
HAL Id: hal-04560293
https://hal.science/hal-04560293v1

Submitted on 26 Apr 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Model-Based Assessment of Conformance to
Acknowledged Security-Related Software Architecture

Good Practices
Monica Buitrago, Isabelle Borne, Jérémy Buisson

To cite this version:
Monica Buitrago, Isabelle Borne, Jérémy Buisson. Model-Based Assessment of Conformance to
Acknowledged Security-Related Software Architecture Good Practices. 12th International Con-
ference on Model-Based Software and Systems Engineering, Feb 2024, Rome, Italy. pp.117-124,
�10.5220/0012312400003645�. �hal-04560293�

https://hal.science/hal-04560293v1
https://hal.archives-ouvertes.fr

Model-based assessment of conformance to acknowledged
security-related software architecture good practices

Monica Buitrago1, Isabelle Borne1 and Jérémy Buisson2

1IRISA, Université de Bretagne Sud, France
2CRéA, École de l’Air et de l’Espace, France

monica-johana.buitrago-ramirez@univ-ubs.fr, isabelle.borne@irisa.fr, jeremy.buisson@ecole-air

Keywords: software architecture, security-by-design, metric, security, model-based engineering

Abstract: Security-by-design considers security throughout the whole development lifecycle, to detect and fix potential
issues as early as possible. With this approach, the software architect should assess some security level of the
software architecture, to predict whether the software under development will have security issues. Previous
works proposed several metrics to measure the attack surface, the attackability, and the satisfaction of security
requirements on the software architecture. However, proving the correlation between these metrics and secu-
rity is far from trivial. To circumvent this difficulty, we propose new metrics rooted in CWE, NIST guidelines
and security patterns. So, our four novel metrics measure the conformance of the software architecture to these
acknowledged security-related recommendations. The usage of our metrics is evaluated with case studies.

1 INTRODUCTION

Security by design has emerged as addressing the se-
curity concerns at every stage of software develop-
ment (Waidner et al., 2014). In this regard, Common
Weakness Enumeration (CWE), controls enumera-
tion (NIST, 2020), and security patterns (Fernandez-
Buglioni, 2013) provide acknowledged effect of de-
sign choices on the security of the software under
development. Though, their practical usability were
questioned (Yskout et al., 2015). Besides, various
metrics have been proposed to quantify, when de-
signing the software architecture, and the attack sur-
face (Alshammari et al., 2009; Gennari and Garlan,
2012; Manadhata and Wing, 2011), the attackabil-
ity (Skandylas et al., 2022). But, correlating be-
tween these metrics and the overall security of the
software is challenging as software security is unob-
servable (Herley and van Oorschot, 2018).

To avoid the difficulty of relating metrics to se-
curity, we propose to measure the extent to which a
design, as reflected in the software architecture, con-
forms to the recommendations cited above. Because
these recommendations are acknowledged to reduce
the number of vulnerabilities, our metrics are linked
to the guarantee of security.

Section 2 summarizes the state of the art, focused
on measuring security during software design and de-
velopment. Section 3 outlines how we position our

work in the software engineering process. Section 4
describes our metrics. Section 5 discusses the valid-
ity of the metrics on case studies based on real-world
applications. Section 6 gives the final remarks and
future directions for our work.

2 RELATED WORK

Software quality attributes are stated or implied, non-
functional requirements, such as maintainability, per-
formance, security, and so on. Metrics are provided
to quantify how well such requirements are satis-
fied. That way, the intrinsic subjectivity in non-
functional assessment is confined to the choice of the
metrics (Sommerville, 2016). Measuring on the ar-
chitecture description enables the prediction of the
non-functional assessment for the future software as
soon as the design phase.

2.1 Measure the Attack Surface

The attack surface is the set of software elements that
an attacker may exploit. A designer can use anno-
tations to specify the sensitive elements, e.g., in the
class diagram (Jürjens, 2002). Assuming that public
means exposed, the designer can compute, e.g., the ra-
tio of public attributes among the sensitive ones, and

the ratio of methods using sensitive attributes to quan-
tify the attack surface (Alshammari et al., 2009).

(Manadhata and Wing, 2011) proposed the ratio
between the effort needed to attack and the potential
damage. Looking at a component, the potential dam-
age follows from the privilege level at which the com-
ponent functions are executed, from the ports proto-
cols, and from the kind of storage used by the com-
ponents. The attack effort is the requirements to ac-
cess the ports. (Gennari and Garlan, 2012) adapted
the metrics by looking at the connectors and the ports,
instead of the ports and data flows respectively.

All these metrics relate to some concept of entry
point, i.e., public attributes and methods (Alshammari
et al., 2009), and ports (Manadhata and Wing, 2011;
Gennari and Garlan, 2012). All of them compute the
proportion of entry points. Because we do not focus
on the attack surface but on the conformance to pat-
terns and guidelines, we are led to consider the raw
number of entry points.

2.2 Measure Security Properties

According to the ISO/IEC 25010 definition, security
is refined into: availability, confidentiality and in-
tegrity. Metrics can be targeted at these properties.

(Siavvas et al., 2021) proposed to use 11 base met-
rics to score confidentiality, integrity and availability:
complexity, cohesion, coupling, encapsulation, and
seven rules from the PMD1 static code analyzer. Like
in (Wagner et al., 2015), the metrics are normalized
according to an empirical study, and the weights fol-
low from experts’ knowledge. A security index is the
average of the three scores. The empirical study used
to compute the normalization parameters also ensures
the correlation with the security properties.

We ensure the link with security by measuring the
conformance to security patterns and guidelines.

2.3 Other Security-Related Metrics

In (Du et al., 2019), the functions are ranked accord-
ing to metrics assumed to be correlated with vulner-
abilities: number of parameters, number of pointer
arithmetic operations, number of nested control struc-
tures, etc. Because these metrics are also correlated to
the code complexity and size, a preliminary binning-
by-cyclomatic-complexity phase is performed as a
kind of normalization of the metrics. Such details
about the software are not yet available during the ar-
chitecture stage of design, at which our work applies.

(Casola et al., 2020) model applications as soft-
ware services (SaaS) hosted by virtual machines

1https://pmd.github.io/ (visited on 12/06/2023)

(VM). Cloud service providers (CSP) provide VM
and SaaS. The components (SaaS, VM, CSP) and
their relations (provide, host, use) describe the archi-
tecture. Security service level agreement (sSLA) tem-
plates model the requirements and controls (choices,
levels, parameters) at components. An overall sSLA
is combines the component-level templates according
to the architecture, using (Rak, 2017)’s algorithm. On
the requirement side, the sSLA templates result from
risk analysis. On the security assessment side, they
result from a review by the developers to measure the
implemented controls and the related metrics. The
metrics we propose, by measuring how much the ar-
chitecture conforms to the guidelines, may replace the
manual review with an automated tool.

(Skandylas et al., 2022) consider a flat assembly
of components and connectors, in which some ports
are annotated with vulnerabilities. To reflect the ad-
versary’s profile, each vulnerability has a probability
of success and a cost. A control has an effectiveness
(probability of countering) and a cost. Attackability
and defendability are computed using these param-
eters: the probability that the adversary takes over
the system, the minimum/maximum attack cost, and
the minimum defender’s cost. In our work, we pro-
pose how to compute the security level of the soft-
ware, which is assumed by (Skandylas et al., 2022)
and matched with the adversary’s profile.

3 APPROACH OVERVIEW

Figure 1 depicts how our work integrates with soft-
ware and security engineering processes. After a re-
quirement engineer produced the software require-
ments, including the security requirements derived
from a preliminary risk assessment, the (software) ar-
chitect designs the (software) architecture. The ar-
chitect begins with a coarse-grained one, made of few
big components connected by connectors. Then, (s)he
refines the architecture by recursively decomposing
the components into composite structures until (s)he
identifies the primitive components (those which are
not further decomposed). The design risk assessment
activity identifies the risks that result from the design
decisions made in the architecture. Taking into ac-
count this feedback, the requirement engineer updates
the (security) requirements. The architect revises the
architecture accordingly. This loop is repeated un-
til the remaining risks are acceptable enough (Som-
merville, 2016). The resulting detailed architecture is
then passed on to the developers, who use it as the
specification of each primitive component. In this pa-
per, we do not describe the other steps.

coarse-
grained
software

architecture

. . .
detailed
software

architecture

metrics values: how much does
the software architecture conform

to or diverge from security
patterns and good practices?

security patterns (Fernandez-Buglioni,
2013)

good practices (e.g. OWASP cheat sheets)
smells (e.g. CWE)

requirements
(including

security req.)

. . .

preliminary threat
analysis and risk

assessment

OO design of
the software
component

. . .

OO design of
the software
component

. . .

designs & refines the
software architecture

design threat analysis
and risk assessment

software architect

req. eng.

developer

developer

...

we propose metrics inspired
by security patterns, to be
implemented in the architect’s
workbench

Figure 1: Our work in the software engineering process.

To design the architecture, the architect relies on
well-established knowledge such as patterns. There is
specific guidance to deal with software security such
as (Fernandez-Buglioni, 2013; NIST, 2020).

We propose metrics, inspired by these security-
related guidance, to provide the architect with a new
security-targeted analysis of the detailed architecture.
By integrating this new analysis in her/his workbench,
the architect gets feedback about how much the archi-
tecture conforms to the guidance (the orange loop in
Figure 1). According to the result of this analysis, the
architect may decide either to revise the architecture,
or to move forward in the engineering process.

4 PROPOSED METRICS

Section 4.1 defines the model of software architec-
ture, and the notations we use. Three of our four
metrics are locally defined for one component, which
can be chosen from a specific subset. Section 4.2 de-
scribes these local metrics. Section 4.3 explains how
to consolidate the local measures into architecture-
wise values. Section 4.4 describes a fourth metric,
which applies intrinsically to the architecture. Table 1
gives the guidelines supporting each metric.

4.1 Architecture Model and Notations

Following the usual approach, e.g. UML, the archi-
tecture is made of instances (the parts) of compo-

Table 1: Supporting guidelines for our metrics.

#ep/c SA-8(13): minimized security elements
SA-8(14): least privilege
SA-17(7): structure for least privilege
SC-2: separation of system and user func-
tionalities
CWE-653: improper isolation or compart-
mentalization

#epp, SA-8(3): modularity and layering
epd SA-8(4): partially ordered dependencies

CWE-1054: invocation of a control element
at an unnecessarily deep horizontal layer
CWE-1092: use of same invokable control
element in multiple architectural layers

#lc SC-7(13): isolation of security tools, me-
chanisms, and support components

guidelines: (NIST, 2020) and https://cwe.mitre.org

nents. Each component declares ports at which con-
nectors can be attached to transport the interactions
between parts such as method calls, data flow, etc. We
distinguish composite components (or simply com-
posites), which are assemblies of parts and connec-
tors. The other components, of which the content is
omitted from the architecture, are the primitive com-
ponents (or simply primitives). In our work, we use
the terms component, connector, part, and port with
their definition in UML. Our architecture description
language is the combination of the UML component
and composite structure diagrams.

From the UML architecture description, we ex-
tract a view that enforces a strict two-level hierarchy

of composites, i.e., the simplified view is composed of
composites, which are themselves composed of prim-
itives (section 4.3 explains why it is not a restriction).
We restrict to binary directed connectors, and we al-
low them to cross the composite boundaries. We ig-
nore ports and types.

In the rest of the paper, we use the notations:
• A = P ,E – an architecture, where P is the set

of composites and E is the set of connectors.
• c,d – some composites (c ∈ P , d ∈ P).
• V – the set of primitives V =

⋃
c∈P c.

• a, b – some primitives (a ∈ V , b ∈ V).
• C – a function that maps a primitive component

to its enclosing composite (V 7→ P).
• e = a → b – a connector (e ∈ E); e is in c if and

only if a ∈ c∧b ∈ c.
• shortest pathc (a,b) – a function that returns

the shortest path from a to b, by following only
the connectors in c.

4.2 Local Metrics

Our three local metrics are the number of entry points
per composite (#ep/c), which applies to a composite;
the number of entry point predecessors (#epp) and
the entry point depth (epd), which are computed for
primitives at the entry point positions of a composite.

A primitive b is an entry point of a composite c if
it belongs to c (i.e. b ∈ c), and there is at least one de-
pendent a that does not belong to the same composite
(i.e. a → b ∈ E and a /∈ c).

(NIST, 2020; Fernandez-Buglioni, 2013) empha-
size the principle of process isolation: a software sys-
tem must be decomposed into processes, each of them
having its own address space and communicating only
through well identified ports. Even if, in software en-
gineering, composites are not intended to be deploy-
ment domains, execution domains nor security do-
mains, we assume the encapsulation in a composite
ensures isolation. Thus, the consequences of process
isolation apply to composites. For instance, accord-
ing to the principle SA-8(3) modularity and layering,
the modularity of the architecture should extend be-
yond functional modularity to the security concerns.
Besides, the entry point components are exposed to
messages that are not under the control of the com-
posite they belong to. As such, they are responsible
to enforce all the security-related functions, includ-
ing the protection of the communication channel, au-
thentication of the client components, authorization
and access control, accountability, audit, input valida-
tion and sanitization. When the ports of the compos-
ite act as no more than forwarders, the entry points

x

v ws

ut

q rpc1
c2

c3

#ep/c(c1) = 0
#ep/c(c2) = 1
#ep/c(c3) = 2

Figure 2: Illustration of the #ep/c(c) metric.

of the composite play the role of the protected entry
points (Fernandez-Buglioni, 2013).

4.2.1 Number of Entry Points per Composite

On the one hand, the principle SA-8(13) minimized
security elements pinpoints that security-critical com-
ponents (such as entry points) require specific atten-
tion that increases their cost and complexity. So, these
components should be as few as possible. This con-
cern matches the reduction of the attack surface by re-
ducing the ratio of publicly exposed ports, functions,
methods, attributes (Alshammari et al., 2009; Gennari
and Garlan, 2012; Manadhata and Wing, 2011).

On the other hand, the principles SC-2 separation
of system and user functionalities and SA-8(14) least
privilege, their consequence SA-17(7) on the archi-
tecture, and CWE-653 improper isolation or compart-
mentalization advise to have as many ports as privi-
leges to access the component.

Altogether, these design principles highlight that
there is a trade-off between two contradictory goals:
on the one hand, having fewer entry points to man-
age the cost and overhead of secure development by
reducing the amount of concerned components; on
the other hand, ensuring distinct entry points for each
kind of clients and privileges. To help the architect
to decide whether this trade-off is satisfied, we define
a first metric #ep/c(c) that simply counts how many
entry points a composite component c ∈ P contains:

ep(c) = {b | b ∈ c∧∃a,a → b ∈ E ∧a /∈ c}
#ep/c(c) = |ep(c)|

ep(c) is the set of the entry points of c. The metric
value is the cardinal of this set.

Figure 2 illustrates this metric on a synthetic case:

• The composite component c1 contains only one
primitive component p, which has no inbound
connector. For this reason, p is not considered an
entry point of c1, and therefore #ep/c(c1) = 0.

• c3 contains six primitive components (s, t, u, v, w
and x). Among them, v has three inbound connec-
tors, but only q is outside c3; w has one inbound
connector and r is outside c3; and the inbound
connector of u and the two inbound connectors of

x come from the inside of c3. So, #ep/c(c3) = 2,
the entry points are v and w.

To model the fact that #ep/c(c) should be neither
too small nor too high, we consider that #ep/c(c)
should be in an ideal range

[
l#ep/c,u#ep/c

]
given by

an expert (l the lower bound, u the upper bound of
the range). So, we can piecewisely define a distance
between the value of the metric and this range, e.g.:

d#ep/c(c) =

|l#ep/c −#ep/c(c)| when
#ep/c(c)< l#ep/c

0 when
#ep/c(c) ∈

[
l#ep/c,u#ep/c

]
|#ep/c(c)−u#ep/c| when

#ep/c(c)> u#ep/c

We derive a score from this distance, e.g.:

s#ep/c(c) = (1+d#ep/c(c))−α where α > 0

4.2.2 Number of Entry Point Predecessors

Like explained in the description of #ep/c (sec-
tion 4.2.1), the entry points of the composites are
some of the trusted components that must implement
security concerns, as they are exposed to clients out
of the control of the encompassing composite. The
second metric #epp(b) counts how many predeces-
sors a given entry point has in its encompassing com-
posite. If the software architecture is suitably lay-
ered, i.e., following the principle SA-8(3) modular-
ity and layering, the entry points should not have any
such predecessor. When there are some, the devel-
oper may misidentify the entry points and (s)he may
fail to implement the suitable security concerns. Be-
sides, the principle SA-8(4) partially ordered depen-
dencies, the smell CWE-1054 invocation of a control
element at an unnecessarily deep horizontal layer,
and the smell CWE-1092 use of same invokable con-
trol element in multiple architectural layers defend a
strict layering of the architecture.

Let c ∈ P be a composite, and let b ∈ ep(c) be an
entry point component of c. The #epp(b) metric is:

epp(b) =

{
p |C (p) =C (b)∧

shortest pathC(b) (p,b) ̸=⊥

}
#epp(b) = |epp(b)|

Figure 3 illustrates the #epp metric:

• The predecessor p of q does not belong to the
same composite as q. So, it is not counted and
#epp(q) = 0. The same applies for w.

• The component v has five direct or indirect pre-
decessors. Among them, only s, t and u are
counted because v is reachable only from these

x

v ws

ut

q rp

epp(v)

c1
c2

c3

#epp(q) = 0
#epp(v) = 3
#epp(w) = 0

Figure 3: Illustration of the #epp(b) metric.

x

v ws

ut

q rp

paths to v

c1
c2

c3

epd (q) = 0
epd (v) = 2
epd (w) = 0

Figure 4: Illustration of the epd (b) metric.

three components, when only considering the as-
sembly connectors within c3, the composite of v.

We derive a score from #epp(b), e.g.:

s#epp(b) = (1+#epp(c))−α where α > 0

4.2.3 Entry Point Depth in Composite

Like stated in section 4.2.2, the CWE and NIST con-
trols recommend the layered architecture. To reflect
this, we refine #epp by considering the depth of the
entry point, i.e., the maximum length of the shortest
paths from the predecessors to the entry point.

Let c∈P and b∈ ep(c) be an entry point of c. The
metric evaluates the shortest path from any predeces-
sor p of b within c to b, and returns the maximum
length among these shortest paths:

epd (b) = max

{
len

(
shortest pathC(b) (p,b)

)
|C (p) =C (b)

}
In Figure 4, v has three predecessors in its en-

closing composite c3. The shortest path from s to
v contains one edge; the one from t to v contains two
edges; and the shortest path from u to v contains one
edge. So, the computed depth of v in c3 is 2.

Similarly to #epp, we derive a score, e.g.:

sepd (b) = (1+ epd (c))−α where α > 0

4.3 From Raw Local Metrics to
Architecture-Wise Metrics

As presented in section 4.2, the #ep/c metric and its
derived score are local to a composite component; the
#epp and epd metrics and their derived scores are lo-
cal to a primitive component (which is expected to

x

v ws

ut

q rpc1
c2

c3

#lc = 1

Figure 5: Illustration of the #lc metric.

be the entry point of a composite component). The
question arises how to lift the metrics and scores up
to the enclosing composite, then up to the composite
that models the whole software architecture.

The principle SA-8(9) trusted components (NIST,
2020) advocates that the least trustworthy compo-
nent in a composite gives the trustworthiness score
to the composite. (Casola et al., 2020; Rak, 2017)
proposed composition rules based on conjunctions,
which boils down to the same principle of the least
trustworthy component. (Gennari and Garlan, 2012;
Manadhata and Wing, 2011) proposed to sum or av-
erage. We choose to use summarizing statistics (min-
imum, mean and maximum), and we leave the inter-
pretation to the architect.

4.4 Number of Leaf Composites

The principle SC-7(13) of isolation of security tools,
mechanisms, and support components aims at pre-
venting an adversary to gain information on the se-
curity tools. Concretely, log collection for audit
purpose, security operation centers for supervision,
and other security-related functions should use a dis-
tinct infrastructure (communication channels, stor-
age) than the one of the application. These infras-
tructure elements appear in the architecture as addi-
tional composites, which do not depend on the ones
involved in the functional services. For instance, the
architecture may contain one database for the func-
tional services, another database for the log storage,
and yet another one for the access control data. The
mutual isolation of these storage components appear
as each of them being leaves in the architecture. So,
the number of leaf composites should not be low.

l p(c) = {a | a ∈ c∧∃b,a → b ∈ E ∧b /∈ c}
lc = {c | l p(c) = /0}

#lc = |lc|
Given c ∈ P , a composite, its leave points l p(c)

are its inner components a that depend on some com-
ponent b outside of c. A composite c is a leaf com-
posite if it has no leave point. The metric value is the
cardinal of the set lc of leaf composites.

In Figure 5, p is a leave point of c1, and q and r
are leave points of c2. On the other hand, c3 has no

leave point component. So, the set of leaf composites
is {c3}. In this architecture #lc = 1.

The score encodes the higher the better, e.g.:

s#lc = 1− (1+#lc)−α where α > 0

5 EVALUATION

We extended the Eclipse Papyrus2 modeling work-
bench. Applied to a component in a UML compos-
ite structure diagram, our new compute metrics com-
mand loads the underlying model elements from the
XMI files, builds the simplified view like presented
in section 4.1, computes the metrics and scores de-
scribed in section 4.2, 4.3 and 4.4, and reports the re-
sults to the software architect.

5.1 A Real-World Application: Xwiki

The Xwiki project3 is an open-source wiki written in
Java and deployed in any compliant Servlet container.
To obtain its architecture, we first checked out the
623 kLOC in 8375 Java source files at the 15.4 tag
from its GitHub repositories4 and we compiled it in
its bare profile. After reconstructing the UML class
diagram (8853 classes and interfaces, and 10634 as-
sociations of interest) by using the ASM library5, we
recovered the primitive components in UML compo-
nent diagrams. In addition to the servlets, we relied
on the JSR-330 (javax.inject) annotations, along
with few Xwiki-specific annotations. Our tool found
2405 primitives. To simplify, we interchanged a com-
ponent and its instances; or, equivalently, we abu-
sively assumed that there is a single instance of each
component. Following the semantic of the component
framework, connectors were generated by resolving
to any component with a matching name and that pro-
vides an interface with a compatible type. In case
of ambiguity, our tool selected the component with
the most specific interface and implementation class.
But, our tool ignored the descriptors provided out of
the Java code. It resulted in 8783 connectors. Last, to
simplify, we used the 304 generated jar artifacts as
the composites.

Table 2 gives the score at the level of the architec-
ture. In Table 3, the architect focuses her/his atten-
tion on the worst composites according to a selected

2ht tps : / /www.ec l ipse .o rg /papyrus/ (visited on
04/07/2023).

3http://www.xwiki.org (visited on 04/07/2023).
4Repositories xwiki-commons, xwiki-rendering,

and xwiki-platform in https://github.com/xwiki.
5https://asm.ow2.io/ (visited on 04/07/2023).

Table 2: Scores for the architecture of Xwiki 15.4.

metric min avg max
s#ep/c 0.015 0.64 1.0
s#epp 0.007 0.73 1.0
sepd 0.083 0.76 1.0
s#lc 0.83

Table 3: Worst composites of Xwiki according to s#ep/c.

Composite/Artifact c s#ep/c(c) #ep/c(c)
platform-oldcore 0.015 70
platform-model-api 0.036 31
commons-extension-api 0.071 17

score (here s#ep/c). Regarding platform-oldcore,
the Xwiki developers acknowledge that it should be
exploded into smaller ones6. Such a change would
improve the compartmentalization (SC-2, CWE-653).

Regarding platform-model-api, the high num-
ber of entry points results from the fact that it con-
tains several variants of the same services. For
instance, it contains 7 implementations of “entity
reference serializer” that are entry points. Like
platform-oldcore, it can be split into smaller com-
posites, to avoid that all the variants have equal ac-
cess to resources, possibly violating the least privilege
principles SA-8(14) and SA-17(7).

Regarding commons-extension-api, the archi-
tect’s investigation shows that each entry point of this
composite regards specific concerns (factory, cache,
validation, repository, etc.). So, the architect decides
that commons-extension-api is fine with respect to
SA-17(7) and other related guidelines, and that the
threshold u#ep/c (see section 4.2.1) was too low for
this case. The architect can decide not to investi-
gate additional composites, like for any other anal-
ysis (Sommerville, 2016).

Due to space limitation, we do not discuss the
other metrics. In summary, we successfully exploited
the metrics with a large real-world application.

5.2 Effects of Architecture Variations

Our third experiment aims at observing how our met-
rics behave in the face of architecture variations,
which are not expected to affect the security of the
software. To this end, we reverse-engineered the
Bitwarden application 7, an open-source distributed
password manager. This application is structured into
a back-end, a database and several front-end applica-

6https://github.com/xwiki/xwiki-platform/blob/xwiki
-platform-15.4/xwiki-platform-core/xwiki-platform-oldco
re/README (visited on 14/09/2023).

7https://www.bitwarden.com/ (visited on 07/07/2023).

0

2

4

#e
p/

c

0

10

20

30

#e
pp

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0
0

1
1
0

1
2
0

1
3
0

1
4
0

0.0

2.5

5.0

7.5

ep
d

requested number of composite components.

Figure 6: Evolution of the metrics when the number of com-
posites changes.

tions (web site, mobile applications and browser plug-
ins). We extracted the class diagrams of the back-
end and of the web site (1833 classes and interfaces).
Then, by looking at the patterns used in the .Net Core
dependency injection framework and its counterpart
in Angular TypeScript, we recovered the 144 prim-
itives and most of the connectors. Only the HTTP-
based connectors were recovered by hand. Last, we
recovered the composites thanks to graph clustering.

The graph clustering algorithm we used is param-
eterized by the number of expected composites: it
is the variable in this experiment. Figure 6 shows
how the value of the metrics evolves when we change
this parameter, averaged over the whole architecture.
In the 20-27 range, the clustering algorithm recog-
nizes the web site and the back-end server, even if the
boundary is approximate: the unique component im-
plementing the calls to all the back-end APIs (named
ApiService) is put in the back-end, instead of the
web site. The low variations of the metrics in this
range are explained by the fact that, in the 20-27
range, the additional composites created by the clus-
tering algorithm contain only few primitives8. Such
composites have little effect on the averaged metrics
nor on the supporting guidelines.

At 28 composites, the clustering algorithm moves
ApiService from the back-end to the web site (like
in the actual source code). This change greatly in-
creases the number of entry points (one entry point
per API component, instead of a single one), which
appears in the #ep/c curve in Figure 6. This change
effectively improves conformance with, e.g., the prin-

8The explanation of this behavior of the clustering al-
gorithm is irrelevant according to the topic of this paper.

ciples SC-2 separation of system and user functional-
ities and SA-17(7) structure for least privilege.

Beyond 28 composites, the regular decrease is ex-
plained by the fact that, as the requested number of
composites increases, their size decreases until even-
tually each composite contains exactly one primitive.
Our metrics are irrelevant in such a case, which boils
down until you have no composite.

6 CONCLUSION

In this paper, we contribute to address the challenge of
providing the software architect with means to evalu-
ate whether an architecture will yield a secure sys-
tem, without exploitable vulnerabilities. We do so by
proposing metrics rooted in acknowledged guidelines.
This last point is one novelty of our work in compar-
ison to related works. In the end, it appears that the
metrics we propose are different from the ones previ-
ously proposed in the related works. Our focus on the
patterns, guidelines and smells ensures a direct link to
security concerns and intrinsically pinpoints sugges-
tions for improving the architecture, complementing
other previously existing metrics.

We used Xwiki, a large open-source application,
to ensure that an architect can use our metrics to
identify potential security-related weaknesses and im-
provements in her/his architecture, by referring to
the supporting guidelines. Using Bitwarden, another
open-source application, we showed that our metrics
behave well when the architect modifies the architec-
ture composites.

The main threat to validity is the fact that, in our
experiments, we played the role of the architect. We
need to setup a controlled experiment with engineers
to confirm our results. Besides, our reverse engineer-
ing process for Xwiki and Bitwarden is approximate.
Still, our observations and conclusions are drawn on
the recovered architectures, not on the real applica-
tions. Although we believe that, therefore, this limita-
tion of our experiments does not threaten the validity
of our conclusions, it does emphasize that our work
assumes that the architecture model is available.

In this paper, metrics focus on components, and
more specifically composites, which are well suited
to study isolation, compartmentalization, and separa-
tion of functions. In our future work, we plan to fo-
cus on connectors to provide additional metrics. Our
intuition is that metrics on connectors would empha-
size aspects related to redundancy of communication
paths, and therefore availability, resilience and denial
of service prevention.

REFERENCES

Alshammari, B., Fidge, C., and Corney, D. (2009). Security
Metrics for Object-Oriented Class Designs. In Ninth
International Conference on Quality Software.

Casola, V., De Benedictis, A., Rak, M., and Villano, U.
(2020). A novel Security-by-Design methodology:
Modeling and assessing security by SLAs with a
quantitative approach. Journal of Systems and Soft-
ware, 163.

Du, X., Chen, B., Li, Y., Guo, J., Zhou, Y., Liu, Y., and
Jiang, Y. (2019). Leopard: identifying vulnerable
code for vulnerability assessment through program
metrics. In Proceedings of the 41st International Con-
ference on Software Engineering. IEEE Press.

Fernandez-Buglioni, E. (2013). Security Patterns in Prac-
tice: Designing Secure Architectures Using Software
Patterns. Wiley.

Gennari, J. and Garlan, D. (2012). Measuring Attack
Surface in Software Architecture. Technical Report
CMU-ISR-11-121, Carnegie Mellon University.

Herley, C. and van Oorschot, P. C. (2018). Science of Se-
curity: Combining theory and measurement to reflect
the observable. IEEE Security & Privacy, 16(1).

Jürjens, J. (2002). UMLsec: Extending UML for Secure
Systems Development. In UML — The Unified Mod-
eling Language, LNCS. Springer.

Manadhata, P. K. and Wing, J. M. (2011). An Attack Sur-
face Metric. IEEE Transactions on Software Engi-
neering, 37(3).

NIST (2020). Security and Privacy Controls for Information
Systems and Organizations.

Rak, M. (2017). Security Assurance of (Multi-)Cloud Ap-
plication with Security SLA Composition. In Green,
Pervasive, and Cloud Computing, LNCS. Springer.

Siavvas, M., Kehagias, D., Tzovaras, D., and Gelenbe, E.
(2021). A hierarchical model for quantifying software
security based on static analysis alerts and software
metrics. Software Quality Journal, 29(2).

Skandylas, C., Khakpour, N., and Cámara, J. (2022). Secu-
rity Countermeasure Selection for Component-Based
Software-Intensive Systems. In IEEE 22nd Interna-
tional Conference on Software Quality, Reliability and
Security (QRS).

Sommerville, I. (2016). Software Engineering. Pearson,
10th edition edition.

Wagner, S., Goeb, A., Heinemann, L., Kläs, M., Lampa-
sona, C., Lochmann, K., Mayr, A., Plösch, R., Seidl,
A., Streit, J., and Trendowicz, A. (2015). Oper-
ationalised product quality models and assessment:
The Quamoco approach. Information and Software
Technology, 62.

Waidner, M., Backes, M., and Müller-Quade, J. (2014). De-
velopment of Secure Software with Security By De-
sign. Technical Report SIT-TR-2014-03, Fraunhofer
Institute for Secure Information Technology.

Yskout, K., Scandariato, R., and Joosen, W. (2015). Do
security patterns really help designers? In Proceed-
ings of the 37th International Conference on Software
Engineering - Volume 1. IEEE Press.

