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Computing Two-Fluid Models of Compressible

Water-Vapour Flows with Mass Transfer

Jean-Marc Hérard∗

EDF, R&D, 6 quai Watier, 78400, Chatou, France.

Olivier Hurisse †

EDF, R&D, 6 quai Watier, 78400, Chatou, France.

We focus in this paper on the computation of two-fluid models of compressible water-
vapour flows with mass transfer. Once the model and its main properties have been recalled,
we detail the whole algorithm with special emphasis on the schemes that give approximate
solutions of the source terms. Some recent results are eventually presented.

I. Introduction

This paper is devoted to the simulation of water-vapour flows with mass transfer, using the two-fluid
approach proposed in4,5, 8, 11,12,17,22,23,27 . The two-fluid model contains stiff source terms associated with
pressure-velocity-temperature-Gibbs potential relaxation terms, and the convective part of the model is
highly non linear and has no conservative form. Thus the computation of the whole model is rather difficult,
and it requires the development of specific algorithms. Actually, a rather slow rate of convergence of schemes
with respect to the mesh size is expected for convection-dominated flow computations (more precisely h1/2

-respectively h2/3- for so-called first-order -respectively second-order- schemes) , due to the occurence of sev-
eral contact discontinuities, and the reader is refered to references1,2, 7, 9, 13,25,26,28,30,31 for instance, which
examine in detail the behaviour of several Riemann solvers and relaxation techniques in order to cope with
the convective part of the two-fluid model. Moreover, small time scales in relaxation source terms render
the computation even more tricky, and some attempts to deal with pressure-velocity-temperature relaxation
effects have been recently reported in20,21 . One difficulty is connected with the computation of pressure
relaxation effects, since it requires a tight coupling of source terms in energy and statistical void fraction
equations. The accurate computation of gas-liquid flows with no mass transfer is not easy, but water-vapour
flow simulations that account for mass transfer are clearly even more difficult, and emphasis is given here on
this topic.

The paper will be organized as follows. We will first recall the set of PDEs that governs the two-fluid
model. Next we will present the fractional step algorithm that is used in order to compute approximations
of solutions of the whole system. The most difficult task dwells in the building of suitable algorithms in
the pressure relaxation step. The section of numerical results will first recall some recent measurements of
convergence rates, and then we will focus on the effect of mass transfer in two different situations.

II. Governing equations of the two-fluid model

Throughout the paper, indexes l, v refer to the liquid and vapour phases ; the statistical void fractions
of vapour and liquid are noted classically αv and αl, which should agree with:

αl + αv = 1 ;
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The mean pressures, mean velocities and mean densities of the two phases are denoted Pφ, Uφ and ρφ re-
spectively, for φ = l, v. The total energy within each phase is:

Eφ = ρφeφ(Pφ, ρφ) + ρφ
U2
φ

2
, φ = v, l (1)

Internal energy functions eφ must be provided by users.

The so-called conservative variable W will be defined as:

W = (αl, αlρl, αlρlUl, αlEl, αvρv, αvρvUv, αvEv)

Moreover, PI(W ) and VI(W ) respectively denote in this paper the interfacial pressure and velocity, and will
be given afterwards. These interface terms VI and PI are such that:

• jump conditions are well defined within each isolated field;

• a physically relevant entropy inequality holds for smooth solutions of (2).

Given these notations, the governing set of equations for first-order moments may be written as follows
in a one-dimensional framework:

∂t (αl) + VI∂x (αl) = S1,l

∂t (αlρl) + ∂x (αlρlUl) = S2,l

∂t (αlρlUl) + ∂x
(
αlρlU

2
l + αlPl

)
− PI∂x (αl) = S3,l

∂t (αlEl) + ∂x (αlUl(El + Pl)) + PI∂t (αl) = S4,l

∂t (αvρv) + ∂x (αvρvUv) = −S2,l

∂t (αvρvUv) + ∂x
(
αvρvU

2
v + αvPv

)
− PI∂x (αv) = −S3,l

∂t (αvEv) + ∂x (αvUv(Ev + Pv)) + PI∂t (αv) = S4,l

(2)

where right-hand side terms Sk,l(W ) represent the source terms (for k = 2, 3, 4), which enable to account
for mass transfer, momentum and energy transfer through the interface between the two phases. The term
S1,l will also be introduced later on. Partial masses will be noted mφ = αφρφ.

A. Closure laws

Interfacial transfer contributions are defined as:

S1,l = (τ2)−1 αlαv
Pl+Pv

(Pl − Pv)
S2,l

def
= Γ = (τ1)−1 1

T−1
v |gv|+T−1

l |gl|
mlmv
ml+mv

(T−1
v gv − T−1

l gl)

S3,l = D + (Ul + Uv)Γ/2

S4,l = (τ4)−1 mlCV,lmvCV,v
mlCV,l+mvCV,v

(Tv − Tl) + (Ul + Uv)D/2 + (UlUv)Γ/2

(3)

where free enthalpies gφ and temperatures Tφ are defined as:

gφ =

(
eφ +

Pφ
ρφ

)
− Tφsφ

1/Tφ = ∂Pφ (sφ) /∂Pφ (eφ)

Entropies sφ should be chosen in agreement with the constraint:

(cφ)2∂Pφ (sφ) + ∂ρφ (sφ) = 0

The drag terms are modeled according to:

D = (τ3)−1 mlmv

ml +mv
(Uv − Ul)
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These closure laws involve -positive- time scales which are noted τk (for k = 1, .., 4). We recall that:

CV,k = ∂Tk (ek)|ρk , for k = l, v.

Eventually, a keystone in the approach is hidden in a correct definition of the couple (VI , PI). We recall
that the enforcement of a relevant entropy inequality has a straightforward consequence, which is that PI
may be written in terms of VI and W in a unique way. The same holds when tackling three-phase flows, as
emphasized in17 . Now, a second requirement implies that the field associated with λ = VI should be linearly
degenerate. As shown in8,11 , few expressions guarantee this behaviour. Among these, one must point the
following two:

• The so-called Baer-Nunziato closure, which corresponds to the choice VI = Uv, and consequently
PI = Pl, owing to the previous remark ; this model is well suited for two-phase flows where the vapour
is dilute (αv << 1) ;

• The mixture velocity closure, that is: VI = Um
def
= (mlUl + mvUv)/(ml + mv), and its corresponding

value PI = µPl + (1 − µ)Pv, setting µ = 1
1+mlTl/mvTv

. Thus it corresponds in the asymptotic regime

Tv = Tl to (mvPl +mlPv)/(mv +ml), which means that the interface pressure is mainly driven by the
pressure of the vanishing phase Pv when mv tends to 0. This closure is not relevant in our case.

Actually, an extended framework including the latter two formulations may be exhibited (see18).

From now on, we will restrict our attention to the first couple (PI , VI) = (Pl, Uv).

B. Main properties

We may now recall in brief the main properties of system (2) using the previous closure laws. We emphasize
that these are valid for above defined closure laws. The reader is refered to the references8,11 (see also17)
that contain all proofs, comments and details.

Property 1: (Hyperbolicity, structure of fields, entropy inequality and jump conditions)

• (1) The set of equations (2) is hyperbolic, since it admits seven real eigenvalues:

λ1,2 = Uv, λ3 = Uv − cv, λ4 = Uv + cv, λ5 = Ul, λ6 = Ul − cl, λ7 = Ul + cl

and associated righteigenvectors span the whole space R7, unless |Ul − Uv|/cl = 1;

• (2) Fields associated with eigenvalues λ1,2,5 are linearly degenerate. Other fields are genuinely non
linear;

• (3) Within each isolated field associated with λk, unique jump conditions hold. Apart from the field
associated with the eigenvalue λ = Uv, αl is uniform and thus these jump conditions correspond to
single phase jump relations, that is:

−σ[ρφ]rl + [ρφUφ]rl = 0;

−σ[ρφUφ]rl + [ρφU
2
φ + Pφ]rl = 0;

−σ[Eφ]rl + [Uφ(Eφ + Pφ)]rl = 0,

(4)

where σ denotes the speed of the sock wave, and l, r the left-right states on each side of this travelling
discontinuity.

• (4) Define the entropy η(W ) = mlsl + mvsv and the entropy flux fη(W ) = mlslUl + mvsvUv ; then
smooth solutions W of (2) are such that:

0 ≤ ∂t (η(W )) + ∂x (fη(W )) . (5)

Obviously, the structure of the 1, 2-field is crucial in order to obtain unique jump conditions. This is not
clear in the literature according to the authors. We now provide the whole algorithm that is used in order
to obtain approximate solutions of system (2).
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III. Numerical algorithm

We use a fractional step method that complies with the entropy inequality (5) ; a first ”evolution” step
accounts for all convective effects, while the second ”relaxation” step takes source terms into account.

• Evolution step
This step computes approximate solutions of the hyperbolic homogeneous system:

∂t (αl) + VI∂x (αl) = 0

∂t (αlρl) + ∂x (αlρlUl) = 0

∂t (αlρlUl) + ∂x
(
αlρlU

2
l + αlPl

)
− PI∂x (αl) = 0

∂t (αlEl) + ∂x (αlUl(El + Pl)) + PI∂t (αl) = 0

∂t (αvρv) + ∂x (αvρvUv) = 0

∂t (αvρvUv) + ∂x
(
αvρvU

2
v + αvPv

)
− PI∂x (αv) = 0

∂t (αvEv) + ∂x (αvUv(Ev + Pv)) + PI∂t (αv) = 0

(6)

through the time interval [tn, tn + ∆t], with given initial values Wn, using a Finite Volume scheme to
be defined. This provides a set of approximations W̃ .

• Relaxation step
Given discrete cell values of W̃ , we compute approximations of the coupled set of ODEs corresponding
to relaxation terms, that is: 

∂t (αl) = S1,l

∂t (αlρl) = S2,l

∂t (αlρlUl) = S3,l

∂t (αlEl) + PI∂t (αl) = S4,l

∂t (αvρv + αlρl) = 0

∂t (αvρvUv + αlρlUl) = 0

∂t (αvEv + αlEl) = 0

(7)

Approximate solutions in the evolution step are obtained using either the non-conservative form of Ru-
sanov scheme, or the non-conservative form of the approximate Godunov scheme VFRoe-ncv6 . We refer
to10,11,21 for such a description. Of course, other solvers have been proposed for such a purpose, among
which we may cite those that are detailed in the papers1,2, 7 , which are grounded on the use of relaxation
techniques, but also approximate Riemann solvers such as those detailed in24,26,30,31 . One must be aware
here that the approximation of shock solutions makes sense for system (6), though the system has no con-
servative form, since first-order non-conservative products are only active in linearly degenerate fields. A
straightforward consequence is that we expect schemes to converge towards the same solution when the mesh
is refined (see16 for instance which examines this specific point).

We detail afterwards the relaxation step, with special focus on the computation of mass transfer terms.
This relaxation step is in fact split into four substeps through which one accounts for drag effects, heat
exchange, pressure relaxation effects and mass transfer respectively.
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1. Velocity relaxation step

This step accounts for drag terms only. Starting with an initial condition indexed by n, the following update
is achieved, which provides new values indexed by n, ∗:

αn,∗l = αnl ,

mn,∗
l = mn

l ,

mn,∗
v = mn

v ,

Un,∗l = Unl + (Unv − Unl )
mnv (1−e(−∆t/τn3 ))

mnl +mnv
,

Un,∗v = Unv − (Unv − Unl )
mnl (1−e(−∆t/τn3 ))

mnl +mnv
,

(mlel)
n,∗ = (mlel)

n +
mnl m

n
v

mnl +mnv

(Unl −U
n
v )2

2 (1− e(−2∆t/τn3 )),

(mvev)
n,∗ = (mvev)

n.

(8)

Of course, the void fraction and partial masses remain unchanged through this velocity relaxation step, and
the total mean momentum and the mean total energy are also preserved. It may be easily checked that
internal energies remain positive through this substep.

2. Temperature relaxation step

Once again, both the void fraction and the partial masses remain steady through this step which computes
approximations of solutions of system:

∂t (αl) = 0

∂t (αlρl) = 0

∂t (αlρlUl) = 0

∂t (αlEl) = (τ4)−1 mlCV,lmvCV,v
mlCV,l+mvCV,v

(Tv − Tl)
∂t (αvρv + αlρl) = 0

∂t (αvρvUv + αlρlUl) = 0

∂t (αvEv + αlEl) = 0

(9)

The temperature relaxation scheme updates internal energies at time n, ∗∗ according to the rule:

αn,∗∗l = αn,∗l
mn,∗∗
k = mn,∗

k for k = l, v

mn,∗∗
k Un,∗∗k = mn,∗

k Un,∗k for k = l, v

mn,∗
l (en,∗∗l − en,∗l ) = ∆t

θn,∗ (Tv(e
n,∗∗
v , ρn,∗v )− Tl(en,∗∗l , ρn,∗l ))

mn,∗
v (en,∗∗v − en,∗v ) +mn,∗

l (en,∗∗l − en,∗l ) = 0

(10)

where θn,∗ = (τ4)n,∗(
mlCV,l+mvCV,v
mlCV,lmvCV,v

)n,∗. Thus this step requires solving a non-linear system of two unknowns

(en,∗∗v , en,∗∗l ). However, it performs better than some other linearized schemes.

3. Pressure relaxation step

The pressure relaxation step computes approximations of solutions of the ODEs:

∂t (αl) = S1,l

∂t (mφ) = 0

∂t (mφUφ) = 0

∂t (mlel) + Pl∂t (αl) = 0

∂t (αvEv + αlEl) = 0

(11)

with φ = l, v. Two distinct schemes have been proposed in20 in order to cope with (11). Both guarantee
positive values of void fractions αφ and a perfect balance of total energies. The first one is a semi-implicit
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scheme, that is such that the existence and uniqueness of the discrete solution is ensured, whatever the
equations of state would be. The second one is totally implicit with respect to the unknown (Pl, Pv, αl).

We only detail herein the second one which calculates (Pl, Pv, αl)
n,∗∗∗ solution of the implicit step:

αn,∗∗∗l − αn,∗∗l = ∆t
τn,∗∗2

αn,∗∗∗l αn,∗∗∗v (Pn,∗∗∗l − Pn,∗∗∗v )/(Pn,∗∗l + Pn,∗∗v )

mn,∗∗∗
k = mn,∗∗

k for k = l, v

mn,∗∗∗
k Un,∗∗∗k = mn,∗∗

k Un,∗∗k for k = l, v

mn,∗∗
l (en,∗∗∗l − en,∗∗l ) + Pn,∗∗∗l (αn,∗∗∗l − αn,∗∗l ) = 0

mn,∗∗
v (en,∗∗∗v − en,∗∗v ) +mn,∗∗

l (en,∗∗∗l − en,∗∗l ) = 0

(12)

using abusive notations: en,∗∗∗φ = eφ(Pn,∗∗∗φ , ρn,∗∗∗φ ), and ρn,∗∗∗φ = mn,∗∗∗
φ /αn,∗∗∗φ . Conditions that guarantee

the existence and uniqueness of the solution (Pl, Pv, αl)
n,∗∗∗ are detailed in20 . Actually, this algorithm is

exactly the same as the one introduced in10 . We refer the reader to the latter reference, which examines
the mesh refinement effects when τ2 = ε << 1 and when τ2 = 0 respectively, using meshes with up to 106

cells. As expected, this enables to retrieve the fact that the initial-value problem associated with system
(2) and τ2 = 0 is ill-posed (see19 and16 also for a similar study). We also recall that a simpler algorithm
was proposed in11 in order to compute approximations of the pressure relaxation substep (11) ; however,
a drawback of this algorithm is that it does not ensure the exact conservation of the total energy of the
mixture.

4. Taking mass transfer into account

The last relaxation step takes mass tranfer terms into account. It is indeed an important step, and the
algorithm which is used is the following. Starting with values Wn,∗∗∗

φ issuing from the pressure relaxation
step, and noting formally this time as t = 0, the Gibbs potential desequilibrium and the relaxation time are
frozen at the beginning of the time step, defining Γ as follows :

Γ =
G(0)

τ1(0)

mlmv

ml +mv
.

with an obvious definition of G in agreement with formula (3):

G =
(T−1
v gv − T−1

l gl)

T−1
v |gv|+ T−1

l |gl|

Hence, we rewrite the step as: 

∂t (αl) = 0

∂t (ml) = Γ

∂t (mlUl) = Γ(Ul + Uv)/2

∂t (αlEl) = Γ(UlUv)/2

∂t (mv +ml) = 0

∂t (mvUv +mlUl) = 0

∂t (αvEv + αlEl) = 0

(13)

and a direct time integration yields:

ml(t) = ml(0)
(ml(0) +mv(0))e(tG(0)/τ1(0))

ml(0)e(tG(0)/τ1(0)) +mv(0)
and mv(t) = mv(0)

ml(0) +mv(0)

ml(0)e(tG(0)/τ1(0)) +mv(0)
.

It must be emphasized that a straightforward consequence of this choice of algorithm is that partial masses
remain positive through the step, without any constraint on the time step. The update of momentum
mlUl,mvUv and total energies Ev, El is straightforward, and of course the conservation of the mass, momen-
tum and total energy of the mixture is preserved. It must be emphasized that the potential desequilibrium
is taken into account in an explicit way in the latter scheme, so that one may conjecture that a more robust
scheme grounded on an implicit formulation might be built later on.
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IV. Numerical results

We recall first very briefly in the following two subsections some previous results that have been obtained
while computing the evolution step and the pressure-velocity-temperature relaxation step. Then we present
a few numerical results in some particular situations.

A. Validation of the evolution step

We do not detail this part here and we refer to9,13,25,28 where many simulations of one-dimensional Riemann
problems are reported, by computing the L1 norm of the error, considering meshes with up to 5.105 regular
cells. We emphasize that the expected asymptotic rate of convergence is h1/2 (resp. h2/3) for first-order
(resp. second-order) schemes, due to the occurence of the contact waves associated with Uv and Ul; actually,
this is precisely what is retrieved in the above-mentionned references when the mesh size is refined, at a
given CFL number (typically CFL = 1/2).

B. Validation of the pressure-velocity-temperature relaxation step

We refer to20,21 which focus on the validation of the pressure-velocity-temperature relaxation step. Specific
analytical solutions have been used in these reports in order to estimate true rates of convergence. The
latter references also provide theoretical conditions in order to ensure existence and uniqueness of solutions of
coupled discrete problems associated with the pressure and temperature relaxation steps. Quite surprinsingly,
the computation of this step is not very well documented in the known literature, though the relaxation step
is stiff and involves highly non-linear effects between all components of the state variable W .

C. Two-dimensional simulation of a heated wall

We consider the two-dimensional unsteady computation of a heated wall in an almost square domain, where
the wall contains a small cavity -in the lower part- (see figure 1). The computational domain contains

4 m

4 m
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0.25 m

Figure 1. Heated wall: sketch of the computational domain

105 regular cells, and the CFL number is set to 1/2. Homogeneous Neumann-type boundary conditions
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have been used on the left, right and upper boundaries. The relaxation time scales are constant in this
experiment: τ1 = 10−6, τ2 = 10−5, τ3 = 10−4, τ4 = 10−6. Uniform initial conditions are such that the
fluid is at rest at the beginning of the computation, which means that: ρl(x, y, 0) = 765., ρv(x, y, 0) = 76.,
Pl(x, y, 0) = Pv(x, y, 0) = 166 × 105, Uxl (x, y, 0) = Uxv (x, y, 0) = 0 and Uyl (x, y, 0) = Uyv (x, y, 0) = 0.
The liquid mass fraction has been set to 0.95, and we use perfect gas EOS within each phase, setting:
γv = 1.4 and γl = 1.038. The normal heat flux is uniform along the wall direction, and its steady value is:
HF = 106J/s/m2. The final time of the computation is T = 2.375× 10−2, and the average time step at the
end of the computation is approximately equal to ∆t = 4.8 × 10−6. Figures 2 and 3 show the liquid void
fraction and liquid pressure isolines at the end of the computation.

Figure 2. Heated wall: contours of the liquid void fraction αl at time T = 0.0237.

D. Interfacial mass transfer in a stratifying layer

Eventually, we discuss a one-dimensional test case corresponding to a vertical stratification of an initially
homogeneous medium, following11 , while including mass transfer effects. Thus we consider a homogeneous
mixture initially at rest (Uv(t = 0) = Ul(t = 0) = 0) with ambient conditions (Pl(t = 0) = Pv(t = 0) =
101300Pa, and ρl(t = 0) = 1000, ρv(t = 0) = 1), while setting a uniform value αl(t = 0) = 0.5. The
relaxation time scale in the mass transfer term is now τ1 = 10−4, and we set τ2 = 5 × 10−4, γv = 1.4,
γl = 1.0005. Following11 , both drag effects and heat transfer are neglected, thus (τ3)−1 = (τ4)−1 = 0. The
gravity constant is set to g = 9.81, and the computational domain is [0, 5]. A stratification develops, which
is represented in figures 4 and 5, which display the statistical fraction of the liquid phase, and the relative
Mach number |Uv − Ul|/cl respectively. In figure 4, a mesh refinement (with 200, 500, 2000 regular cells)
shows strong variations of the front shapes at time t = 0.05; moreover, gradients increase when the mass
transfer is taken into account (τ1 = 10−4) or not (τ1 = +∞). Figure 5 clearly gives some numerical evidence
that some resonance phenomenon has occured at the beginning of the computation. Computations on finer
meshes confirm this point. This phenomenon disappears when drag effects are taken into account.
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Figure 3. Heated wall: contours of the liquid pressure Pl at time T = 0.0237.

E. Simulation of the flow in a heated pipe

We consider now the one-dimensional flow in a long pipe which is uniformly heated on its lateral boundaries.
The heat flux is HF = 2.5 × 106J/m2/s ; the EOS in the vapour phase is: Pv = (γv − 1)ρvev, while the
liquid EOS is: Pl + γlπ

∞
l = (γl − 1)ρlel, where γv = 1.249, γl = 1.853 and π∞l = 1.038 × 109; besides, we

use (Cv)l = 3142 and (Cv)v = 1925. Pressure and velocity relaxation time scales are set to τ2 = τ3 = 10−9.
The mesh contains 420 regular cells, the CFL constraint is CFL = 1/2, and the heat flux is enforced only
if x is in the range [50, 370]. Initial conditions are uniform in the pipe and such that : αl(x, 0) = 0.995,
Pl(x, 0) = Pv(x, 0) = 40× 105, Ul(x, 0) = Uv(x, 0) = 5, ρl(x, 0) = 919 and ρv(x, 0) = 20. The inlet boundary
condition is exactly equal to the initial condition.

Figure 6 shows profiles at time T = 5 for αl, ml/(ml +mv), ρl, ρv, Pl and Ul, when no masss tranfer is
allowed between phases (τ1 = 109). Two small shock waves may be observed in the pressure profiles around
the inlet and the outlet of the heated zone. The liquid pressure (bottom left) decreases in this region, while
the liquid velocity (bottom right) increases in a linear way. We observe rather weak discrepancies whenever
the interphase heat exchange is weak (plain line in figure 6) or higher (dashed line in figure 6); in both cases,
the density of the liquid phase diminishes in the heated region. As expected, liquid and vapour velocities
-and pressures- hardly differ.

Figure 7 provides similar results when the mass transfer occurs (τ1 = 10−3). The main difference that
arises concerns the vapour profile of the density. The sensitivity to the heat exchange is also emphasized due
to the competition with the mass transfer.
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Figure 4. Stratified layer: liquid void fraction profiles for αl at time T = 0.05. Straight line: without mass
transfer, circles: with mass transfer.

Conclusion

We have presented in this paper a fractional step method that is used in order to compute approximations
of a two-fluid model with mass transfer. We emphasize that:

• (i) the computation of stable and accurate approximations of the homogeneous convective part is still
a difficult problem, though many efforts in that direction arise in the two-phase flow community,

• (ii) the approximation of solutions of the coupled set of ODEs which govern pressure relaxation effects
is indeed tricky due to the strong coupling of the governing equations of the statistical void fraction
and the total energies,

• (iii) taking mass transfer into account is also a key point, of crucial importance for water-vapour
applications such as those occuring in pressurised water reactors, and the distinct small relaxation
time scales render the problem even more tricky.

These three items require further developments and investigation in order to get reliable enough algorithms.
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