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Abstract: Fitts’ law is often employed as a predictive model for human move-

ment, especially in the field of human-computer interaction. Models with an as-

sumed Gaussian error structure are usually adequate when applied to data col-

lected from controlled studies. However, observational data (often referred to as
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data gathered “in the wild”) typically display noticeable positive skewness relative

to a mean trend as users do not routinely try to minimize their task completion

time. As such, the exponentially-modified Gaussian (EMG) regression model has

been applied to aimed movements data. However, it is also of interest to reasonably

characterize those regions where a user likely was not trying to minimize their task

completion time. In this paper, we propose a novel model with a two-component

mixture structure – one Gaussian and one exponential – on the errors to identify

such a region. An expectation-conditional-maximization (ECM) algorithm is de-

veloped for estimation of such a model and some properties of the algorithm are

established. The efficacy of the proposed model, as well as its ability to inform

model-based clustering, are addressed in this work through extensive simulations

and an insightful analysis of a human aiming performance study.

Key words: block relaxation; ECM algorithm; exponentially-modified Gaussian;

Fitts’ law; human-computer interaction; model-based clustering

1 Introduction

An individual’s reaction time and movement time are important markers about

the status of their neurological system. Neurologists believe that reaction time

is, perhaps, the most widely-used measure in neuroscience and psychology for

noninvasively assessing processing in the brain (Wong et al., 2017). For instance,
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patients with Parkinson’s disease are found to have prolonged reaction time and

movement time (Evarts et al., 1981), while slowed reaction time has also been

regarded as an early feature of Alzheimer’s disease (Gordon and Carson, 1990).

Fitts’ law (Fitts, 1954) is an empirical law that describes movement time for human

voluntary movement. In the Human-Computer Interaction (HCI) field, it has been

adapted to model selection times in graphical user interfaces (GUIs) (MacKenzie

and Buxton, 1992). Specifically, the minimum movement time t needed to select

a rectangular target located at a distance d away, with width w and height h, is

given by t = a + b log2

(
1 + d

min(h,w)

)
. This relationship has been demonstrated

in numerous GUI contexts through controlled experiments, where participants

have been asked to maximize their movement performance by going “as quickly

and precisely” as possible. Usually, movement time data collected this way has

relatively low variance, and the parameters of the linear model, a and b, are directly

estimated using maximum likelihood estimation (or equivalently, ordinary least

squares).

However, Fitts’ model is often ill-fitting when the data arises from non-controlled

settings, such as crowdsourced web-experiments (Goldberg et al., 2014) or field

studies (Chapuis et al., 2007). It was recently argued that in non-controlled set-

tings, Fitts’ law should be interpreted as a model of minimum observed times

(Gori et al., 2017, 2018). The idea is that, in these studies, one cannot control for

perturbation or participant motivation, which may increase (but not decrease) the

movement time needed to select the target. At the same time, one cannot näıvely
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fit a lower bound to the dataset by identifying minimum movement times, since

some movements may be poorly segmented. Another opportunity for lower than

possible movement times is when participants accidentally click on a target (invol-

untary movement). It was previously shown that in this case, Fitts’ law could be

recovered using an exponentially-modified Gaussian (EMG) regression (Gori and

Rioul, 2019).

The EMG distribution is defined as a convolution of the distributions of two in-

dependent random variables, where one follows a Gaussian distribution and the

other follows an exponential distribution. A random variable X follows an EMG

distribution if the density has the form

f(x;µ, σ, α) =
α

2
exp

{α
2
(2µ+ ασ2 − 2x)

}
erfc

(µ+ ασ2 − x√
2σ

)
, (1.1)

where µ ∈ R and σ2 are the variance and mean, respectively, of the Gaussian

component, α > 0 is the rate of the exponential component, and erfc(·) is the

complementary error function. We will write X ∼ EMG(µ, σ, α) to denote when

a random variable follows the EMG distribution as defined above. Due to its

characteristic positive skewness from the exponential component, the EMG dis-

tribution has provided insight into applied problems across a diverse cross-section

of fields, such as microarray preprocessing (Silver, 2009), cell biology (Golubev,

2010), chromatography (Kalambet et al., 2011), and neuropsychology (Palmer and

Horowitz, 2011). In the present study on human aiming performance, we seek a

more critical examination of the data, which begins with analyzing EMG regression

fits for individual subjects. We seek additional flexibility to understand from which
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process the individual’s performance arises: the one characterized by the Gaussian

distribution or the one characterized by the exponential distribution. The EMG

distribution does not allow for classifying such an individual observation, so we

propose a competing regression model where the error structure is assumed to be

a two-component mixture of a Gaussian and an exponential distribution. Thus,

both the EMG regression model and our novel mixture model are able to charac-

terize data with positive residuals relative to a mean trend, but the latter can also

serve to perform model-based clustering.

We must also address some computational challenges of the two models in this

work. For estimating the EMG regression model, we have found the existing com-

putational routines to not be particularly robust, especially for large datasets like

those analyzed in this work. We develop a block-relaxation algorithm for esti-

mating an EMG regression model with (potentially) multiple predictors. We then

develop an expectation-conditional-maximization (ECM; Meng and Rubin, 1993)

algorithm for estimating our novel mixture-of-regressions model. A computational

advantage of our novel mixture-of-regressions model is the global convergence of

its corresponding ECM algorithm, which we lack in the block-relaxation algorithm

for the EMG regression model.

The rest of this paper is organized as follows. In Section 2, we introduce the EMG

regression model and our novel mixture-of-regressions model, which we refer to

as a mixture-of-regressions model with flare, or flare regression model, in short.

In Section 3, we detail the algorithms used for estimating both the EMG regres-
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sion model and the flare regression model. We further establish some theoretical

properties of the block-relaxation algorithm for estimating the EMG regression

model, and prove the global convergence of the ECM algorithm for estimating

the flare regression model. Estimation of standard errors for the estimated model

parameters and details about a model-based clustering strategy using the flare

regression model are also addressed. In Section 4, a large simulation study is con-

ducted to assess the performance and robustness of the ECM algorithm for the

flare regression model. In Section 5, we analyze human aiming performance data.

We emphasize the results from the flare regression model, which are benchmarked

against the EMG regression results. Other candidate models are considered in

our analysis, but the metrics used demonstrate superior performance of the flare

regression model in the presence of more extreme positive residuals. Finally, we

conclude with a summary of the main results in Section 6.

2 The Models

For both of the models that we present, let Y1, . . . , Yn denote a random sample of

size n, where each of these univariate random variables is measured with a vector

of p-dimensional predictors, p ∈ N+, given by X1, . . . ,Xn. We use the convention

that Xi,1 ≡ 1, i = 1, . . . , n, to reflect an intercept in our models. We further let

(yi,xi) denote the realizations of the pairs (Yi,Xi). Thus, our focus will be on

linear regression models of the form

yi = xiβ + ϵi, (2.1)
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but where non-traditional (i.e., non-Gaussian) distributional structures of ϵi will

be explored.

First we consider the EMG regression setting, where the error structure for the

model in (2.1) is ϵi ∼ EMG(0, σ, α), i = 1, . . . , n. We next consider the model

where ϵi ∼ λN (0, σ2)+ (1−λ)Exp(α). For this two-component mixture structure

on the error terms, λ ∈ [0, 1] is the mixing proportion, N (0, σ2) is the Gaussian

distribution with mean 0 and variance σ2, and Exp(α) is the exponential distri-

bution with mean α−1, where α > 0 is the rate parameter. This structure gives

us the model we refer to as a mixture-of-regressions model with flare, or simply

a flare regression model. The etiology of the term “flare” for our purposes comes

from the phenomenon that occurs in gamma-ray bursts, where flaring is an erratic

emission of a huge amount of energy on a relatively short timescale (Bernardini

et al., 2011). From a data perspective, this behavior manifests as an overall (piece-

wise) linear trend between the response and predictor(s), but a subset of the data

clearly deviates more substantially from the linear trend than the rest of the data.

One may also envision this as a form of one-sided contamination. Scatterplots

of simulated data from an EMG regression model and a flare regression model

are given in Figure 1 and Figure 2, respectively, as well as in the Supplemental

Material (S.7).
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3 Algorithms, Estimation, and Some Properties

3.1 EMG Regression and a Block-Relaxation Algorithm

Following (1.1), the density function for the EMG regression model is

f(yi;xi,ψ) =
α

2
exp

{α
2
[ασ2 − 2(yi − x⊤

i β)]
}
erfc

(ασ2 − (yi − x⊤
i β)√

2σ

)
,

which yields the corresponding data loglikelihood

ℓ(ψ) = n
(
log

α

2
+
α2σ2

2

)
−

n∑
i=1

{
α(yi − x⊤

i β)− log
[
erfc

(ασ2 − (yi − x⊤
i β)√

2σ

)]}
.

Here, ψ = (β⊤, σ2, α)⊤ is the parameter vector of interest. To estimate ψ, we par-

tition it into two blocks, (ψ⊤
1 ,ψ

⊤
2 )

⊤, where ψ1 = β and ψ2 = (σ2, α)⊤. Maximum

likelihood estimation is performed by setting the objective function Q(ψ) = ℓ(ψ).

By using the partitioning we defined for ψ, we can then apply the iterative block-

relaxation algorithm of de Leeuw (1994) to estimate ψ. See Algorithm 1 in the

Supplemental Material (S.1) for additional details.

The following theorem about concavity properties of EMG models allows us to

comment about the concavity of Q(ψ).

Theorem 1 Let Y |X ∼ EMG(X⊤β, σ, α) be (conditionally) an EMG random

variable.

1. The logarithm of f(y;x,ψ) is strictly concave in y.

2. ℓ(ψ) is strictly concave in β.
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3. ℓ(ψ) is strictly concave in α if ασ < 1.

See the Supplemental Material (S.2–S.4) for a detailed proof of the above.

From Theorem 1, we conclude the objective function Q(ψ) = ℓ(ψ) is always

strictly concave in β and is strictly concave in α if ασ < 1. It is still challeng-

ing to derive sufficient conditions that ensure the strict concavity of Q(ψ) in σ.

Hence, getting sufficient conditions that ensure the strict concavity of Q(ψ) in

ψ remains an open problem. Due to the lack of concavity of Q(ψ) in ψ, the

global convergence of the block-relaxation algorithm cannot be guaranteed. How-

ever, this problem is circumvented in the flare mixture regression setting, which

we show after developing the corresponding objective function for estimating its

parameters.

3.2 The Flare Regression Model and an ECM Algorithm

For the flare regression model, the density function is

f(yi;xi,θ) =
λ√
2πσ2

exp
{
− 1

2σ2
(yi − x⊤

i β)
2
}

+ (1− λ)α exp
{
− α(yi − x⊤

i β)
}
I
{
(yi − x⊤

i β) > 0
}
,

(3.1)

which yields the corresponding (observed) data loglikelihood

ℓo(θ) =
n∑

i=1

log

{
λ√
2πσ2

exp
{
− 1

2σ2
(yi − x⊤

i β)
2
}

+ (1− λ)α exp
{
− α(yi − x⊤

i β)
}
I
{
(yi − x⊤

i β) > 0
}}

.

(3.2)

Here, θ = (λ,β⊤, σ2, α)⊤ is the parameter vector of interest. Note, however, that

finding θ̂ by simply using (3.2) is challenging as in most finite mixture models, so
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we consider the (yi,xi) as incomplete data resulting from non-observed complete

data. The data is made complete by augmenting the problem with the unobserved

indicators Zi = I{observation i belongs to the Gaussian component}. Thus, the

complete-data loglikelihood is easily found to be

ℓc(θ) =
n∑

i=1

[
Zi log

(
λ√
2πσ2

exp
{
− 1

2σ2
(yi − x⊤

i β)
2
})

+ (1− Zi) log
(
(1− λ)α exp

(
− α(yi − x⊤

i β)I
{
(yi − x⊤

i β) > 0
}))]

.

(3.3)

Maximum likelihood estimation for finite mixture models is typically performed

via an expectation-maximization (EM) algorithm (Dempster et al., 1977). In many

classic parametric mixtures, solutions of the maximization-step (M-step) exist in

closed form; see McLachlan and Peel (2000). However, we cannot directly estimate

θ for the flare regression model using the above complete-data setup. In particular,

we lack a closed-form solution of the regression coefficient vector β in the M-step.

However, we mitigate this issue by implementing an iterative procedure within a

conditional-maximization-step (CM-step) of an ECM algorithm.

In the first expectation-step (E-step) for iteration t, t = 0, 1, . . . , we compute the

expected complete-data loglikelihood as

Q(θ;θ(t)) =
n∑

i=1

[
Z

(t)
i log

( λ√
2πσ2

exp
{
− 1

2σ2
(yi − x⊤

i β)
2
})

+ (1− Z
(t)
i ) log

(
(1− λ)α exp

(
− α(yi − x⊤

i β)I
{
(yi − x⊤

i β) > 0
}))]

,
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where

Z
(t)
i =

λ(t)

2πσ2(t) exp
{
− 1

2σ2(t) (yi − x⊤
i β

(t))2
}

f(yi;xi,θ(t))
(3.4)

is the posterior membership probability of observation i belonging to the Gaussian

component of the flare regression model and the denominator is the flare regression

density in (3.1). We then partition θ into (θ⊤1 ,θ
⊤
2 )

⊤, where θ1 = β and θ2 =

(σ2, α, λ)⊤.

For the first CM-step, we calculate θ
(t+1)
1 = argmax

θ1

Q(θ;θ(t)). In this step, we

are updating β(t+1) by maximizing the objective function m(β) = Q(β;θ(t)) with

respect to β, subject to the linear inequality constraints (1−Z
(t)
i )(yi − x⊤

i β) ≥ 0,

i = 1, . . . , n. Not surprisingly, it is challenging to calculate the closed form for the

maximum likelihood estimate (MLE) of β. Instead, we iteratively update β using

a gradient algorithm introduced by Lange (1995):

β(t+1) = β(t) −
[
d2m

dβ2

]−1
∣∣∣∣∣
β=β(t)

dm

dβ

∣∣∣∣∣
β=β(t)

, (3.5)

where

dm

dβ
=

n∑
i=1

[
Z

(t)
i

σ2(t)
xi(yi − x⊤

i β) + α(t)(1− Z
(t)
i )xi

]
and

d2m

dβ2
= −

n∑
i=1

Z
(t)
i

σ2(t)
xix

⊤
i .

(3.6)

Next, set θ(t+1/2) = (θ
(t+1)⊤
1 ,θ

(t)⊤
2 )⊤ for the second E-step of the current iteration,

and obtain the updated posterior membership probabilities as

Z
(t+1/2)
i =

λ(t)

2πσ2(t) exp
{
− 1

2σ2(t) (yi − x⊤
i β

(t+1))2
}

f(yi;xi,θ(t+1/2))
. (3.7)
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With θ1 fixed at θ
(t+1)
1 , we find θ

(t+1)
2 = argmax

θ2

Q(θ;θ(t+1/2)) in the second

CM-step, which yields the following MLEs that are weighted using the updated

posterior membership probabilities Z
(t+1/2)
i , i = 1, . . . , n:

λ(t+1) =
1

n

n∑
i=1

Z
(t+1/2)
i (3.8)

σ2(t+1) =

∑n
i=1 Z

(t+1/2)
i (yi − x⊤

i β
(t+1))2∑n

i=1 Z
(t+1/2)
i

and (3.9)

α(t+1) =

∑n
i=1(1− Z

(t+1/2)
i )∑n

i=1(1− Z
(t+1/2)
i )(yi − x⊤

i β
(t+1))

. (3.10)

See Algorithm 2 in the Supplemental Material (S.1) for additional details.

Letting θ(∞) and Z
(∞)
i , i = 1, . . . , n, denote, respectively, the parameter estimates

and posterior membership probabilities obtained upon convergence of Algorithm

2, we proceed to set θ̂ = θ(∞) as our estimate for θ. Moreover, the Z
(∞)
i and

1−Z
(∞)
i are the probabilities that an observation’s error term came from, respec-

tively, the Gaussian component or the exponential component. A decision rule can

then be defined to determine component membership based on the Z
(∞)
i s when

compared to a pre-determined cut-off probability p∗. Specifically, the model-based

clustering strategy involving our estimated flare regression model is to classify ob-

servation i as belonging to the exponential component if 1−Z
(∞)
i ≥ p∗, otherwise

it is classified as belonging to the Gaussian component. The value used for p∗ in

our analysis will be discussed later.

While traditional EM algorithms are sensitive to the choice of initial values, thus

potentially influencing final estimation outcomes (Dempster et al., 1977; Press

et al., 2007; Bilmes, 1998), our ECM algorithm exhibits satisfactory precision in



A Novel Mixture Model for Characterizing Human Aiming Performance Data 13

estimation even when starting from initial values far from the true parameters.

The default process for generating initial values (i.e., at t = 0) is as follows. β(0)

is set at the estimates from the simple linear regression fit to the data. We then

take the residuals from that fit to help with the remaining initial values. σ(0)

is generated from an exponential distribution with rate equal to the inverse of

the square root of the residual sum of squares (1/
√
RSS); i.e., the mean equals

√
RSS. α(0) is generated from a folded normal distribution with location equal to

the inverse of the sum of all positive residuals and a standard deviation of 1. This

reflects enough variability in terms of likely candidate values for α. Finally, λ(0) is

determined by the proportions resulting from K-means clustering (K = 2) on the

residuals. We employ this strategy throughout all of our numerical analyses.

Standard errors for mixture models like our flare regression model can be estimated

in various ways. We briefly highlight two ways. First is to simply bootstrap to

obtain the standard errors (see Chapter 2 of McLachlan and Peel, 2000). Second

is to employ the method due to Louis (1982), which calculates the observed-data

information matrix as the difference between the complete-data information matrix

and the missing-data information matrix ; i.e.,

I(θ) = −Eθ̂

(
∂2ℓc(θ)

∂θ∂θ⊤

)
−Eθ̂

[(
∂ℓc(θ)

∂θ

)(
∂ℓc(θ)

∂θ

)⊤]
+Eθ̂

(
∂ℓc(θ)

∂θ

)
Eθ̂

(
∂ℓc(θ)

∂θ

)⊤

,

where, again, ℓc(θ) is the complete-data loglikelihood in (3.3). Detailed derivations

of I(θ) are in the Supplemental Material (S.5).
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3.2.1 Convergence of the ECM Algorithm

We will now show the convergence of our ECM algorithm. For brevity, we denote

the above ECM algorithm map as A(θ). Also, denote the update β(t+1) ≡ m(β(t))

and A(θ2;θ1) as the iterative updating procedure of A assuming a fixed θ1 = β.

Theorem 2 For any fixed θ2, the gradient updating procedure m converges to a

local maximum β(∞).

Proof. Assuming dim(β) = p, p ∈ N+, the matrix d2m/dβ2 is negative-definite in

every iteration t. Also, m(β) is a continuous concave function in Rp. Hence, the

set {β ∈ Rp : m(β) ≥ c} is compact for every constant c. The result follows as an

immediate consequence of Proposition 1 in Lange (1995). □

Theorem 3 For any fixed θ1, the iterative updating procedure A(θ2;θ1) converges

to a local maximum and Q(θ
(t+1)
2 ;θ1) > Q(θ

(t)
2 ;θ1).

Proof. Assume a fixed θ2. Because the updating procedure m converges to

the point β(∞), following the result from Proposition 2 in Lange (1995), we can

conclude that for all sufficiently large t, either β(t) = β(∞) or Q(θ
(t+1)
1 ;θ2) >

Q(θ
(t)
1 ;θ2), where recall that θ1 = β. Then, given any fixed β, the existence of

the closed-form MLEs of θ2 is guaranteed; see Equations (3.8)–(3.10). Assuming

a fixed θ1, the iterative updating procedure A(θ2;θ1) is, thus, a standard EM

algorithm. Hence, the convergence of A(θ2;θ1) and the monotonicity of Q (i.e.,

Q(θ
(t+1)
2 ;θ1) > Q(θ

(t)
2 ;θ1)) is guaranteed by Wu (1983). □
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Theorem 4 All the limit points of the ECM sequence above are stationary points

of the observed-data loglikelihood ℓo(θ).

Proof. From Theorems 2 and 3, we conclude ℓc(θ
(t+1)) > ℓc(θ

(t)) for every t. Since

the objective function ℓc(θ) is a density function belongs to the exponential family,

it is jointly continuous and concave in θ. Hence, the corresponding CM-step always

converges to a stationary point. Thus, the result is an immediate consequence of

Theorem 4 in Meng and Rubin (1993). □

In summary, unlike the block-relaxation method, the ECM algorithm is guaranteed

to converge to a stationary point of the loglikelihood function, assuming the flare

regression model. Due to the fact that the density function of the flare regression

model belongs to the exponential family, the limiting point to which the ECM

algorithm converges is a local maximum of the likelihood function.

4 Simulation Study

We conduct a large simulation study to assess the performance of the ECM al-

gorithm for the flare regression model. This involves calculating and comparing

root-mean-square errors (RMSEs) and mean biases, as well as analyzing its ro-

bustness under the presence of outliers and contaminated data, and classification

performance. Finally, we conduct a broader model comparison study with three

other candidate models, including the EMG regression model, that are also esti-

mated using the simulated data. Bayesian information criterion (BIC; Schwarz,

1978) values are calculated to characterize the performance of the flare regression
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model and its corresponding ECM algorithm relative to the estimates obtained

from the other candidate models.

We consider two different conditions for the regression predictors: one with a

single predictor and one with two predictors. The predictors under each condition

are generated as xi,j ∼ Unif [−10, 10], i = 1, . . . , n, j = 2, 3, and, again, setting

xi,1 ≡ 1. We further consider three different scenarios on the mixture components

for the errors: well-separated components, moderately-separated components, and

overlapping components. For each scenario, we randomly generated B = 1000

Monte Carlo samples for each of the sample sizes n ∈ {100, 500, 1000}. The explicit

parameter settings for all 12 data-generating models are given in Table 1. Please

also refer to Figures 3–6 in the Supplemental Material (S.7) for visualizations of

these simulation settings.

4.1 General Estimation Performance

Tables of the RMSEs and biases are given in Tables 2–5 in the Supplemental

Material (S.6). Visualizations of these tabulated results are also given in Figures

7–18 of the Supplemental Material (S.7). From these results, we can summarize

some of the behavior exhibited by the RMSEs and biases across the 12 simulation

models.

In 11 out of the 12 simulation settings, both the calculated RMSEs and mean

biases show sufficiently low orders of magnitude in absolute value, with setting

M12 being the only exception. This demonstrates satisfactory precision of the
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Table 1: Parameter settings for the simulation regarding the flare regression model

Setting Component Structure (λ, 1− λ) β σ α

M1 Well-Separated (0.333, 0.667) (9, 3) 0.5 0.05

M2 Moderately-Separated (0.333, 0.667) (9, 3) 0.5 0.17

M3 Overlapping (0.333, 0.667) (9, 3) 0.5 0.5

M4 Well-Separated (0.9, 0.1) (9, 3) 0.5 0.05

M5 Moderately-Separated (0.9, 0.1) (9, 3) 0.5 0.17

M6 Overlapping (0.9, 0.1) (9, 3) 0.5 0.5

M7 Well-Separated (0.5, 0.5) (−2, 1, 13) 0.5 0.04

M8 Moderately-Separated (0.5, 0.5) (−2, 1, 13) 0.5 0.2

M9 Overlapping (0.5, 0.5) (−2, 1, 13) 0.5 0.5

M10 Well-Separated (0.9, 0.1) (−2, 1, 13) 0.5 0.04

M11 Moderately-Separated (0.9, 0.1) (−2, 1, 13) 0.5 0.2

M12 Overlapping (0.9, 0.1) (−2, 1, 13) 0.5 0.5

ECM algorithm. The imprecise parameter estimates from setting M12 occurs

due to the fact that only a small proportion of data were generated from the

exponential component (λ = 0.9) and that the exponential rate was set to be a

large value (α = 0.5). A small mixing proportion for the exponential component,

along with this larger exponential rate, will obfuscate the identifiability of the

mixture model. Like traditional EM algorithms, estimating with ECM algorithms

suffer when faced with model identifiability problems.
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In most of the simulation settings, both the calculated RMSEs and mean biases

noticeably decrease when the sample size increases from n = 100 to n = 1000. As

expected, this behavior shows that our ECM algorithm, like other optimization

algorithms, tends to perform better as the sample size becomes larger.

Finally, in most of the simulation settings, the ECM algorithm outputs estimates

with lower RMSE and mean bias values under the simulation scenario with well-

separated components, and outputs estimation results with higher RMSE and

mean bias values under the simulation scenarios with overlapping components.

This shows that the ECM algorithm consistently produces more precise estimates

when data arise from a mixture with well-separated components. Similar to the

reason noted earlier about the subpar performance using data generated from

setting M12, a lack of model identifiability emerges when the mixture components

heavily overlap with each other.

4.2 Classification Analysis

As introduced in Section 3.2, the flare model and its corresponding ECM algorithm

have a unique advantage over the EMG regression model in performing model-

based clustering on data that exhibit distinct components: one component with a

linear trend and the other with a positive residual. In this subsection, we assess

its performance using the mean of the number of correct allocations (MCA) as the

criterion. This measure quantifies the accuracy of the clustering by calculating the

average number of data points correctly assigned to their respective clusters.

Table 6 in the Supplemental Material (S.6) presents the table of Misclassification



A Novel Mixture Model for Characterizing Human Aiming Performance Data 19

Error Rates (MCAs) and their relative percentages, each was calculated from B =

1000 Monte Carlo samples, featuring different settings for the cut-off probability

p∗ ∈ {0.5, 0.85}. The ECM algorithm exhibits excellent clustering performance

under both p∗ values. Across model settings M1–M12, the algorithm consistently

achieved high accuracy: for well-separated cases, it correctly identified over 95% of

all clusters; for moderately-separated cases, it correctly identified over 85% of all

clusters (mostly exceeding 90%); and for overlapping cases, it correctly identified

over 64% of all clusters (with a majority exceeding 80%).

4.3 Robustness Analysis

4.3.1 Outlier Test

Frequently, technical or human errors lead to outliers, posing significant challenges

when attempting to achieve a good fit for the model in various empirical studies.

In this investigation, we sought to assess the robustness of our flare regression

model and its corresponding ECM estimation algorithm by applying them to data

deliberately contaminated with outliers.

Following the simulation settings outlined at the beginning of Section 4, we adopt

the main structures from models M1–M12. We then introduce outliers with ex-

treme positive skewness. These outliers are generated from an exponential distri-

bution with a rate parameter of 0.001. We simulate outlier percentages of 1%, 5%,

and 10% of the original simulated dataset. For each percentage value, we randomly

generated B = 1000 Monte Carlo samples for the sample size n = 200. Subse-

quently, the dataset, now containing outliers, will be fitted with the flare model.
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We will then evaluate the performance of the ECM algorithm by comparing the

RMSEs and mean biases with our earlier results obtained from the uncontami-

nated data, which did not include outliers. The specific parameter settings and

results are provided in Tables 7–8 of the Supplemental Material (S.6).

Our ECM algorithm consistently demonstrated robust performance across vari-

ous sample sizes, even in the presence of outliers. Across different outlier per-

centages, our model exhibited comparable performance to data without outliers.

Specifically, model configurations with well-separated and moderately-separated

structures reported similar magnitudes for RMSEs and mean biases, irrespective

of the outlier percentage (including 1% simulated outliers). However, when the

outlier percentages increased to 5% and 10% of the original simulated dataset, we

observed slightly- to moderately-elevated values for both RMSEs and mean biases

compared to the values calculated from the outlier-free data. This phenomenon

can be attributed to the identifiability issue inherent in all mixture models.

4.3.2 t-Distribution Contamination Test

To further test the robustness of the ECM algorithm, we simulate a contaminated

dataset following the model described in Eqn(2.1), with an error structure char-

acterized by a mixture of a t-distribution with degrees of freedom ν (for heavier

tails) and an exponential distribution with rate α. Similar to the setting out-

lined at the beginning of Section 4, we consider a single predictor, generated as

xi,2 ∼ Unif[−10, 10], i = 1, . . . , n, while setting xi,1 ≡ 1. We further explore a

total of six scenarios with both well-separated and overlapping structures for the
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mixture components of the errors, and varying the t-distribution’s degrees of free-

dom ν ∈ {5, 50, 500}. For each scenario, we randomly generated B = 1000 Monte

Carlo samples for a sample size of n = 200. The explicit parameter settings for

the six new mixture-of-regressions models are given in Table 2.

Table 2: Parameter settings for the simulation regarding the mixture of t and

exponential regression model

Setting Component Structure (λ, 1− λ) β ν α

M13 Well-Separated (0.6, 0.4) (−2, 6) 5 0.05

M14 Well-Separated (0.6, 0.4) (−2, 6) 50 0.05

M15 Well-Separated (0.6, 0.4) (−2, 6) 500 0.05

M16 Overlapping (0.4, 0.6) (6,−2) 5 0.5

M17 Overlapping (0.4, 0.6) (6,−2) 50 0.5

M18 Overlapping (0.4, 0.6) (6,−2) 500 0.5

When fitting the flare model to the contaminated data simulated from models

M13 to M18, as outlined in Table 2, we compare the estimated regression coeffi-

cients (β̂) with the theoretical regression coefficients (β). Additionally, we assess

the agreement between the estimated Gaussian variance (σ̂2) and the theoretical

t variance ( ν
ν−2

), and between the estimated exponential rate (α̂) and the theoret-

ical exponential rate (α), using metrics such as RMSEs and mean biases. With

remarkably low magnitudes in both RMSEs and mean biases, our observations

highlight the excellent robustness of the ECM algorithm when applied to data

simulated from structurally different models. Further details, including RMSEs
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and mean biases after fitting the ECM algorithm to data generated from models

M13–M18, are provided in Tables 9 and 10 of the Supplemental Material (S.6).

4.4 Broader Model Comparison Study

We further examine the efficacy of the flare regression model by fitting three other

models to the simulated data: the EMG regression model, the classic linear regres-

sion model, and a two-component mixture-of-linear-regressions model. The EMG

regression model and its corresponding block-relaxation algorithm are as presented

in Sections 2 and 3. The classic linear regression model is just the model in (2.1),

but where ϵi ∼ N(0, σ2), for i = 1, . . . , n. Here, the parameter vector of interest is

(β⊤, σ2)⊤, which is estimated by ordinary least squares. For the two-component

mixture of linear regressions, we have:

yi =


xiβ1 + ϵi1, with probability λ;

xiβ2 + ϵi2, with probability 1− λ,

where the ϵij ∼ N(0, σ2
j ) are (conditionally) iid, i = 1, . . . , n and j = 1, 2. In this

mixture model, the parameter vector of interest is (λ, β⊤
1 , β

⊤
1 , σ

2
1, σ

2
1)

⊤, whose

closed-form MLEs can easily be derived using a standard EM algorithm (De Veaux,

1989). This EM algorithm is implemented by the regmixEM() function in the R

package mixtools (Benaglia et al., 2009).

On average, over 90% of the time the flare regression model outperforms the other

candidate models in terms of having the lowest BIC values. Please see Table

1 of the Supplemental Material (S.6) for detailed percentages of the lowest BIC
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values from all the candidate models estimated using the data generated from

each simulation setting. Overall, this demonstrates the strong performance of the

flare regression model, especially in the context of data that one might typically

consider modeling with EMG regression.

5 Application: Human Aiming Performance Data

5.1 Data Description and Model Settings

We now analyze data from the field study by Chapuis et al. (2007), which was

produced by unobtrusively collecting mouse input and corresponding GUI data

from 24 users over several months. The dataset consists of more than 2 million

movements. Many variables of interest were collected, including time, cursor po-

sition, mouse movements, mouse and button events (click, drag, long click), type

and properties of the selected target, such as size and role of the target (e.g., resiz-

ing button, edge of a window), as well as information regarding the system used

(which input device, desktop/laptop, Operating System). In this work, we used

only information on movement time, distance to the target, and target size, which

is consistent with applying Fitts’ model.

The theoretical model is given by y = β0 + β1x, where y = te/1000 (converting

milliseconds to seconds) and x = log2

(
1+ dist

min(wt,ht)

)
. The variable x is considered

a difficulty measure, whose units are in bits. Typically, in controlled studies with

computer mice, β0 ∈ [−0.1, 0.1] and β1 ∈ [0.1, 0.2], where β0 is in seconds, and β1

is in seconds/bit. Compared to data typically collected in controlled studies, these
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Figure 1: (a) Scatterplot of real-world aiming performance from a user (User 1 in

the Supporting Information), (b) scatterplot of the residuals versus the fitted values

from a classic linear regression fit, and (c) the corresponding quantile-quantile plot

data display noticeable positive skewness because users do not routinely try to

minimize their task completion time. Figure 1(a) is a scatterplot of the data from

one user in our data. Notice the variability and considerable positive skewness

in the task completion times. Unlike aiming data collected in controlled studies,

a linear regression assuming zero-centered Gaussian noise is not an appropriate

model for the present data. This is indicated by a plot of the residuals versus the

fitted values (Figure 1(b)) and the corresponding quantile-quantile plot (Figure

1(c)) when fitting a simple linear regression model to the data.

In Gori and Rioul (2019), the EMG regression model was estimated with a very
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small subset of the “in the wild” data. Compared to classic linear regression with

Gaussian errors, the estimated EMG regression parameters fall within the typical

range of those for controlled experiments, and the fitted line matches well with the

idea of minimum movement time. We extend this previous work by fitting and

comparing the four models used in the simulation study discussed in Section 4.4.

Additionally, instead of only the small subset analyzed in Gori and Rioul (2019),

we use the entire “in the wild” dataset when estimating the four candidate models

for each of the 24 users.

5.2 Data Truncation and Estimation Results

Besides the characteristic positive skewness of the “in the wild” data, technical

difficulties associated with trajectory segmentation frequently produce outliers.

To obtain informative estimates, outliers produced by technical errors should be

eliminated. However, there is no definitive indicator as to when an observation

is an outlier. Thus, four different cut-off thresholds are investigated: T = 10s,

T = 20s, T = 30s, and T = 40s. When we set a fixed cut-off threshold, only

observations with response time y less than the threshold will be considered (i.e.,

yi ≤ T ). As the cut-off threshold increases, more extreme values of long reaction

times are present in the corresponding truncated data.

After fitting four candidate models discussed in Section 4.4, we find the EMG

regression model and the flare regression model consistently outperform the other

two candidate regression models (i.e., simple linear regression with Gaussian errors

and the two-component mixture of linear regressions) by producing significantly
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Figure 2: BIC comparisons for the EMG regression and flare regression model fits

with different cut-off values. Red cells indicate lower BIC values for the EMG

model; blue cells indicate lower BIC values for the flare regression model

lower BIC values under all four cut-off thresholds. As we increase the cut-off

threshold, however, more extreme values are naturally present, and the flare re-

gression model tends to perform better than the EMG regression model. Figure 2

provides a visualization of how the BIC values for each participating user change

as the cut-off threshold increases. In terms of their BIC values, blue cells corre-

spond to the EMG regression being a better fit, while the red cells correspond to

the flare regression model being a better fit. As the threshold increases, more red

cells appear in the figure. Thus, we see the ability of the flare regression model

relative to better characterize more extreme values relative to the EMG regression

model for these aiming performance data.

After balancing the need to eliminate outliers produced by possible technical errors

and the necessity of preserving observations with long movement times, the cut-
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off threshold T = 40s is selected. When the entire dataset is truncated using

T = 40s, the flare regression model outperforms all the other candidate models

with much lower BIC values for 16 out of the 24 participating users. Moreover, we

receive similar parameter estimates after fitting the four candidate models to the

data from each user. Similar parameter estimates show users tend to have similar

movement times while completing the aiming tasks. Exact parameter estimates

obtained for the four candidate models using the truncated data with threshold

T = 40s and BIC comparisons are in, respectively, Tables 12–15 and Table 11

of the Supplemental Material (S.6). Besides the BIC values, linear regression

yields parameter estimates outside the typical intervals for β0 and β1 in controlled

studies. The EMG and flare regression models, on the other hand, yield parameter

estimates within the typical intervals. However, the two models behave differently:

the EMG regression model tends to yield more estimates for the intercept inside the

typical interval, whereas the flare regression model tends to yield more estimates

for the slope inside the typical interval. A visualization for this comparison is

in Figure 19 of the Supplemental Material (S.7). Comparing to the intercept,

researchers consider the slope to be a more informative parameter when measuring

movement difficulty (Zhai, 2004; Guiard and Olafsdottir, 2011).

5.3 Classification and Interpretations

As noted in Section 1, both the EMG regression model and our flare regression

model are able to effectively handle data with positive residuals relative to their

underlying mean trend, which is a prominent feature of this “in the wild” data.



28 Yanxi Li et al.

However, as demonstrated in Section 3.2, we can further perform model-based

clustering on this “in the wild” data based on Z
(∞)
i , the posterior membership

probabilities. Those observations classified to the Gaussian component would rep-

resent the typical movement times of individuals in a controlled study, consistent

with Fitts’ law. Those observations classified to the exponential component would

represent where a user is not trying to maximize their performance as well as

any possible outliers that have not been removed due to the truncating strategy

employed earlier.

For example, Figure 3 is a scatterplot for the same user in Figure 1(a) after fitting

the flare regression model. In this figure, the flare regression model fit has been

overlaid along with each observation color-coded according to their component

membership based on their maximum posterior membership probability (i.e., the

cut-off probability p∗ is set to be 0.50). We have been able to effectively char-

acterize the regions where the user has almost certainly not been performing in

an optimal capacity for the aiming task. Moreover, this region could still include

some outlying values associated with trajectory segmentation.

Note that we have done a hard classification based on an observation’s posterior

membership probabilities. However, the noticeable delineation between the Gaus-

sian component and exponential component, as seen in Figure 3, appears in each

user’s fit. Further examination shows that the posterior membership probabilities

unsurprisingly hover around 0.50 for the two components in this region as this is

where the two components have more substantial overlap. If interested, one could
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Figure 3: Scatterplot of the user’s data in Figure 1(a) (User 1), but with the flare

regression model fit (β̂0 = 0.49, β̂1 = 0.17) overlaid along with each observation

color-coded according to their component membership based on their maximum

posterior membership probabilities; refer to the first row of Table 12 in the Sup-

plemental Material (S.6) for detailed estimation results

apply a color gradient relative to the membership probabilities to visualize the

uncertainty of assignment to one component over the other, thus providing a more

nuanced interpretation about the user’s performance.

The “in the wild” data distinguishes itself from other data collected in controlled

studies by displaying observations with extremely long task completion times.

Hence, identifying outliers is essential to obtain informative results. In this study,

we proceed with a conservative approach by selecting a uniform cut-off threshold

(T = 40s), and drop all of the observations that exceed this threshold. Researchers

may be interested in finding alternative methods to remove outliers. In the flare

regression model, observations with exceedingly long duration times are highly
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likely to be classified to the exponential component. This clustering feature allows

a framework for outlier removal and for HCI researchers to focus on those observa-

tions that are more consistent with what is typically observed in controlled studies.

Subsequently, even more candidate models could be investigated for characterizing

the remaining observations in the data, thus allowing more nuanced comparisons

between “in the wild” data and data from controlled studies for HCI research.

5.4 System Running Time

When the sample size gets (excessively) large, system running time is used in as-

sessing the performance of algorithms. All of the algorithms used in this study

were implemented in R. The mean sample size of the user datasets is about 19667.

The mean system running time of the ECM algorithm is 8.8502 seconds,whereas,

the mean system running time of the block-relaxation algorithm is 193.6914 sec-

onds. For every user, the system elapsed time of the ECM algorithm is significantly

shorter than the block-relaxation algorithm. Table 16 in the Supplemental Mate-

rial (S.6) summarizes each user’s sample size and system elapsed times across the

four candidate models. Theoretical and technical reasons behind this empirical

finding remain a potential future direction of research.

6 Concluding Remarks

The EMG distribution is a practical model applied in various fields when re-

searchers encounter positively skewed data, especially when it involves timing

studies of tasks with human subjects like the human aiming performance data that
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motivated this study. This paper addressed some of the computational challenges

in estimating an EMG regression model with multiple predictors by developing

an iterative block-relaxation algorithm. Even though some concavity properties of

the EMG regression are proved, the fact the the EMG distribution is not a member

of the exponential family prevents us from guaranteeing global concavity of the

loglikelihood and convergence of the block-relaxation algorithm. Alternatively, we

introduced our novel flare regression model consisting of a two-component mixture

structure on the errors, consisting of a Gaussian component and an exponential

component. We developed an ECM algorithm for estimation, which unlike the

block-relaxation algorithm, is guaranteed to converge to a local maximum of its

likelihood function. After obtaining point estimates of the flare regression model,

we briefly addressed the calculation of estimated standard errors for the parameter

estimates.

Both the extensive simulation study and the analysis of the human aiming perfor-

mance data showed significant advantages of the flare regression model over the

EMG regression model and other existing regression models. Not only is the flare

regression model fit typically better than the EMG regression model fit (in terms

of BIC values), the former also provides us with additional insight into different

performance regions in the human aiming task. Moreover, a timing comparison

between the block-relaxation method for the EMG regression and the ECM algo-

rithm for the flare regression shows superior performance for the latter. Overall,

we have shown that the flare regression model is highly efficacious as a way for
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characterizing the human aiming performance data analyzed in this work.

As noted in the analysis of Section 5, there is, obviously, subject-to-subject vari-

ability in terms of performance on this task. Incorporation of random effects to

allow for such subject heterogeneity would likely provide an even more informative

model. Thus, generalizing both the EMG and flare regression models by incorpo-

rating random effects, and then comparing the results, would be an informative

direction for future research.
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