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Multi-agent reinforcement learning for partially observable cooperative systems
with acyclic dependence structure

Claire Bizon Monroc ∗ , Ana Bušić † , Donatien Dubuc , and Jiamin Zhu ‡

Abstract. Single-agent reinforcement learning algorithms can be directly applied to multiagent systems in an in-
dependent learning approach, but they then lose any convergence properties due to non-stationarity.
We prove that in transition-independent Decentralized Partially Observable Decentralized Markov
Decision Process (Dec-POMDP) non-stationarity can be mitigated by a multi-scale approach when
the interdependence of agents dynamics can be represented by a directed acyclic graph (DAG). We
propose a multi-scale Q-learning algorithm (MQL) where agents update local q-learning iterates at
different timescales without communication and still converge. To this purpose, we first show that we
can model the loss of information on the global state as a state-dependent Markovian noise. Then,
we show that results from stochastic approximation theory can be used to prove the convergence of
the MQL under partial state observability. Next, we give practical solutions to exploit knowledge
about agent interaction to assign learning rates that ensure convergence, and propose a NetworkMQL
algorithm that can achieve convergence in Network-Distributed POMDP (ND-POMDP). Finally, we
validate both MQL and NetworkMQL on a wind farm control problem from the energy industry.

1. Introduction. Recent advances in reinforcement learning (RL) have seen a growing
interest in solving cooperative multi-agent problems, where several agents interact with the
same environment to optimize a common objective [36, 22]. Multi-agent reinforcement learning
(MARL) has encountered successes in fields as varied as games with multiple players [3],
vehicle routing problem for traffic regulation [35], or distributed optimal control of wind
farms [28]. In this article, we consider the case of a fully cooperative, infinite horizon multi-
agent reinforcement problem, where state information is distributed among all agents and
they must collaborate to maximize a shared reward. Such problems are commonly formulated
as decentralized partially observable Markov decision processe (Dec-POMDPs) in the MARL
literature. It is known that solving Dec-POMDPs is very hard: finding a solution to a two-
player Dec-POMPD has been proven to be NEXP-hard, and is undecidable for the infinite-
horizon case [6]. Instead of general Dec-POMDP, we focus on the special case of the transition-
independent Dec-POMDP, which is of NP-hard complexity [1]. In a transition-independent
Dec-POMDP, each agent’s local observations only depend on its local actions, so that agents
only interact through the shared reward. In general, any blind cooperation problem in which
agents must learn to coordinate while being oblivious to each other’s existence will fit this
description. In the rover exploration problem introduced by [5] for example, several rovers
must coordinate to explore a planet. Rovers are assigned distinct sides of the planet to explore
so that they do not directly interact, but the value of the information they can gather depends
on what is collected by other agents.

Note that transition-independent Dec-POMDPs can also be constructed from certain stan-
dard Dec-POMDPs, and that such a reformulation can be useful to solve real industrial prob-
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lems. In [18] for example, a distributed wind farm optimization problem is considered, in which
the local information of the Dec-POMDP can be factorized into two components. The first is
a private component, that is a local component independent of other agents. The second is a
deterministic function of the private components of other agents, and of an exogenous marko-
vian process that is independent of any agent’s action. Whenever such an exogenous process
can be identified, constructing local states by replacing the second component with a direct
observation of the exogenous process frees the local state from dependence on other agents’
action, while maintaining the markovian property of the global MDP. A detailed example will
be given in Section 5.

Transition-independent Dec-POMDPs have been studied in the planning literature, and
several planning algorithms have been proposed to find optimal local policies [21, 5, 12, 10].
However, they exploit the full knowledge of the transition matrix and reward function, which
are rarely available in real-life problems. MARL algorithms, on the other hand, focus on
learning solely from interactions with the environment. If a single learner updates all local
policies based on the global observation, one says that the training is centralized. Multi-agent
systems are however often under constraints that prevent instantaneous communication of all
agents with a central controller. Moreover, centralized approaches are vulnerable to the curse
of dimensionality, as the size of the search space increases exponentially with the number of
agents.

In an online decentralized training approach, every agent rather only updates its own local
policy with the information it has collected. To compensate for the loss of information, online
learning algorithms for Dec-POMDP typically allow agents to keep past observations in their
memory, allow communication between agents during training, maintain beliefs about the
global state of the environment, or estimate the behaviors of other agents [21, 22]. Instead,
an interesting question is to see whether memory-less policies can still be learned without
additional estimates or communication. In particular, MARL has focused on extending the
success of single-agent reinforcement learning algorithms to the multi-agent case, like the
classic Q-learning algorithm [33]. One naive way to adapt the single-agent Q-learning to
the multi-agent case is to simply let each agent run local Q-learning updates, with other
agents considered as a part of its environment. This approach was first introduced by [31]
as Independent learning. Independent learning has been shown to produce good empirical
results in a number of problems [17], and is used as a baseline to develop current state-of-the-
art MARL algorithms [34]. Because it avoids the exponential dependence of dimension of the
search space in the number of agents, independent learning is more scalable. It has however
no convergence guarantee: agents acting - and learning - simultaneously make the state and
reward processes appear non-stationary for each agent, an issue that is commonly referred to
as the non-stationarity problem. Moreover, the system may prevent full observability of the
environment, with each agent only collecting a function of the global state.

Solutions to mitigate the non-stationarity problem exist, and typically rely on a modifi-
cation of algorithm’s local rule. Examples have been turn-based control [25] or turn-based
updates [29], two stages algorithms requiring agent coordination during learning [27, 2], coor-
dinated exploration between agents, and consensus-based approaches or explicit modeling of
other agent’s behavior [36].

In this article, we show that for independent learners in transition-independent Dec-
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POMDP, the loss of information due to partial observability can be seen as a Markovian
noise. We then focus on the case where agent dynamics can be described by a directed acyclic
graph (DAG), and show that in such a case the non stationarity issue can be addressed by
a multi-timescale learning approach: by allowing agents to learn at different time scale, we
ensure that for any ”fast” agent, the ”slow” evolution of other policies will lead iterates to
behave as though the environment was stationary, and ultimately converge. Note that this
approach belongs to the independent learning family and thus is scalable to large number of
agents.

Our convergence analysis will rely on stochastic approximation techniques. Indeed, stochas-
tic approximation and multi-timescale approaches have been used to analyze fully observable
learning algorithms. In [8], the convergence of the single-agent Q-learning has been proven
with a stochastic approximation approach. Two-timescale stochastic approximation was then
introduced in [7], showing that two interdependent stochastic processes can both converge
when they are updated at two different scales. These have been successfully used to build
reinforcement learning algorithms maintaining different iterates, to decouple the learning of
future rewards and of the best response in various fictitious-play [4, 26, 16] and Q-learning
[24] inspired schemes for fully observable zero-sum and team games. Two-timescale results
have been extended to an arbitrary number of scales in [15], and used to analyze a multi-scale
learning algorithm in some classes of repeated games. In [20], a similar multi-scale approach
is further evaluated on several multi-agent reinforcement learning problems, but an analysis
of its convergence in this case is not provided. Unfortunately, these convergence results have
required the reward function to be stationary, meaning that for a given state-action pair, the
collected reward is always sampled from the same distribution. These results do hence not
apply to the partial observability case.

We exploit weak convergence results from the stochastic approximation theory includ-
ing state-dependent noise [14]. We first formally extend the weak convergence [Theorem 6.2,
Chapter 8, [14]] for synchronous two-timescale iterates to synchronous multi-timescale iterates
(see Theorem 3.1), then further extend this result together with [Theorem 5.1, Chapter 12,
[14]] for single-timescale asynchronous updates to asynchronous multi-timescale updates (see
Theorem 3.2). Then, using these results, we prove that our multi-scale Q-learning converges
under carefully chosen learning rates (see Theorem 3.3). More precisely, we show that our
multi-scale Q-learning algorithm can be framed as multi-scale stochastic approximation up-
dates with state-dependent noise, where the tracking error of the global state can be modeled
as a latent Markovian process and satisfies necessary assumptions for applying Theorem 3.2.
Next, we propose a faster algorithm and establish convergence result (see Theorem 4.2) for a
Dec-POMDP with acyclic dependence structure between agent dynamics. In particular, we
build on the network distributed POMDP problems [19], in which interactions between agents
can be represented by a sparse graph. We show that our multi-scale Q-learning approach can
exploit known interaction structure to guide learning rates selection.

The paper is organized as follows. In Section 2 we formalize the problem of finding an
equilibrium in a transition-independent Dec-POMDP and propose a multi-scale Q-learnning
algorithm. In Section 3, we establish weak convergence for multi-timescale iterates, and
then apply it to analyze and prove the convergence of our multi-scale Q-learning. Then, in
Section 4, we lay out the assumption of acyclic dependence structure between agent dynamics,
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and show how it allows us to apply our multiscale results to the defined class of Dec-POMDP.
We then exploit the graph of interaction between agents in a networked problem to derive
faster algorithms. Our experiment in Section 5 then evaluates the multi-scale approach on
the real industrial problem of wind farm control, and empirically validates its convergence.

2. Cooperative MARL with local learners. We start by formalizing the problem of
transition-independent Dec-POMDP. We then explicit the assumptions on the transitions and
local policies that we will consider in the rest of this paper, before introducing our multi-scale
Q-learning algorithm.

2.1. Independent transition Dec-POMDP. We consider a decentralized partially ob-
servable Markov Decision Process (Dec-POMDP) reinforcement learning problem, where M
agents interact with the same environment to maximize a common reward. Let us assume a
finite state space S and a finite action space A. The global state space S is factorized into
M observation or local state spaces S = S1 × · · · × SM and for any s ∈ S we write si the
corresponding local state in Si. Note that this means that the local state at any time is a
deterministic function of the global state. Similarly, the global action space A is factorized
into M local action spaces A = A. A global reward r : S × A → R is shared by all agents.
The reward is bounded in R by a constant R > 0, that is: ∀(s, a) ∈ S × A, |r(s, a)| ≤ R. We
write P : S × A × S → (0, 1) a transition kernel, denoting transition probabilities between
states given chosen actions.

For any state space S and any action space A, we write ∆(S,A) the set of policies mapping
any state s ∈ S to a distribution over actions in A. Every agent i has a set of local policies
∆(Si, Ai), and for any πi ∈ ∆(Si, Ai) we write the probability of taking action ai in si

πi(ai | si). If the policy is deterministic, so that for any state si ∈ Si a unique action ai is
chosen with probability one, we directly write πi(si) = ai. A global policy π can always be
extracted from a set of local policies {π1, . . . , πM} and we write π = (π1, . . . , πM ). Among
all global policies, we thus consider the subset of policies that can be written as a product of
local policies Πo = ×M

i=1∆(Si, Ai).
Because any local policy only depends on its local states, we have π(a | s) = ΠM

i πi(ai | si)
for all a, s. For any discount factor β ∈ (0, 1), we consider the maximization of the expectation
of the sum of discounted reward, or return Eπ

[∑∞
k=0 β

kr(sk, ak)
]
, with π a global policy

mapping global states to global actions. It has been shown by [11] and [9] that in transition-
independent DecPOMDPs, this quantity can be maximized by a the product of local policies
in Πo.

As we consider transition-independent Dec-POMPD, we make the following assumption
[5]: every agent’s local state is only influenced by its own current state and action.

A 2.1. We assume that transitions between locally observed states only depend on local state
and actions. That is, there are local transition kernels P i

i=1...M such that ∀s, a, s′ ∈ S ×A×S

P (s, a, s′) = ΠM
i=1P

i(si, ai, s′i)

For simplicity of notations, we will in the following ignore local states with exogenous
processes, but the analysis is easily extended to them. For any stationary global policy π, the
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global state process s is in fact a Markov chain with transition matrix

Pπ(s, s
′) =

∑
a

π(a|s)P (s, a, s′) =
∑

a=(a1,...,aM )

ΠM
i=1π

i(ai|si)P (s, a, s′)

We now introduce an assumption on the transition function of the MDP.

A 2.2. For any non-deterministic local policy πi such that ∀ai, si ∈ A, πi(ai | si) > 0, the
local state process is an irreducible and aperiodic Markov chain.

This classical assumption for Q-learning [33, 32, 13] will ensure that all local state processes
admit an invariant distribution, and will converge to it under a fixed policy regardless of the
initial distribution. Note that this implies that the global state process is also irreducible and
aperiodic.

Using vector notation, we define dπ ∈ (0, 1)|S| the invariant distribution over the global
state space S satisfying dπPπ = dπ. Similarly, for every agent i we define dπ

i

i , the invariant
distribution of the local state process si. If we ensure that local policies πi have non-null
probabilities on all the local action space, then A 2.2 ensures that the local state-action
process (si,ai) is also irreducible: it is a Markov chain over Si × Ai, with transition ma-
trix Pπi((si, ai), (s′i, a′i)) = P (si, ai, s′i)πi(a′i|s′i) given by A 2.1. We denote its invariant
distribution as λi.

Define dπ(·|si) the conditional distribution over global states in S conditional on observing
si. For any i ∈ {1, . . . ,M}, ŝ ∼ dπ, ŝi ∼ dπ

i
, and s, si ∈ S × Si, we have

dπ(s|si) = P (ŝ = s | ŝi = si) =
P ({ŝ = s} ∩ {ŝi = si)}

P (ŝi = si)
=

1[ŝ(i)=si]d
π(s)∑

s̄ 1[s̄(i)=si]d
π(s̄)

(2.1)

Since the local state is a deterministic function of the global state, this conditional distribution
depends only on the marginal stationary distribution of the global state.

In the rest of this paper, we consider the transition-independent Dec-POMDP that satisfies
A 2.1 and A 2.2.

2.2. Multi-scale Q-learning. For an agent i and a global policy π, we note π−i the set of
local policies in π except πi. For any pair (si, ai) ∈ Si ×Ai and any global policy π ∈ Πo, we
define the ith q-function Qπ−i

πi (si, ai) the value of taking action ai in local state si, and then
following policy πi, provided that any other agent j follows its respective local policy πj :

(2.2) Qπ−i

πi (si, ai) = Es0∼dπ ,ak∼(πi,π−i),sk∼P

[ ∞∑
k=0

βkr(sk, ak) | si0 = si, ai0 = ai

]
where the initial state s0 is sampled according to the stationary distribution dπ. These local
q-functions Qπ−i

πi can be written as tables of dimension |Si| × |Ai|, and admit a recursive
formula given in Lemma 2.1.

Lemma 2.1. Any local q-function (2.2) satisfies the following recursive formula:

Qπ−i

πi (si, ai)

=
∑
s

dπ(s | si)
∑
a−i

π−i(a−i|s)r(s, a) + β
∑
s′i

P i(si, ai, s
′i)
∑
a′i

πi(a
′i|s′i)Qπ−i

πi (s′i, a′i)(2.3)
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The proof of Lemma 2.1 is straightforward but tedious, we detail it in Appendix A. Like for
the single-agent q-value function [30], the q-value is split in two parts: an immediate reward
collected at the current state and a future gain, that is the reward expectation starting from
the next state. Note that at every step the expectation of the reward r(s, a) is taken with
regard to a distribution over the global state and the global action. Because the q-value is
evaluating the response πi to π−i, the global action must always be taken with respect to
π. Then, per definition of the q-value (2.2), the initial state is sampled from the stationary
distribution dπ. It then follows from the definition of the stationary distribution that the
distribution of the next global state will still be dπ, and the local q-value taken at the next
step is the expectation of the future gain. We now introduce the definition of a best response,
as a local policy πi which maximizes the return when other local policies are fixed.

Definition 2.2 (Best response). A local policy πi
br is said to be a best response to a set of

local policies π−i if starting from any local state, it always maximizes the return as the other
agents follow local policies π−i. That is, for any local policy πi we have:

Qπ−i

πi
br
(si, ai) ≥ Qπ−i

πi (si, ai) ∀si ∈ Si, a
i ∈ Ai

Best response policies will therefore maximize the expectation of this optimal q-value
at every state si. They can be written as the set of policies πi such that πi(· | si) ∈
argmax
ρ∈Ω(si)

[
ρTQπ−i

πi (si, ·)
]
, where Ω(si) ⊂ [0, 1]|Ai| is the simplex of dimension |Ai| represent-

ing the set of local strategies mapping a given local state to a distribution over actions. Yet
in order to ensure that local policies always have non-null probabilities on the local action
space, we consider a regularized objective introduced in [15, 24]: for any given q-value table
Qi, let us define the mapping ϕ that returns the following local policy:

(2.4) ϕ(Qi)(· | si) = argmax
ρ∈Ω(si)

[
ρTQi(si, ·) + τνisi(ρ)

]
∀si ∈ Si

where τ > 0 is a temperature parameter representing the weight given the regularization, and
νi
si

is a smooth and strongly concave function which takes infinite values outside of Ω(si).
Strong concavity ensures the uniqueness of the solution ϕ(Qi), and we call any local policy
π∗i such that π∗i = ϕ(Qπ−i

π∗i ) a smoothed best response to π−i. If all agents follow a smoothed
best-response, then the corresponding global policy is called an equilibrium.

Definition 2.3 (Equilibrium). A global policy π∗ is an equilibrium iff every local policy πi

is a smoothed best response to other local policies π−i

To shorten the notation, we write v′(Qi, si, ai) the expectation of the future gain as esti-
mated by any table Qi after taking action ai in si:

(2.5) v′(Qi, si, ai) =
∑
s′i

P i(si, ai, s′i)[ϕ(Qi)(· | s′i)]TQi(s′i, ·)

Then writing Qπ−i

∗ = Qπ−i

π∗i , from Lemma 2.1 we have that the equilibrium π∗ and its associated

q-functions Qπ∗−i

∗ (si, ai) are solutions to the following equations:

Qπ∗−i

∗ =
∑
s

dπ
∗
(s | si)

∑
a−i

π∗−ir(s, ai, a−i) + βv′(Qπ∗−i

∗ , si, ai)
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for all i ∈ {1 . . .M}, si ∈ Si, a
i ∈ Ai. Let all agents maintain a local estimate Q̂i of the q-

function (2.2), and follow a local policy πi = ϕ(Q̂i). The combined actions of all agents sample
M local trajectories {(si0, ai0, ri0), (si1, ai1, ri1) . . . }, i ∈ {1 . . .M}. Let now all agents locally run
a Q-learning update, so that each agent updates its local estimate Q̂i

k at each timestep k:

Q̂i
k+1(s

i, ai) = Q̂i
k(s

i, ai)

+ αi
k(s

i
k, a

i
k)
[
rk + β[ϕ(Q̂k)(s

i
k+1)]

T Q̂k(s
i
k+1, ·)− Q̂i

k(s
i
k, a

i
k))
]
Ik,si,ai

(2.6)

with Ik,si,ai the indicator of the event that the local state-action pair si, ai is visited at timestep
k. At this timestep, all other state-action pairs are therefore not updated, and the iterates
are therefore asynchronous.

We will show that these iterates can converge when learning rates are carefully chosen, and
call the resulting algorithm the multi-scale Q-learning algorithm. Note that in the original
single-agent Q-learning, the collected reward r(s, a) is exactly the expectation of the reward for
the observed state-action pair (s, a). Here however, no agent ever collects a reward sampled
according to the stationary distribution of the equilibrium policy as defined in the q-value
(2.2). In fact, no agent ever collects a reward sampled from any stationary distribution at all.
Instead, we will notice that the collected reward depends on an unobserved Markovian global
state process, and that the difference between the collected reward and the reward expected
at equilibrium can be seen as a state-dependent noise. To treat this state-dependent noise,
we will exploit results from the stochastic approximation theory concerning multi time scales
iterates with Markovian noise.

In the next section, we will first establish the weak convergence of a general multi-scale
algorithm in the synchronous and asynchronous cases. Then, these convergence results will
be used to prove the convergence of iterates (2.6) in Subsection 3.3.

3. Weak convergence of the multi-scale algorithms.

3.1. Weak convergence of synchronous multi-scale iterates with Markovian noise.
Weak convergence of stochastic approximation for two time-scales systems were proven in
[14]. We formally extend these results to the multi-scale case. We consider the constrained
case: at each iteration, the iterates are projected on a defined admissible space H. We as-
sume that H is a hyperrectangle H = [h1, b1] × [h2, b2] × · · · × [hd, bd] with (hi, bi) ∈ R2 for
i ∈ {1, . . . , d} and d > 0 the dimension of the iterates. The operator ΠH is used to denote
this projection on H.

Consider M interdependent stochastic approximation processes θ1k, . . . , θ
M
k updated ac-

cording to iterates:

(3.1) θik+1 = ΠH

[
θik + αi

kY
i
k

]
= θik + αi

k(F
i(θk, ξ

i
k) + δU i

k) +Bi
k

where θk = (θ1k, · · · , θMk ), {ξik} are noise sequences, F i(·, ·) are functions of θ and ξi, δU i
k+1 =

Y i
k − F i(θk, , ξ

i
k) are martingale noise differences, αi

k := αi(k) > 0 are learning rates for
timescale i at iterate k, and Bi

k is a correction term to project the iterate on H, henceforth
referred as reflection terms.



8 C. BIZON MONROC, A. BUSIC, D. DUBUC AND J. ZHU

Let {Fk} be a sequence of non-decreasing σ−algebra generated by {θij , Y i
j−1, ξ

i
j , j ≤ k, i ≤

M}, and Ek refers to the associated conditional expectation E[·|Fk], and we have EkY
i
k =

F i(θk, ξ
i
k). To be concise, we will use the notations

θ<i := (θ1, . . . , θi−1), θ≥i := (θi, . . . , θM ).

We now lay down the assumptions needed to ensure convergence. Let Ξ be a complete
and separable metric space, and A be an arbitrary compact set in Ξ. We start by standard
assumptions for stochastic approximation algorithms: the sequences of observations Y i

k are
uniformly integrable, and at each timestep their expectations are given by a continuous func-
tion of the iterate θik. The main idea is that an error term δU i

k of null expectation will be
averaged out through the iterations, so that as k goes to infinity, the behavior of the iterates
can be described without the error terms. We make the following assumption for i = 1, · · · ,M .

We first start with basic assumptions from stochastic approximation theory:

A 3.1. The {Y i
k} are uniformly integrable, and can be written Y i

k = F i(θk, ξ
i
k) + δU i

k with
{δU i

k}k martingale noise differences EkδU
i
k = 0 and F i(·, ξi) functions continuous in θ, and

continuous in ξi ∈ A.

Here, F i is still dependent on the error sequences ξik whose expectations are not null.
Yet, the Markovian property of these sequences, combined with a constraint on the rate of
evolution of the learning rates (see A 3.5), can be exploited to construct an approximation
of F i(·, ξi) that does not depend on ξi. We detail some assumptions on the Markovian noise
processes that can be considered.

A 3.2. The noise processes {ξik} are bounded with values in Ξ, and Markovian: they admit
a transition function P i(·, ·|θ) such that P i(·, A|θ) is measurable for each Borel set A ⊂ Ξ, and
P i(ξik+1 ∈ ·|Fk) = P i(ξik, ·|θk). This transition function is continuous and does not depend
on k. For any compact A ∈ Ξ and µ ∈ (0, 1) such that, there exists a compact A′ such that
P (ξik+1 ∈ A′ | ξik) ≥ 1− µ for all ξik ∈ A.

We now define the fixed θ−chain {ξk(θ)}, the Markov chain on state space Ξ with the
fixed transition function P (ξ, ·, |θ). It is the noise process starting from k if θ stayed constant,
i.e., {ξk+j(θ), j ≥ 0, ξk(θ) = ξk)}. The continuous function of the actual noise process can
be approximated by the continuous function of the fixed-chain process F i(·, ξik) (see proof of
Lemma B.4) if the rate of change of the learning rates is slow enough. If we can construct a
function F̂ i(·) of θ that does not depend on the process ξi, such that F̂ i(θ) is a local average
of the F i(·, ξik), then F̂ i(θk) is also an approximation of F i(θk, ξ

i) as k →∞. We detail these
assumptions here:

A 3.3. The set {F i(θk, ξ
i
k)}k is uniformly integrable. For any j ≥ 0 with ξij ∈ A the

set {F i(θ, ξij+k(θ))}k≥0 is uniformly integrable, where ξij+k(θ) is the fixed-θ chain with initial

conditions ξij and transition function P i(ξ, ·|θj).

A 3.4 (Averaging condition). There exists a continuous function F̄ i(·) such that for each
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θ and on any compact set A ∈ Ξ

lim
(k,m)→∞

1

m

k+m−1∑
j=k

Ek

[
F i(θ, ξi(θ))− F̄ i(θ)

]
Iξik∈A

= 0

We establish a different timescale to correspond to each process. For i, j ∈ {1, · · · ,M}, let
tjk =

∑k−1
l=0 αj

l , and θi,0
αj (t) be the piecewise interpolation of the process θik on the j-th timescale

defined as

θi,0
αj (t) = θi0, t ≤ 0, θi,0

αj (t) = θik, t ∈ [tjk, t
j
k+1]

Then, the shifted continuous time interpolation θi,k
αj (·) is simply the interpolation ”started”

from a specific time-step k:

(3.2) θi,k
αj (t) = θi,0

αj (t
j
k + t)

and we let m(j)(t) = {κ : tjκ ≤ t ≤ tjκ+1}. Similarly, we define Bi,k
αj the shifted continuous time

interpolation at the j-th timescale of the sequence of reflection terms Bi
k. We are interested

in the behavior of θi,k
αj (·) and Bi,k

αj (·) as tjk →∞ while αj
k → 0.

We now lay out further constraints on the learning rate sequences. The first two are
standard for the stochastic approximating literature: intuitively they require the learning
rates to go towards zero, but not too quickly. The third assumption is what makes the
iterates multi-scale: it imposes a hierarchy between the M sequences that ensures every
iterate is learning at a different timescale.

A 3.5 (Assumption on learning rates). For each i ∈ {1, · · · ,M},
• (Classical rates) limk α

i
k = 0 and

∑∞
k=0 α

i
k =∞

• (Slow changes) there is a sequence of integers ain →∞ such that

lim
n

sup
0≤j≤ain

∣∣∣∣∣αi
n+j

αi
n

− 1

∣∣∣∣∣ = 0

• (Multi-scale)
αi
k

αj
k

→ 0, as k →∞, whenever each i < j.

With the expectations EkY
i
k being approximated by F̄ i(θk) as k goes to ∞, the interpola-

tions of the iterates θi,k
αj will be shown to admit limit processes following mean ODEs defined

by the F̄ i. The solution of the ODE can then be used to characterize the asymptotic prop-
erties of the θik for i = 1, · · · ,M . Thanks to the multi-scale assumption, at any timescale j
the interpolation for all iterates learning at a slower timescale i < j will follow the null ODE.
Intuitively, they evolve so slowly that they can be considered constant at the j-th timescale.
Similarly, the interpolations for all iterates learning at a faster timescale can be considered to
have reached the limit of their respective mean ODE, if it exists. We consider the case where
the ODE for every limit process for any timescale has a unique asymptotically stable point.
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A 3.6. There exists a continuous function ζi(θ<i) such that, for any set of initial conditions
θ, the solution to the following ODE has a unique asymptotically stable point (θ<i, ζi(θ<i)) for
i ≥ 2:

Ẋj = 0 for j < i

Ẋi = F̄ i(X<i+1, Z≥i+1(X<i+1)) + bi.

where bi is the reflection on H, and

(3.3) Z≥i(θ<i
k ) = (ζi(θ<i

k ), Z≥i+1(θ<i
k , ζi(θ<i

k ))), i = 2, · · · ,M − 2

with Z≥M−1(θ<M−1
k ) = (ζM−1(θ<M−1

k ), ζM (θ<M−1
k , ζM−1(θ<M−1

k ))).

When applying our multi-scale iterates to our Dec-POMDP problem, this assumption will
enforce strong constraints on the dynamics of the multi-agent system. In Section 4, we will
introduce specific DAG structures on agent interaction that can satisfy them, and a concrete
example will be given in Section 5.

Note that the reflection terms bi of the projected ODE must live within a convex space
Υ(Xi), defined the following way: on the interior of H, Υ(Xi) = {0}, the set only containing
the null vector, and on the boundary of H, Υ(Xi) is the infinite convex cone generated by
the outer normals at Xi of the faces on H on which Xi lies.

Now we state the week convergence of the iterates (3.1) in the following theorem.

Theorem 3.1 (Weak convergence of multi-scale iterates with Markovian noise). Consider

iterates (3.1). Let {θi,k
αj (·)} be the interpolation of the process θik on the j-th timescale, defined

by (3.2). If A 3.1-3.5 hold, then {θ1,k
α1 (·)} admits a subsequence which converges towards a

process θ1(·) such that:

(3.4) θ̇1 = F̄ 1(θ1, Z≥2(θ1)) + b1, b1(t) ∈ −Υ(θ1(t))

where b1 is the reflection, that is the minimum force needed to keep θ1 in H. Moreover, for
any δ > 0, the fraction of time spent by θ1(·) in any δ−neighborhood around the set of limit
points of (3.4) on the interval [0, T ] goes to one in probability as T →∞.

The proof of this theorem is detailed in Appendix B. Note that Theorem 3.1 is an ex-
tension of the week convergence result established for two timescale iterates by [Theorem
8.6.1, [14], p.286], and the extension procedure to multi-scale is inspired by [15]. The idea
behind Kushner’s original proof in [14] for the two-timescale case is that the noise induced by
the Markovian sequences {ξik} can be seen as perturbations to local averages defined by the
functions F̄ i. This allows to approximate the iterates in continuous time by a projected ODE.

3.2. Extension to asynchronous iterates. We will now consider the case where the it-
erates are updated asynchronously: that is, not all elements of the θi are updated at every
iteration.

We index all elements in every θi by c ∈ {1 . . . C}, and the C elements are updated in an
asynchronous manner. Let αi

k,c be the learning rate for element c of iterate i at timestep k:
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all elements within a single iterate are given the same sequences of learning rates, so that we
use the notation αi

k = αi
k,1 = αi

k,2 = · · · = αi
k,C . The M iterates in (3.1) can therefore be seen

as M × C iterates, with the updates to each component following:

(3.5) θik+1,c = ΠH

[
θik,c + αi

k,cY
i
k,c

]
The time between the kth and (k + 1)th updates of the element indexed by c in {θik}k is

given by the random variable τ ik,c. Because the kth update can happen at a different time for
two components, we need another timeline to analyze the behavior of the iterates. We will
look at their behaviors in the ”real time”, so that the kth update at element c in the {θik}k is

done at the real time T i
k,c =

∑k−1
n=0 τ

i
n,c. We note Γi

k,c =
∑k−1

n=0 α
i
nτ

i
n,c the corresponding scaled

real time, and introduce the real-time interpolation θ̂ic: θ̂ic(t) = θik,c on [T i
k,c, T

i
k+1,c). Like in

(3.2), we look at the shifted piecewise constant interpolations θi
c,αj of the sequences {θik,c}k

at every timestep j = {1, . . . , C} in the iterate time, that is the continuous interpolations
whose origins are at any arbitrary timestep k. Here again, since all components do not reach
a given timestep at the same time, we define the shifted interpolates as starting at arbitrary
real times υ. For this purpose, we introduce functions pic(υ), that return the index of the first
update at an element c of iterate i after a given real time υ:

pic(υ) = min

{
k :

k−1∑
n=0

τ in,c ≥ υ

}
, ∀υ > 0,

The shifted interpolates are then

(3.6) θi,υ
c,αj (t) = θik+pic,c

, t ∈ [tij,υk,c , t
ij,υ
k+1,c), tij,υk,c =

k−1∑
n=pic(υ)

αj
n

and the shifted real-time interpolations θi,υ
c,αj (·) are defined similarly:

(3.7) θ̂i,υ
c,αj (t) = θik,c, t ∈ [Γij,υ

k+pic,c
,Γij,υ

k+1,c) Γij,υ
k,c =

k−1∑
n=pic(υ)

αj
nτ

i
n,c

We now extend the definitions of the σ−algebra used in Subsection 3.1. Two sets of random
variables need to be considered at every iteration: the Y i

k,c and the τ ik+1,c. The corresponding
σ−algebras should measure all variables observed in the ”past” up to the relevant moment
during update k + 1. Again reasoning in real time, note that update k + 1 is made after
having observed Y i

k , but before entering the next waiting time τ ik+1,c. This corresponds to two
slightly different sequences of σ−algebras:

F i,τ
k,c = {θ

i
0,c, Y

i
j−1,h, ξ

i
j−1,h, τ

i
j−1,h | T i

j,h ≤ T i
k+1,c}

F i,Y
k,c = {θi0,c, Y i

j−1,h, ξ
i
j−1,h | T i

j,h < T i
k+1,c}

⋃
{τ ij−1,h | T i

j,h ≤ T i
k+1,c}

We write the associated conditional expectations Ei,τ
k,c and Ei,Y

k,c .
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Let us denote the component-wise error sequences ξik,c δU i
k,c, ξ

i
k = (ξik,1, . . . , ξ

i
k,C), and

δU i
k = (δU i

k,1, . . . , δU
i
k,C). We assume A 3.1-3.5 hold, with any statement on a sequence

Xi
k interpreted as holding for all component-wise sequences Xi

k,c. We make the additional
assumptions on the time intervals between updates:

A 3.7. For all i, the sequence of intervals between updates {τ ik,c}k is uniformly integrable,

and there exists ūic ≥ 1 such that the Ei,τ
k+1,c

[
τ ik,c

]
are in the bounded interval

[
1, ūic

]
uniformly

in k.

A 3.8. Every component’s learning rate αi
k,c can be written as a local average of positive

real-valued functions f i:

αi
k,c =

1

τk,c

∫ T i
k,c+τ ik,c

T i
k,c

f i(s)ds such that

∫ ∞

0
f i(s)ds =∞ and lim f i(s)

s→∞
= 0

A 3.9. There exists a continuous function ζi(θ<i) such that, for any set of initial conditions
θ, the solution to the following ODE has a unique asymptotically stable point (θ<i, ζi(θ<i))
for i ≥ 2:

Ẋj = 0 for j < i

Ẋi =
F̄ i(X<i+1, Z≥i+1(X<i+1))

uic
+ b̂i.

with uic(t) with values in [1, ūic], b̂
i the term of projection on H, the Zi have been defined in

(3.3)

Then, we can state the weak convergence result for the asynchronous multi-scale iterates.

Theorem 3.2 (Weak convergence of asynchronous multi-scale iterates with Markovian noise).
Consider iterates (3.5), updated asynchronously following the time interval sequences {τ ik,c}k.
If Assumptions A 3.1-3.5 hold, and Assumptions A 3.7-3.9 also hold, then the conclusion of
Theorem 3.1 still holds with the limit process:

(3.8)
˙̂
θ1c,α1(t) =

F̄ 1(θ1c,α1(t), Z
≥2(θ1c,α1)(t))

uic(t)
+ b̂1c,α1(t) uic(t) ∈ [1, ūic].

The proof of this theorem is laid out in Appendix C. Note that the weak convergence of
asynchronous updates for the single-agent case has been established in [Theorem 12.3.5 [14]],
and we extend it to the multi-scale case. As previously in the proof of Theorem 3.1, we derive
the ODEs for the continuous approximations at all iterate timescales. Unlike before, the ODEs
are now dependent on the continuous approximation at the real timescale. A simple relation
between the approximations at real and iterate timescales is then used to derive ODEs for the
latter and conclude the proof.

With the weak convergence of the multi-scale iterates laid out, we are now ready too apply
these results to our multi-scale Q-learning iterates (3.9).
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3.3. Weak-convergence of multi-scale Q-learning iterates. Let us now look at multi-
scale Q-learning iterates (2.6). Agents update their local estimates Q̂i of local q-values. Note
that every Q̂i is a table with |Si||Ai| components, every component corresponding to a local
state-action pair (si, ai) ∈ Si × Ai. We index all local state-action pairs by c ∈ {1, . . . , C}
with C = |Si||Ai|, so that for the cth state action pair (si, ai) we can write Q̂i(si, ai) = Q̂i

c the
associated value in the q-table, and Q̂i

k,c the value of that pair in table Q̂i at the kth iteration

of the algorithm. Then, Q̂i(si, ·) ∈ R|Ai| is the vector of all possible state-action values where
the local state is si. For every iterate we define the constraint set as the hyperrectangle
H i = [−D,D]C , for a given scalar D > 0.

Let us now rewrite iterates (2.6) and establish their weak convergence result. For any
i ∈ {1, . . . ,M}, we first define Q̄i

c the iterates in the time of each local component:

(3.9) Q̄i
n+1,c = Q̄i

n,c + αi
n

[
r + β[ϕ(Q̄i

n,c)(s
′i)]T Q̄i

k(s
′i, ·)− Q̄i

n,c

]
where Q̄i

n,c is the value of the q-table at the time of the nth update to component c, r is the
reward observes at that time and s′i the local state visited next. Note that the updates are
asynchronous because every state-action pair is only updated when it is visited, i.e. not at
every iteration of the algorithm. We can consider the ”real time” as the discrete time of the
algorithm: the time τ in,c between two updates at the same component c is then the number
of iterations between two visits at the corresponding local state-action pair. The iterates in
real time are then:

(3.10) Q̂i
k+1,c = Q̂i

k,c + αi
k,c

[
rk + β[ϕ(Q̂i

k)(s
i
k+1)]

T Q̂i
k(s

i
k+1, ·)− Q̂i

k,c

]
Ik,c

the (ri, s
i
k)k are collected along the agent’s trajectory at every real timestep. Recall that

Ik,c = Ik,(si,ai)c indicates that the cth local state-action pair si, ai is visited at real timestep k

αi
k,c therefore takes the value αi

#c, where #c is the number of visits to component c.

Theorem 3.3. Consider the multi-scale Q-learning iterates (3.9). If A 3.5, 3.8, and 3.9 are
true, let all Q̂i

0,c ∈ [−D,D] for D > 0 such that D > R
β with R the reward bound, then the

conclusions of Theorem 3.2 hold.

Proof. Let us consider any local state action pair si, ai of any iterate Qi. By assumption on
the transition kernelA 2.2 and the design of the mapping ϕ, the sequence of times between two
visits are uniformly integrable. All return times must moreover be at least 1. The En+1,cτ

i
n,c

are therefore uniformly bounded with values in an interval [1, uic] with uic ≥ 1, therefore
satisfying A 3.7.

In the following, we write {F̄ i
c(Q)}c R-valued continuous functions for c ∈ {1 . . . , |Si||Ai|,

with ϕ defined in (2.4) for any update to a component c we write:

(3.11) πk = (π1
k, . . . , π

M
k ) πj

k = ϕ(Q̂j
k) Q̂k = (Q̂1

k, . . . , Q̂
M
k ) Q̂i

k = {Q̂i
k,c}c=1,...,C
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We can rewrite the iterates (3.10) in real time in the following way:

Q̂i
k+1,c = Q̂i

k,c + αi
k,cIk,c

[
F̄ i
c(Q̂k) + δU i

k,c + ξik,c

]
δU i

k,c := Y i
k,c − EY

k,c[Y
i
k,c]

ξik,c := EY
k,c[Y

i
k,c]− F̄ i

c(Q̂
i
k)

Y i
k,c := rk + β[ϕ(Q̂i

k)(· | sik+1)]
T Q̂i

k(s
i
k+1, ·)− Q̂i

k,c

= F i
c(Q̂k, ξ

i
k,c) + δU i

k,c

(3.12)

where

F̄ i
c(Q) =

∑
s

dπk(s | si)
∑
a−i

π−i
k (a−i|s)r(s, ai, a−i) + βv′i(Qi, (si, ai)c)−Qi

c

F i
c(Q, ξ) = F̄ i

c(Q) + ξ

with v′i(Q, (si, ai)c) = v′i(Q, si, ai) for si, ai the cth component of Qi and recall that

v′(Qi, si, ai) =
∑
s′i

P i(si, ai, s′i)[ϕ(Qi)(· | s′i)]TQi(s′i, ·)

We will now show that the iterates (3.12) are in fact equivalent to their constrained version:

Q̂i
k+1,c = Π[−D,D]

(
Q̂i

k,c + αi
k,cIk,c

[
F̄ i
c(Q

i
k,c) + δU i

k,c + ξik,c
])

Indeed for any i, k, c, we have αi
k,c ∈ (0, 1). Per definition of the discount factor, it is also true

that β ∈ (0, 1). It follows that since Q̂i
0,c ∈ [−D,D] for all c and R < βD, and ϕ(Q̂i

k) is a

probability distribution, then we have supk ||Q̂i
k,c|| < D for all c and the iterates will never

leave the hyper-rectangle defined by [−D,D]|Si||Ai|. This means that for constrained iterates
with constraint space [−D,D]|Si||Ai|, the induced reflexion term will always equal zero.

The Y i
k,c are then uniformly bounded, and the F i

c are moreover continuous in ξ and Q.

Per definition, for any k, i, c, EY
k,c[δU

i
k,c] = 0 and {

∑k
j=0 δU

i
k,c}k is a martingale sequence.

We have therefore shown that the iterates (3.9) can be written as the multi-scale stochastic
approximation iterates of Theorem 3.2.

If the noise sequences (ξik,c) satisfy A 3.2-3.4, then according to Theorem 3.2 the iterates
follow the M × C mean ODEs:

d

dt
qit(s

i
c, a

i
c) =

1

uic
F̄ i(q<i

t , qit, Z
≥i+1(q<i+1

t ))(3.13)

where π−i = (ϕ(q1t ), . . . , ϕ(q
i−1
t ), ϕ(qi+1

t )), . . . , ϕ(qMt )), the {qjt }j<i are constant, {qjt }j>i =
Z>i+1(q<i+1

t ). Then, assumptionA 3.9 guarantees that (3.13) admits an asymptotically stable
point, and we conclude on the convergence of the iterates towards a smooth equilibrium as
defined in Definition 2.3.

We now need to prove that the noise sequences ξik,c with values in the space Ξ defined
in (3.12) are Markovian state-dependent noise sequences, satisfying A 3.2 and A 3.4. Let us
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derive an expression for EY
k [Y

i
k,c]. First, Q̂

i
k,c is a function of Q̂i

0,c and the previous Y i
j , τ

i
j , j < q,

so we only need to focus on sik+1 and rk. The next state sik+1 is sampled from the local
transition kernel after the agent has visited component (si, ai), so we have exactly:

EY
k,c

[
[ϕ(Q̂i

k)(s
i
k+1)]

T Q̂k(s
i
k+1, ·)

]
= v′(Q̂i

k, (s
i, ai)c)

As for the reward rk: EY
k,crk = EY

k,cr(sk, ak) = EY
k,cr((s

i, ai)c, s
−i
k , a−i

k ). Neither s−i
k nor a−i

k are

observed by agent i. If s−i
k was known however, then the expectation of a−i

k would just be

taken from the respective policies of other agents at that time π̄−i = ϕ(Q̂−i
k ):

EY
k,crk = EY

k,c

[
EY
k,c

[
r((si, ai)c, s

−i
k , a−i

k ) | s−i
k

]]
= EY

k,c

[
[ϕ(Q̂−i

k )(·, s−i
k )]T r((si, ai)c, s

−i
k , ·)

]
It remains to handle s−i

k . It is easy to see that the state process {s−i
k }k is in fact a Markovian

process, whose transition kernel depends on the iterates Q̂k in real time. Recall that P is the
global transition matrix of dimension |S| × |Ai| . . . |AM | × |S|. By construction the mapping
ϕ returns a policy assigning a non-zero probability to every action, so that there exists ϵϕ > 0
such that for all a ∈ Ai, π(a|si) > ϵϕ. For an initial distribution d0, we write {dk}k≥0 ∈ (0, 1)|S|

the process tracking the distribution of s−i:

dk+1 = dk · PΠM
j=1ϕ(Q̂

j
k)

{dk}k is a state-dependent Markovian process, that is:

(3.14) P (dk+1 ∈ ·|F i,Y
k,c , dk) = P (dk+1 ∈ ·|Q̂k, dk)

We can now write the processes {ξik,c}k as:

(3.15) ξik,c =
∑
s

[dk(s|si)− dπk(s|si)]
[
ϕ(Q−i

k )(·, s−i
k )]T r(sic, s

−i
k , aic, ·)

]
where πk = dϕ(Qk) is still the stationary distribution over global states under policy ϕ(Qk) as
defined in (2.1). Since the reward is bounded in [−R,R], the {ξik,c}k take values in the compact

[−R|S||A|, R|S||A|]. The {ξik,c}k being an affine transformation of {dk}, it follows that it is also
a state-dependent Markovian process. Moreover, this state-dependent process is stationary,
in the sense that for each Q there is a time-invariant (does not depend on k if we know Q)
measurable transition function P ξ(·, ·|Q) such that P (ξk+1,c ∈ ·|F i,Y

k,c , dk) = P ξ(ξk,c, ·|Q̂k).
Therefore, A 3.2 is satisfied.

It remains to show that the noise {ξi}k satisfies A 3.4: its ”rate of change” is small enough
that it can be locally averaged out, and the noisy observations can be approximated by the
mean ODE. In particular, we define the fixed Q−chain {ξk,c(Q)}, the Markov chain on state
space Ξ with the fixed transition function P (·, ·|Q). It is the noise process starting from n if
Q̂ stayed constant forever: {ξn+j,c(Q̂), j ≥ 0, ξn,c(Q̂) = ξn,c)}. To verify A 3.4, we need to
prove for any compact set A ∈ Ξ,

(3.16) lim
n,m

1

m

n+m−1∑
l=n

EY
n

[
ξl,c(Q̂)I{ξl,c∈A}

]
= 0
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We define the corresponding fixed Q−chain d̃n+j(s|si, Q), for all j ≥ 0 such that:

(3.17) d̃n = dn, d̃k+1 = d̃k · PΠM
j=1ϕ(Q

j) = d̃k · PQ

Switching to vector notation, we write Rπ the vector of size |S| of reward expectations under
the global policy π for the global state s. So for all s ∈ S,

Rπk
(s) =

[
ϕ(Q−i

k )(·, s−i
k )]T r((si, ai)cs

−i
k , ·)

]
We also write D̃l(Q) and D(Q) the corresponding state distribution vectors for d̃l(s|si, Q)
the fixed Q-chain starting in n as defined in (3.17) and dϕ(Q)(s|si) the stationary distribution
under policy ϕ(Q).

Then for all n, m, and any Q̂ putting (3.15) into (3.16) allows us to rewrite the latter as:

1

m

n+m−1∑
l=n

EY
n

[
ξl,c(Q̂)I{ξn∈A}

]
=

1

m

n+m−1∑
l=n

[(
D̃l(Q̂)−D(Q̂)

)
Rπl

]
I{ξl∈A}

=
1

m

n+m−1∑
l=n

[(
(D̃n(Q̂)Πl−1

j=nP
Q̂)−D(Q̂)

)
Rπl

]
I{ξl∈A}

=
1

m

n+m−1∑
l=n

[(
dn

(
P Q̂
)l−n

−D(Q̂)

)
Rπl

]
I{ξl∈A}

≤ R

m

m−1∑
l′=0

∥∥∥∥(dn (P Q̂
)l′
−D(Q̂)

)∥∥∥∥
1

I{ξl′+n∈A}

(3.18)

From A 2.2, we know that the finite Markov chain representing the global state process is

irreducible and aperiodic. Therefore, P Q̂ is the transition matrix associated with an irreducible
global state process over the finite state-space S, and the stationary distribution defined by

Dϕ(Q̂) is its limiting state distribution. Moreover, the convergence rate is geometric [23], so
that for any initial distribution dn there exists constants 0 < b < 1 and C > 0 such that for
all l: ∥∥∥∥(dn (P Q̂

)l
−D(Q̂)

)∥∥∥∥
1

< C(1− b)l

Therefore, together with (3.18) we have that:

lim
m

lim
n

1

m

n+m−1∑
l=n

EY
l

[
ξl,c(Q̂)I{ξn∈A}

]
≤ lim

m

R

m

m−1∑
l′=0

C(1− b)l
′
= lim

m

CR

mb
= 0

Among the assumptions under which the convergence of the multi-scale Q-learning iterates
is guaranteed, A 3.5 and 3.8 set us constraints on the learning rate sequences, and A 3.9 posits
the existence of solutions for the mean ODEs approximating the q-iterates. In the next section,
we will zoom in on A 3.9 to understand the set of transition independent Dec-POMDPs that
can satisfy it.
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4. Multi-scale Q-learning iterates for a special dec-POMDP structure. In this section
we will introduce and discuss structures of Dec-POMDPs that can satisfy A 3.9. First,
following Theorem 3.3, under what circumstances can we attribute M different learning rate
sequences to M different agents so that A 3.9 is verified ? Intuitively, for each agent we
want to look at its best response dynamic, and identify a set of other agents such that this
dynamic converges when all policies in the set are fixed. This will define a type of dependency
between agents in the Dec-POMDP: if we can extract a total order on all agents from these
dependencies, then it will suffice to assign learning rates following that order. Note that such
a total order implies acyclic dependencies between agents. In Subsection 4.1, we will start by
making explicit what is meant by ordering agents according to their dynamics through A 4.1.
But such an assignment will force us to have as many learning rates as agents. Building
further on the acyclic dependencies assumption, and to address a more concrete application,
Subsection 4.2 zooms in on the case of the networked distributed POMDP (ND-POMDP), in
which the shared reward is distributed among agents and the graph of connections between
agents is known. We show knowledge about this graph can be exploited to reduce the number
of different learning rates and build a faster algorithm.

4.1. Interaction structure between agents for multi-scale Q-learning. Consider a case in
which agents are given learning rates such that every agent is learning at a different timescale.
We start by defining precisely the total order needed on agents for this solution to converge.

Recall π, dπ as defined by (3.11), with ϕ(Q) · dπ the corresponding stationary distribution
over global state-action pairs. Therefore for any M-uplets Q there is an associated reward
expectation taken over the stationary distribution of state-action pairs. We look at any
agent i and its corresponding q-table Qi. We denote Q>i = (Qi+1, . . . , QM ) and Q<i ==
(Q1, . . . , Qi−1). Let us take a set of q-tables Q with its corresponding global policy π = ϕ(Q)
such that

• For j ≤ i, Qj is any q-table in Sj ×Aj

• For j > i, Qj is a q-table of the smoothed best response to π−j as introduced in (2.4).
We write Z≥i+1(Q<i+1) the M − i q-tables Q>i thus defined.

Any disturbance to a local q-tableQ′i ̸= Qi causes a corresponding change to Z≥i+1(Q<i, Q′i).
If the reward function is such that a local perturbation does not produce change in the reward
expectation greater than the perturbation, then it will follow that the mean ODE approx-
imating the local iterates (2.6) will have a single fixed point. We will now formalize this
condition.

A 4.1. Let Q′i ∈ [−D,D]|Si|×|Ai| be a local perturbation to Qi within the constraint set.
Write Q′ = (Q<i, Q

′i, Z≥i+1(Q<i, Q
′i)) and π′ = ϕ(Q′). There exists an ordering of agents

{1, . . . ,M} and K ∈ (0, 1) such that for every agent i and its q-table Qi, the reward function
satisfies:

∥Rπ(s)−Rπ′(s)∥1 ≤ K∥Qi −Q′i∥∞

Theorem 4.1. Let us consider M agents locally updating their q-values estimates according
to (3.9) with initial values Q̂i

0 ∈ [−D,D] for D > 0 such that D > R
β . Suppose that A 4.1 is

satisfied with the ordering of agents {1, . . . ,M}, and the learning rates {αi}1...M follow A 3.5
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and A 3.8, where αi is the learning rate sequence of the ith agent. If the discount factor β
satisfies β ≤ 1−K, then the q-value estimates will converge weakly towards the smoothed best-
response q-values Q∗i. Moreover, the deterministic global policy defined by si, π∗i = ϕ(Q∗i)
for all i is an equilibrium.

Proof. We recall the mean ODE followed by each agent i as introduced in (3.13):

d

dt
qit(s

i
c, a

i
c) =

1

uic
F̄ i(q<i

t , qit, Z
≥i+1(q<i+1

t ))

with F̄ i(q<i
t , qit, Z

≥i+1(q<i+1
t )) = r(sic, a

i
c, q

<i
t , qit, Z

≥i+1(q<i+1
t ))+β

∑
s′ P (si, ai, s

′i)qi(s
′i, ϕ(q)(s

′i))
and rqi(s

i
c, a

i
c, q

<i
t , qit, Z

≥i+1(q<i+1
t )) =

∑
s d

πqi,Z>i+1(qi)(s)
∑

a−i π
−i
qi,Z>i+1(qi)

(a−i)r(s, ai, s−i).

According to A 4.1 and for each agent i and component c, the mapping from qi to rqi(s
i
c, a

i
c, q

i)
is a K - contraction mapping. F̄ i is therefore a (K + β) contraction mapping with regard to
the infinite norm. It follows that for each agent i there is a unique fixed point Q∗i such that
F̄ i(Q<i, Q∗i, Z≥i+1(Q<i+1)) = Q∗i and that this fixed point is the unique globally asymptoti-
cally stable point of the ODE Ẋ = F̄ i(Q<i+1, Z≥i+1(Q<i+1)). Recall that the reflection terms
are null. The multiplication by the factor 1/uic has a time scaling effect on the ODE but does
not change its asymptotic behavior. It follows that A 3.9 on the asymptotic behaviors of the
mean ODEs is satisfied. A sequence of learning rates αi

k has been assigned to each agent i

such that A 3.5 and 3.8 are satisfied. The weak convergence of the iterates Q̂k towards a
smoothed equilibrium then follows from Theorem 3.3.

This learning rates attribution however forces us to have as many learning rates as we
have agents. We notice that Subsection 4.1 defined a dependency between agent dynamics
that can be represented by a directed acyclic graph (DAG). If such a dependency is known,
then the graph can be used to assign a ranking to agents that allows for different agents to
have the same learning rate sequence. We will now look at a specific class of Dec-POMDP
with specific assumptions on agent interaction structure and see how this allows us to derive
a faster algorithm.

4.2. Reward decomposition for multi-scale Q-learning. In this section we address further
constraints on our Dec-POMDP that can relax the need for a total order on all agents. We
now look at of Networked Distributed POMDPs (ND-POMDPs), a specific case of transition-
independent Dec-POMDPs introduced by [19] to model distributed optimization problems
like sensor network coordination. We now assume the shared reward can be written as a sum
of M components {ri}1,...,M such that for all (s, a) ∈ S ×A, r(s, a) =

∑M
i=1 r

i(si, ai, sU
i
, aU

i
),

where U i is a subset of agents, and sU
i
- resp. aU

i
- is a vector concatenating local states

and - resp. local actions - of agents in U i. We say that agent i influences agent j if i ∈ U j .
Here, the total reward is not received by every agent, but rather distributed in the network
that connects all agents.

Let the relationships between agents be modeled by a directed acyclic graph (DAG) G =
(V, E) with V the set of vertices and E the set of edges, such that |V| = M , and (i −→ j) ∈ E iff
agent i influences agent j. For every node i, we write N i

in the set of nodes from which there
is an edge to i in the graph, and N i

out the set of nodes to which there is an edge from i in
the graph. The neighborhood of node i is then noted N i = N i

in

⋃
N i

out. We write NA(i) the
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ancestors of i, that is the set of nodes for which there exists a path towards i. Similarly, we
write ND(i) the descendants of i. Under A 3.5, every agent learned at a different scale, for a
total of M different scales. In ND-POMDPs, we can exploit the structure of the problem to
attribute a smaller set of M̄ ≤M scales to all agents.

We want to find a ranking function rk : i → rk(i) ∈ {1, . . . , M̄}, such that the proof of
convergence of Theorem 4.1 is preserved if every agent i is assigned the learning rate sequence

α
rk(i)
k . Let us start by rewriting A 4.1 as a loser, local assumption. To achieve this, first note

that the only role of the total ordering in this assumption was to ensure that for every agent,
the set of all other agents could be partitioned into two subsets: agents that need to learn
slower and agents that need to learn faster. This was needed because in the general case, the
dynamics of all iterates must be assumed to be dependent on all other iterates. Yet under our
new DAG structure, we already know by construction that if the parents of i maintain fixed
policies, then only a - possibly strict - subset of other agents will need to adapt their best
responses to a change in the policy of agent i: its descendants and their respective ancestors.
Therefore the convergence of the iterates for i can be ensured by a partition of other agents in
3 categories: some ”faster” agents, some ”slower” agents, and all other agents whose learning
scale has no impact on the iterates. The possibility to gain in learning speed will depend on
the size of that last subset. We can therefore rewrite:

A 4.2. For every agent i in G and with the same notations as A 4.1, there exists K ∈ (0, 1)
for the ordering of agents {NA(i), i,ND(i)} such that ∥Rπ(s)−Rπ′(s)∥1 ≤ K∥Qi −Q′i∥∞

Then, any ranking that satisfies the following conditions will also preserve the convergence
of Theorem 3.3.

• (A) For any node i, nodes in NA(i) have a strictly inferior rank, and nodes in ND(i)
have a strictly superior rank.
• (B) For any node i, there exists no two different nodes of the same rank in NA(i).

Let us now take any topological sorting algorithm and apply it to our directed acyclic graph:
the total order on nodes it will return satisfies (A) by construction, and trivially satisfies (B)
by giving a different rank to every node. Therefore it still returns M̄ = M ranks. We give in
Appendix D a straightforward attribution procedure for any DAG that returns M̄ < M ranks
whenever it is possible. An example of the application of that procedure to a real example
can be found in Figure 5.1.

As an example, we will consider a certain type of graph structure for which a very simple
procedure can return a ranking satisfying (A) and (B). To further expose the problem, we
highlight a specific type of graph structures for which finding a ranking satisfying (A) and (B)
is particularly trivial. We focus on the subset of graphs T defined the following way. First,
it contains all trees. Secondly, for a given tree G = (V, E), it also contains any new graph
(V, E ∪E ′), where E ′ ⊂ {(i→ j) | (i, j) ∈ V, and ∃ path from i to j in G}. We will refer to the
learning rate assignation procedure for this subset of graph as TreeLRs: it attributes to every
node the size of the longest path from a node without any incoming edge. Because the graph
is finite and acyclic, there is a set of nodes V0 ⊂ V of out-degree 0, corresponding to a set
of agents influencing no other agent, and a set of nodes VR ⊂ V of indegree 0, corresponding
to a set of agents influenced by no other agent. Now for any pair of nodes i, j let us define
W(i, j) the set of paths from node i to node j. Any path p in W(i, j) has a length |p|, defined
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as the number of edges in the path. The graph is finite, so W(i, j) is either empty or there
is d(P (i, j)) = max

p∈W(i,j)
|p| ≥ 0 the maximum length of any path from i to j. For a given node

i, TreeLRs writes P(VR, i) = {P(j, i) | j ∈ VR} the set of paths from any node in VR to i.
P(VR, i) must be non-empty, and thus we define di = d(P(VR, i)) as the level of i. If i ∈ VR
then di = 0. The attribution of learning rates under TreeLRs is then as follows.

First, TreeLRs assigns to every agent i ∈ {1, . . . ,M} in the environment the level of its
corresponding node di. This returns M̄ < M different levels. Let us have M̄ learning rate
sequences αj

k for j ∈ {1, . . . , M̄} satisfying A 3.5 and 3.8, such that for every pair j > l,
αl
k

αj
k

→ ∞ when k → ∞. Then, TreeLRs chooses rk(i) = di, and attribute to each agent i

the corresponding learning rate sequence α
rk(i)
k . We now show that under this structure and

learning rates attribution, convergence to a global equilibrium is preserved when every agent
only receives a local reward gathered from its neighbors.

Theorem 4.2. Let us consider M agents locally updating their q-values estimates according
to iterates

(4.1) Q̂i
k+1,c = Q̂i

k,c + αi
k(s

i
k, a

i
k)
[
r̄ik + β[ϕ(Q̂i

k)(s
i
k+1)]

T Q̂i
k(s

i
k+1, ·)− Q̂i

k,c

]
with r̄ik =

∑
j∈{i,N i} r

j(sjk, a
j
k, s

Uj

k , aU
j

k ), in the ND-POMDP with graph interaction network
G ∈ T satisfying A 4.2. Let the learning rates {αk} be attributed by a ranking that satisifes
(A) and (B). Then the conclusion of Theorem 4.1 stands.

The iterates (4.1) will be labeled NetworkMQL. The proof is detailed in Appendix E. We start
by showing any ranking satisfying (A) and (B) preserves the convergence of Theorem 3.3 and
then that TreeLRs returns a learning rate distributions that belongs to that set.

5. Application to wind farm control. We evaluate the performance of our multi-scale
approach on a Dec-POMDP experiment by considering a problem from the industry: wind
farm control.

Wind turbines are often grouped together on the same field in what are known as wind
farms. Yet an operating wind turbine causes local wind perturbations - called wake effects
- that can reduce the production of its neighbors. The angle between any turbine’s rotor
and the direction of the wind, called yaw, can be increased to diminish the impact of the
perturbations on its neighbors.

Let us consider a farm of M wind turbines whose power output we want to maximize.
In our multi-agent problem, every turbine is an agent. We assume that statistics on the
wind inflow entering the farm can be represented by an irreducible and aperiodic Markovian
process W taking values in a finite state space with transition kernel PW . W is obviously
not controllable by the agents. The production of each turbine i is a function of its yaw yi,
and of wind conditions statistics. This information can be gathered in its local state: we
write Si the finite local state space for agent i, and the finite global state space is S = ×iSi.
The local action space Ai for agent i corresponds to the choice of increasing or decreasing
its yaw by 1◦, or to let it unchanged, so that Ai = {−1, 0,+1}. The finite action space is
similarly defined A = ×iAi. The reward r(s, a) returns the total production of the farm after
agents have picked action a in state s. Note that if agents are allowed to observe their local
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Figure 5.1: 16 interacting wind turbines on a graph. The levels used in the MQL algorithm are
written in white, and the corresponding levels used in the NetworkMQL algorithm obtaines
with Algorithm D.1 are written in black. The coordinates represent the location of each
turbine in the farm.

wind conditions, the problem is not transition-independent: any action taken by an agent can
change the wind conditions at other agent’s locations. This can be fixed by using a direct
observation of W as wind statistics in the local state.

The transition function is P = PyPW = ΠM
i=1P

i
yPW , where P i

y is the transition kernel on
the local yaw. Note that P i

y is then entirely deterministic as for any si, ai, s′i ∈ Si × Ai × Si

we have P (si, ai, s′i) = I{s′i = si + ai}. It is easy to see that if all local policies are forced
to maintain non-null probabilities on all local actions, then the local state processes will be
irreducible and aperiodic.

A DAG modeling interactions between agents can be built the following way: from M
nodes representing the M agents, we add an edge from i → j if turbine j is in the wake
of turbine i. The reward can then be rewritten as a sum of local components r(s, a) =∑M

i ri(si, ai, sU
i
, aU

i
), where each ri returns the production of agent i, and U i is the set

of in-neighbors of turbine i. We start by defining M learning sequences: for each rank in
{1, . . . , M̄}, let 0 < lM̄ < · · · < l1 < 1 and the corresponding learning rate sequences be

αli
k,c =

g

nk((si, ai)c)li

with g > 0 a gain and nk((s
i, ai)c) = # visits to the cth state-action pair (si, ai)c up to k.

These sequences are standard for Q-learning algorithms. For our multiscale experiments, we
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(a) Evolution of power output (b) Evolution of learning rates

Figure 5.2: MQL: Multi-scale. NetworkMQL: Multi-scale with Reward Decomposition LQL:
Local Q-learning. The total power output of the simulated 16 turbines wind farm averaged on
1000 time-steps is reported on Figure 5.2a. The evolution of learning rates under MQL based
on scales attributed in Figure 5.1 is reported on Figure 5.2b for the first 100k time-steps.

approximate learning rates that satisfy A 3.8 by adding a multiscale term dependent on the
time between visits, so that the final learning rate sequences are:

α′li
k,c = g

(
1

nk((si, ai)c)
+

log(T i
k,c)− log(T i

k−1,c)

T i
k,c − T i

k−1,c

)li

where T i
k,c is as before the real time of the kth update to component c. We use the same gain

g = 2 for all algorithms. An example of the evolution of these learning rates for Algortihm
MQL can be found on Figure 5.2b. We run both Algorithm MQL (3.9) and Algorithm Net-
workMQL (4.1) on a simulation of a wind farm with 16 wind turbines on 10 different seeds. We
report the average production and standard deviation on Figure 5.2a. For MQL, we simply
assign a different rank to every agent following a topological sort and use the M multiscale
learning rate sequences α′li

k,c. We compare with a naive Local Q-learning approach, where the
standard Q-learning algorithm is run at every agent with the standard learning rates sequences
αli
k,c. All agents are then given the fastest learning rate sequence corresponding to li = 1. For

NetworkMQL, we use the procedure described in Appendix D to assign M̄ ≤ M ranks to all
agents in the DAG. We obtain M̄ = 9 different ranks shown in Figure 5.1 and use the last 9
learning rate sequences in {li}i∈1...M .

6. Conclusion. By allowing all agents to run a single-agent reinforcement algorithm in
parallel, independent learning provides the simplest way to adapt these algorithms to co-
operative multi agent environments. Although this approach has encountered experimental
successes, it has no underlying theoretical guarantee. To provide a first step towards bridging
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this gap, we have here focused on transition-independent Dec-PODMP, and shown that in
these problems the partial observability of the global state can be modeled as a Markovian
perturbation in a stochastic approximation iterates. We have shown that when there is an
acyclic dependence structure between agent dynamics in these cooperative systems, a careful
assignment of learning rate sequences following a multi-scale approach can be sufficient to
establish convergence. In particular, knowledge of the interaction graph between agents in
ND-POMDP can be exploited to assign learning rates to preserve convergence. We have then
applied these results to wind farm control, a real optimization problem from the industry.

Further work can extend these conclusions to systems with noisy local observations or non-
independent transition functions. Furthermore, independent learning has often encountered
experimental success without the multiscale approach in multiagent reinforcement learning
settings ([34, 31]), and our acyclic dependence analysis could provide a basis to find a theo-
retical explanation of these results.
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