e+03
Mann-a9* 45 -1.0000e+00 -4.5979e-07 232189 ? 7.2002e+03
Mann-27* 378 -1.0000e+00 6.7794e-02 13841 ? 7.2012e+03

Table 19: Performance of the B&B algorithm for testing copositivity of Q of StQP (64) with σ = ω(G) for
large instances from DIMACS collection.

and gives this certificate for three of them. For the first four test problems the two phases of Algorithm 5
cannot improve the positive upper bound computed in the initialization step and cannot give a certificate
of global optimality. Numerical troubles are encountered in GUROBI when the instances ‘Johnson16-2-4’ and
Mann-27 are solved.

The B&B algorithm encounters many difficulties in solving this set of problems. For six instances, the
algorithm computes a global minimum with a null global optimal value, but for only two of them, it gives
the desired certificate of global optimality that provides the correct conclusion about the copositivity. For
three instances an approximate solution is computed by IPOPT [37] in the initialization phase and it is not
improved over the iterations. So, the algorithm is not able to compute a correct global minimum and this
leads to an incorrect conclusion about the copositivity of the corresponding matrices. For all other instances,
the algorithm could not terminate in the allowed computational time and the copositivity test is inconclusive.

As a final conclusion of the experiments for investigating the copositivity of some matrices, the two-
phase sequential algorithm is shown to be efficient for solving almost all the required StQPs. Phase 1 of the
algorithm failed to compute an SP with a negative objective value for the StQPs associated with two matrices
that are not copositive. Furthermore, the algorithm also failed to compute a global minimum for eight StQPs
associated to matrices that are copositive. The results of the experiments of applying the B&B algorithm to
the same matrices show that this algorithm has a bigger number of failures for giving a copositivity certificate
than the two-phase algorithm.
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To end this section, we illustrate the overall comparison of the computational effort in terms of CPU
time of Algorithm 5 and the B&B algorithm, we show in Fig. 1 their performance profiles for all instances
considered in this paper.

Fig. 1: Performance profile of Algorithm 5 and B&B algorithm for all the instances considered in this paper.

The percentage of instances solved by the two-phase sequential and B&B algorithms amounts to 95% and
77%, respectively. As far as the CPU is concerned, for more than half of the instances the B&B algorithm
is faster than the proposed algorithm. Note that this difference of time essentially depends on the big time
that the local NLP solver takes for solving the NLPs required by Phase 2.

9 Conclusions

In this paper, we discuss a new two-phase methodology for global optimization of the Standard Quadratic
Optimization Problem (StQP). The first phase is devoted to the computation of Stationary Points (SP) with
strictly decreasing function values, while the second phase is concerned with a certificate that establishes
that the last SP computed in Phase 1 is a global minimum. The algorithm is shown to be efficient for its
goal and seems to be competitive with the best state-of-art Branch and Bound algorithm for the StQP.

The efficiency of the two-phase algorithm depends very much on the nonlinear programming (NLP)
techniques that are employed in the enumerative algorithms used in the two phases. We believe that a more
efficient algorithm may be designed for solving a convex NLP with a linear function and linear and convex
quadratic constraints, that is required in Phase 2. This topic is an important topic of our future research.

The novel two-phase idea for the StQP introduced in this paper can be implemented for a general
Linear Program with Linear Complementarity Constraints (LPLCC) and for a number of important global
optimization problems with linear constraints that are equivalent to LPLCC, such as the popular Quadratic
Programming Problem and the Linear Bilevel Programming Problem. These are also important topics of
our future research.
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