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Abstract We demonstrate the effectiveness of seismic dense array surface wave focal spot imaging using
USArray data from the western‐central United States. We study dispersion in the 60–310 s period range and
assess the image quality of fundamental mode Rayleigh wave phase velocity maps. We apply isotropic spatial
autocorrelation models to the time domain zero lag noise correlation wavefield data at distances of about one
wavelength. Local estimates of the phase velocity, its uncertainty, and the regression quality imply overall better
ZZ relative to ZR or RZ results. The extension of the depth resolution compared to passive surface wave
tomography is demonstrated by the inversion of three clustered dispersion curves from different tectonic units.
We observe anisotropic surface wave energy flux and the influence of body wave energy, but sensitivity tests at
60 s targeting the data range, correlation component, and processing choices show that the ZZ focal spots yield
consistent high‐quality images compared to regional tomography results in the 60–150 s period range. In
contrast, at 200–300 s the comparatively small scales of the imaged structures and the imperfect agreement with
low‐resolution global tomography results highlight the persistent challenge to reconcile imaging results based
on different data sources, theories, and techniques. Our study shows that surface wave focal spot imaging is an
accurate, robust, local imaging approach. Better control over clean autocorrelation fields can further improve
applications of this seismic imaging tool for increased resolution of the elastic structure below dense seismic
arrays.

Plain Language Summary Seismic tomography is an established imaging method that estimates
properties of the medium using information of the seismic waves that propagate between source and receiver.
This concept is routinely applied to earthquake waves and also to waves that are reconstructed using seismic
noise correlations, and has led to impressive high‐resolution images in areas with high seismic sensor density.
Here we apply an alternative imaging approach that has been developed in ultrasound medical imaging to
surface wave data from the dense seismic USArray covering the western‐central part of the contiguous United
States. In contrast to tomography the focal spot method does not analyze propagating waves but properties of the
spatial autocorrelation field. The seismic wave speed and potentially other medium properties are estimated at
the location of each seismic sensor using data obtained at other dense array sensors that are closely spaced in
terms of the wavelength. The focal spot imaging technique is elegant and simple to implement because it does
not involve the solution of an inverse problem. In this work we demonstrate its effectiveness by reproducing
images from available USArray tomography results.

1. Introduction
The ambient seismic wavefield is predominantly generated by sources located on the surface of the Earth and is
therefore mainly composed of surface waves. The first imaging approach that utilizes the ambient field data is the
spatial autocorrelation or SPAC method (Aki, 1957), which is widely implemented for geotechnical engineering
and near‐surface exploration problems using an optimized size and geometry of the deployed SPAC arrays (Foti
et al., 2018; Hayashi et al., 2022). The SPAC method is related to the cross‐correlation approach (Prieto
et al., 2009) that reconstructs the deterministic wavefield between two stations from the ambient field records
(Shapiro & Campillo, 2004). Similar to earthquake tomography, this deterministic wavefield can be used for
subsurface imaging on local, regional, and global scales (Lin et al., 2008; Lu et al., 2018; Retailleau et al., 2020;
Sabra et al., 2005; Shapiro et al., 2005; Stehly et al., 2009; Yao et al., 2006).
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The cross‐correlation wavefield is equivalent to time‐reversal experiment results (Derode, Larose, Campillo, &
Fink, 2003; Derode, Larose, Tanter, et al., 2003). Considering a reference station in a dense seismic array such as
the USArray used in this study, the time‐distance representation of the surface wavefield at negative and positive
times represents the converging and diverging waves, respectively (Figure 1), which form the basis for passive
tomography applications. At zero lag time, the cross‐correlation wavefield results from the interference pattern of
the reconstructed converging and diverging waves. The equivalence of correlation and time reversal explains the
emergence of the so‐called time domain focal spot at the origin of a time‐reversed surface wavefield, which
differs from the propagating signals studied in seismic tomography. The zero lag time cross‐correlation amplitude
field is the focal spot, a term adopted from time‐reversal acoustics (Fink, 2008). The focal spot is the time domain
equivalent of the spatial autocorrelation or SPAC field in the frequency domain. The equivalence allows us to use
the SPAC formulation or parametrization of the amplitude distribution (Aki, 1957; Haney et al., 2012) for our
time domain analysis.

Applications in acoustics (Fink, 1999), passive elastography (Benech et al., 2009), and related medical imaging
techniques (Zorgani et al., 2015) have long been using properties of the shear wave focal spot for imaging. The
similarity between the multi‐channel ultrasound transducers and modern dense seismic arrays (Giammarinaro
et al., 2023) suggests to systematically explore the application of seismic focal spot imaging. The relevance is also
implied by initial surface wave focal spot applications (Gallot et al., 2011; Roux et al., 2018), notably by the
imaging results obtained from data recorded by 1,100 sensors deployed across a square 600 × 600 m2 domain that
show distributions of the local phase speed, azimuthal medium anisotropy, and a proxy for intrinsic attenuation
(Hillers et al., 2016). These initial observations are further supported by results from numerical studies that
demonstrate an overall robust estimation of the Rayleigh wave phase velocity from wavefields featuring biasing
body wave energy or nonuniform background illumination (Giammarinaro et al., 2023), and good spatial reso-
lution of lateral heterogeneities (Giammarinaro et al., 2024).

The deployment of dense arrays and access to the data sets have been stimulating the refinement and development
of existing and new noise‐based imaging methods, respectively, which have provided high‐resolution images of
tectonic features and structures in the crust and upper mantle. The USArray Transportable Array (TA)
(Kerr, 2013) recorded an example influential data set. The ambient noise‐based tomographic methods or variants
applied to USArray data include ray theoretical approaches (Lin et al., 2008; Porter et al., 2016), eikonal to-
mography (Lin et al., 2009; Shen & Ritzwoller, 2016), and finite‐frequency tomography (Lin & Ritzwoller, 2010;
Zhao et al., 2020), whereas Ekström et al. (2009) and Ekström (2014) combined the SPAC method (Aki, 1957)
with a tomographic approach to invert phase velocity estimates along ray paths.
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Figure 1. The ZZ cross‐correlation wavefield associated with one USArray reference station at T = 65 s central period. The
interstation distance is scaled by the corresponding seismic wavelength. The energy is scaled by the maximum amplitude in
each distance bin. The reconstructed wavefield is dominated by the familiar converging and diverging propagating surface
waves at negative and positive lag times, respectively. In addition we highlight at zero lag time the azimuthally averaged
spatial autocorrelation field, which is the time domain focal spot. The visible amplitude ridge between 1λ and 2λ corresponds
to the second maximum of the J0 Bessel function. The relatively wide period band illustrates dispersion of the propagating
waves, but it degrades the focal spot shape (Giammarinaro et al., 2023).
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For the western and central U.S. noise‐based tomographic images using ray theory have been inverted using data
from the period T range 8–40 s (Lin et al., 2008, 2009; Porter et al., 2016), while accounting for finite‐frequency
effects increases the long period limit up to T = 80 s (Zhao et al., 2020). Longer period surface waves can be
considered by including larger interstation distances (Yang, 2014; Zhao et al., 2017) or by using earthquake data
(Jin & Gaherty, 2015) in combination with ambient noise correlations (Lin & Ritzwoller, 2011). Very long period
surface waves for T up to 180 s are studied using only earthquake data (Babikoff & Dalton, 2019). Most of these
approaches are efficient for large sparse networks where the observation is obtained in the far field. Since data
associated with interstation distances of less than two or three times the seismic wavelength λ are typically not
included in ambient noise tomographic inversions (e.g., Chapter 5 in Nakata et al., 2019), surface waves with
wavelengths equal to or longer than the dimension of the array are not considered, even if this propagation cutoff‐
distance can potentially be reduced to 1λ (Luo et al., 2015; Zhao et al., 2017).

Herewe apply the focal spot imagingmethod to cross‐correlation functions of continuous records from thewestern
part of the contiguous U.S. to obtain fundamental mode Rayleighwave velocity dispersionmeasurements between
60 and 310 s, thereby extending previous kilometer‐scale focal spot applications (Hillers et al., 2016; Roux
et al., 2018) to the continental scale. Our imaging technique estimates local phase velocities from narrow‐band
filtered focal spots using SPAC Bessel function parametrization (Haney et al., 2012), and the period dependent
phase velocity maps are compiled by the iterative application of this approach using each station as reference
location. That is, in contrast to tomography, we do not employ a 2D inversion for the phase velocity distributions on
a regular grid. This inversion‐free local imaging approach is computationally efficient and thus advantageous for
dense array noise correlation data. The parameter estimation approach yields a measure of the local phase velocity
uncertainty, which is important for the appraisal of the imaged features and for the evaluation of the downstream
shearwave velocitymodel. At short periods aroundT= 60 s the comparisonwith tomographic phase velocitymaps
in the literature facilitates the assessment of the focal spot image quality and the resolution‐uncertainty trade‐off
(Giammarinaro et al., 2023, 2024; Latallerie et al., 2022). At long periods up to T = 300 s our application ex-
plores the analysis of focal spots associatedwithwavelengths that approach the array dimension,which exceeds the
current 150 s period limit usingUSArray ambient noise data (Zhao et al., 2017).We analyze the associated increase
in vertical resolution using local autocorrelation field data from distances around one wavelength.

In this work we discuss focal spot‐based Rayleigh wave phase velocity maps and their sensitivity to processing
choices and parameters across a wide period range. The high similarity to tomography results at shorter periods
demonstrates the relevance of the local imaging technique for the construction of 3D shear wave velocity models,
that are, however, not computed in this work. In Section 2 we describe the application of the focal spot imaging
method to USArray data. The implementation includes data selection, preprocessing, correlation, filtering, focal
spot compilation, and the non‐linear regression for phase velocity and uncertainty estimates. In Section 3 we
present results on the nonuniform background illumination, dispersion curves in the 60–310 s period range, the
period dependent lateral phase velocity distributions, and extensive sensitivity tests that investigate how these
maps change in response to processing and parameter estimation choices. For the best phase velocity maps we
evaluate the consistency of the imaged features to published results and the associated uncertainty estimates. We
discuss the implications for the lateral and vertical resolution of the obtained results and the relation to tomog-
raphy in Section 4, and conclude in Section 5 that focal spot imaging is a complementary seismic dense array
surface wave imaging technique.

2. Data and Method
2.1. USArray Data Selection

We use USArray continuous records from the BK, CI, TA, and US network stations between 125°–90°W and
26°–50°N from 2004 to 2012. Most stations belong to the TA network with an average interstation distance of
about 70 km. Starting from the West, the stations operated about two years at each location. In this rolling
deployment the synchronicity of any reference station with other array stations scales with distance and azimuth
(Figure 2). The sensors are three‐component broadband seismographs and sample with a rate of 40 Hz.

2.2. Preprocessing and Noise Correlations

We download three‐component continuous data recorded by the stations shown in Figure 2. We implement the
standard signal processing operations that are typically applied in noise correlation imaging (Boué, Roux,
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et al., 2014). That is, the focal spot data processing does not require a specifically tuned processing chain, and
correlation databases tailored for surface wave imaging can readily be used for focal spot imaging. Preprocessing
aims to mitigate the effect of strong sources that are localized in space and persistent in time (Chapter 5 in Nakata
et al., 2019). We decimate daily records to 1 Hz, remove the instrument response, and apply a bandpass filter. We
cut the daily records into 4 hr segments and normalize the amplitude first in the frequency domain, with spectral
whitening in the 2.85–340 s period band, and then in the time domain with amplitude clipping at three times the
standard deviation of the distribution in each 4 hr segment. Tapering is performed to avoid spectral leakage.

We compute 4 hr time window cross‐correlations in the vertical, North‐South, and East‐West ZNE system and
stack them linearly. The relatively long maximum lag time of τ = 1,000 s is necessary for the dispersion analysis
bandpass filtering up to T = 310 s. The cross‐correlations are normalized by the square root of the energy in both
traces. We exclude station pairs with less than 100 synchronous operation days. We rotate the cross‐correlations
from the ZNE to the vertical, radial, and transverse ZRT system along the great circle path. As shown in Sec-
tion 2.3, the focal spot shapes are influenced by the anisotropic surface wave illumination, which can potentially
be mitigated using data driven optimal rotation angles (Roux, 2009).

For the dispersion analysis we apply the same Gaussian narrow‐band filter that was used in the numerical focal
spot studies of Giammarinaro et al. (2023, 2024). The comparatively wide bandpass filter used by Hillers
et al. (2016) biases the focal spot reconstruction by causing an apparent attenuation effect (Giammarinaro
et al., 2023). We zero pad the correlations before filtering to create more frequency samples and to better resolve
the center frequencies fc. The actual fc values are those frequency values of the discrete Fourier transform of the
signal that are closest to the nominal and reported analysis period in the 60–310 s range.

2.3. Focal Spots

Under the assumption of a diffuse wavefield, three‐component cross‐correlations of ambient noise approximate
the 3 × 3 Green's tensor considering the combinations between the Z, R, and T components. The equivalence
between the time domain focal spot and the spatial autocorrelation function in the frequency domain (Tsai &
Moschetti, 2010) suggests that we can use the classical SPAC result (Aki, 1957) and its extension (Haney
et al., 2012) for the focal spot parametrization in a lossless medium. In this work we do not consider the effect of
anelastic attenuation on the spatial autocorrelation. At the here employed one wavelength distances the effect is

Figure 2. Illustration of the rolling Transportable Array deployment. Spatially dependent synchronicity patterns for three red indicated reference stations (a) M20A,
(b) D06A, and (c) Z36A show that the deployment strategy results in station pairs that are predominantly oriented in the North‐South compared to the East‐West
direction.
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small (Nakahara, 2012) and difficult to constrain considering the influence of directional incidence and body
wave energy on the focal spot properties.

The ZZ, RR, and TT component autocorrelation fields are described by combinations of Bessel functions that
allow wave speed estimates of the fundamental mode surface waves. The corresponding expressions are valid for
a scalar wavefield, while the full Green's tensor including the non‐diagonal terms extend these results to the study
of a vector wavefield. Similar approaches facilitate the quantification of higher‐mode surface wave dispersion
curves (Wang et al., 2019). Here we use the SPAC formulas (Haney et al., 2012) to obtain fundamental mode
Rayleigh wave velocity estimates from ZZ, ZR, and RZ focal spot data. This implementation estimates the phase
velocity locally using short distances of about one wavelength around the origin, which is similar to passive
elastography (Catheline et al., 2008; Gallot et al., 2011). The absence of Green's function near‐field components
at short distance is illustrated by the analogy to the time‐reversal configuration, since the refocusing wavefield
recorded by the time‐reversal mirror does not include the evanescent near‐field waves, and the autocorrelation is
governed by the diffraction limit (Fink, 2006).

The here relevant correlation coefficients ϕ for the ZZ, ZR, and RZ components are (Haney et al., 2012)

ϕZZ,ZR,RZ = P
R(ω) × ( J0 (ωr/cR), − RJ1 (|ω|r/cR), RJ1 (|ω|r/cR)), (1)

where PR(ω) denotes the Rayleigh wave power spectrum, R the horizontal‐to‐vertical displacement ratio of
Rayleighwaves,ω the angular frequency, r the radial distance, cR the Rayleighwave phase velocity, and Jn denotes
aBessel function of the first kind of order n. The local Rayleighwave properties are estimated from the ZZ, ZR, and
RZ focal spots that follow the same parametrization as the SPAC expressions in Equation 1. At short distances, the
here not considered RR and TT components contain both Rayleigh and Lovewave energy (Haney et al., 2012), and
an unbiased estimation of the two associated velocities requires a separation of the two components.

Figure 3b shows ZZ, ZR, and RZ component focal spots for the periods 100, 200, and 300 s together with the
wavenumber k = ω/cR decomposition of the 100 s results in Figure 3a. The wavenumber domain images are
obtained by the application of the 2D Fourier transform (2DFT) to the spatial autocorrelation amplitude distri-
butions, and they can help analyze focal spot properties (Giammarinaro et al., 2023; Hillers et al., 2016). The focal
spot shapes for all three components (Figure 3b) is not circular as the direction independent Bessel function model
suggests. The distribution of the first one or two nodal lines delineate an ellipsoidal shape with a short axis
oriented in the Northwest‐Southeast direction. We understand this effect to result from anisotropic surface wave
incidence (Giammarinaro et al., 2023) with a predominant direction oriented toward the North Pacific, which is a
region of persistent noise generation in the considered frequency range (Ermert et al., 2017; Rhie & Romano-
wicz, 2004). A more subtle feature in the 100 s amplitude patterns (left column in Figure 3b) are the consistently
reduced speed toward the Southwest across the Basin and Range province, where the ZR and RZ results also
display a less coherent focal spot amplitudes. Such spatial variations of the autocorrelation field can potentially be
used to increase the resolution.

The incidence direction is better seen in thewavenumber domain representation (Figure 3a)which shows increased
energy in the Northwest‐Southeast direction for all three components. Compared to the unidirectional and hence
more extreme synthetic cases used to study biasing directivity effects (Giammarinaro et al., 2023), these spectral
amplitude patterns are more complex, that is, they show energy at different directions with different strength. The
directive yet overall more evenly distributed energy supports robust parameter estimation. The J1 shape of the ZR
and RZ data leads to the double‐ring feature in the 2DFT results (Giammarinaro et al., 2023), and non‐zero energy
can be resolved at the center of the spectra. Different to beamforming, the peak energy does not indicate the actual
wavenumber and hence speed of the surface waves. These are effects associated with the Fourier transform
properties of a finite spatial distribution, and they becomes less significant when data from longer distances are
included (Giammarinaro et al., 2023). The ZR and RZ focal spots in Figure 3b are more noisy compared to the ZZ
data, which leads to overall higher uncertainties of the cR estimates using non‐linear regression.

2.4. Phase Velocity and Uncertainty Estimates

We estimate the Rayleigh wave phase velocity by optimizing the fit between the focal spot data and the auto-
correlation functions in Equation 1. We use the Python package (Giammarinaro & Hillers, 2022) developed for
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the numerical analysis by Giammarinaro et al. (2023), which uses the Levenberg‐Marquardt algorithm to solve a
non‐linear least‐squares regression problem (Aster et al., 2013). For a regular station distribution the number of
focal spot samples scales with distance. This can put more weight on data away from the origin (Giammarinaro
et al., 2023), however, the influence is small and we do not make use of the option to apply distance dependent
weights. We reconstruct focal spots for each reference station in the array from the narrow‐band filtered zero lag
correlation amplitude fields. We perform the parameter estimation using the radial distance r dependent but
direction independent amplitude distribution models to fit the focal spot data A(r, τ = 0) (Giammarinaro
et al., 2023)

A(r,τ = 0) =
⎧⎪⎪⎨

⎪⎪⎩

σZZ J0(kr)

− σZR J1(kr)

σRZ J1(kr).

(2)

Note that while Equation 1 parametrizes the correlation coefficients in the frequency domain, Equation 2 provides
the equivalent time domain focal spot Bessel function models. This equivalence results from the behavior of
Fourier transform pairs at t= 0. In Equation 1, the theoretical amplitude factors are PR(ω) and∓PR(ω)R for the ZZ
and the ZR and RZ components, respectively. In the data regression, however, σ parametrizes the focal spot
amplitude that depends on the Rayleigh wave power spectrum but also on processing effects that can influence the
Rayleigh wave coherency on the vertical and radial component (Hillers et al., 2016). For a given frequency ω the
two free parameters are the Bessel function argument wavenumber k—or the Rayleigh speed cR—and the
amplitude factor σ. The data range rfit is the distance between the reference station and the most distant receiver
from which data are included in the regression analysis.

Our focal spot approach has the analysis of the distance dependent autocorrelation amplitude in common with the
frequency domain ESPAC method (Okada & Suto, 2003). This and other SPAC variants are typically

Figure 3. Representations of the spatial autocorrelation amplitude field or focal spot for the ZZ, ZR, and RZ components (top to bottom) at the reference station L15A.
(a) Wavenumber spectra at T = 100 s. (b) Narrow‐band filtered focal spots at T = 100 s (left column), T = 200 s (center column), and T = 300 s (right column). The
location of L15A is indicated by the green cross. Amplitudes are scaled by the peak ZZ amplitude at each period.
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implemented in geotechnical applications (Asten & Hayashi, 2018; Foti et al., 2011), where all wavelengths are
analyzed over the same array aperture data range, which is usually on the 10–100 m scale. This full‐array analysis
style has also been adopted by Prieto et al. (2009) and Ekström (2014) at regional scales. Again, this differs from
our frequency dependent data range that emphasizes a consistent local measurement across the USArray.

The optimal values for k or cR and σ are obtained in an iterative procedure. We perform the regression three times
in which k and σ are simultaneously estimated. The actual autocorrelation value at r = 0 is not considered, it is
typically on a different scale because the employed normalization affects cross‐ and autocorrelation differently.
The approach is illustrated in Figure 4 for ZZ, ZR, and RZ focal spot data at 100, 200, and 300 s, where the gray
dots represent the data and the orange and black lines show the estimated models after the first and third iteration,
respectively. In the first iteration we consider all amplitude data without distance restriction to obtain a data driven
initial estimate of k1 (orange model in Figure 4), which we need to compute rfit= 2πn/k in the following iterations.
The n value defines the short data range rfit. Here we explore values between 0.5λ and 1.5λ but present mostly
results with rfit = 1.2λ. We do not need the σ1 result associated with this first iteration. We perform the regression
a second time now including data within the range rfit= 1.2λ. As said, σ is an amplitude factor linked to the energy

Figure 4. Radial focal spot amplitude data associated with reference station R21A and the corresponding Bessel function models (Equations 1 and 2) illustrate the phase
velocity estimation for (a) T = 100 s, (b) T = 200 s, and (c) T = 300 s. The estimated models from the first and third iterations explained in Section 2.4 are plotted in
orange and black, respectively. The scale of the two models is indicated by the correspondingly colored axis. The ZZ data (left column) show a better signal‐to‐noise
ratio compared to the ZR (center column) and RZ (right column) data. The consistently higher ZZ amplitudes at short distances is attributed to the influence of coherent
P wave energy.
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of Rayleigh waves and to the processing‐ and normalization‐affected coherency level of the autocorrelation field.
After the second iteration, we normalize the amplitudes by σ2 to obtain consistent signal‐to‐noise ratio (SNR) and
uncertainty estimates. The difference between k1 and k2 is typically a few percent, however, shorter rfit distances
improve the lateral resolution (Giammarinaro et al., 2024). The third iteration (black model in Figure 4) is
performed on the scaled amplitude data to access the normalized residual sum of squares (RSS) as SNR or
goodness‐of‐fit proxy from the data misfit to the Bessel function models that is used to compute the uncertainty of
the final k3 estimate. Since rfit is not changed from the second to the third iteration, k2= k3, and σ3= 1 for all three
components.

We apply the iterative parameter estimation to every array station and obtain thus estimates of the frequency
dependent local Rayleigh wave speed (Hillers et al., 2016). We highlight that our approach has the advantage of
yielding a straightforward estimate of the formal k uncertainty or standard error ɛk at each reference station
location and hence image pixel (Aster et al., 2013)

εk =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
RSS
dof

⋅Ck

√

, (3)

where dof denotes the degrees of freedom, that is, the number of data points minus two, the number of fit pa-
rameters, and Ck is the diagonal element of the parameter covariance matrix C associated with k. The error on the
Rayleigh wave phase speed εcR is then obtained by error propagation. For the example in Figure 4, the cR and εcR
uncertainties for the 100, 200, and 300 s ZZ data are 4.11 ± 0.03 km/s (0.8), 4.53 ± 0.03 km/s (0.6), and
5.25 ± 0.05 km/s (0.9), respectively, where the values in parenthesis are the errors in percent. These small errors
in the 1% range imply overall well constrained cR estimates. For the ZR and RZ data the triplets are
3.99 ± 0.04 km/s (1.0), 4.26 ± 0.07 km/s (1.7), 5.36 ± 0.27 km/s (5.0), and 3.91 ± 0.05 km/s (1.3),
4.51± 0.09 km/s (2.0), 4.62 ± 0.21 km/s (4.5), respectively, all showing similarly good percentage values except
for the longest period. For the 100–300 s ZZ component data in Figure 4 we estimate RSS values between 2 and
56 for the rfit = 1.2λ data range. It is the coherent elliptical shape of the ZZ spatial amplitude patterns (Figure 3b)
that governs the data scatter around the azimuthal average model. In contrast, the obtained RSS values between 4
and 1,700 for the ZR and RZ data quantify the overall lower focal spot quality involving the radial component, in
particular at 200 and 300 s. Although the first nodal line indicates a more circular shape of the amplitude patterns
compared to the ZZ results (Figure 3b) that is compatible with synthetic observations on the impact of anisotropic
illumination (Giammarinaro et al., 2023), the ZR and RZ data in Figure 4 show a significantly increased level of
incoherent fluctuations around the best fitting model.

At short distances the ZZ amplitude samples in Figure 4 consistently exceed the estimated J0 model associated
with surface wave refocusing. The synthetic focal spot tests by Giammarinaro et al. (2023) suggest that this
amplitude difference is caused by interfering body wave energy with near‐vertical incidence. This phenomenon is
observed in the focal spot analysis in the San Jacinto fault zone environment (Hillers et al., 2016). In this case the
600 × 600 m2 array records body wave energy that is excited by the abundant microseismicity and then channeled
along the low‐velocity fault structure. Our USArray correlations contain teleseismic P wave energy excited by
moderate and large earthquakes (Boué, Poli, et al., 2014; Lin et al., 2013).

As a result, a small‐amplitude long wavelength sinc function associated with coherent P wave energy with high
apparent velocity is superimposed on the J0 surface wave model (Hillers et al., 2016). In the wavenumber domain
the corresponding energy around the origin (Figure 3a) is superimposed on the small‐k amplitude component
associated with the 2DFT properties of the finite autocorrelation pattern (Giammarinaro et al., 2023). The error on
the ZZ Rayleigh wave phase speed estimates depends on the energy ratio between surface and body waves
(Giammarinaro et al., 2023). Interestingly, it also depends non‐linearly on the data range rfit. Numerical exper-
iments for azimuthally symmetric P wave incidence show that for rfit = 1.0λ and rfit = 1.5λ the cR value is first
under‐ and then overestimated, respectively, by a few percent (Giammarinaro et al., 2023). This and the P wave
energy minimization results discussed in Section 3.4.4 imply that the potential bias associated with the rfit = 1.2λ
parameter is not significantly affecting our main imaging results. In contrast, the vertical‐radial component
surface wave focal spots are insensitive to the P wave component. This can make them a preferred target for the
analysis, however, as demonstrated, the radial component correlations are characterized by significantly lower
data quality.
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In the next Section 3, we first explore the anisotropic illumination effect (Section 3.1), discuss results of the
dispersion analysis using the iterative parameter estimation (Section 3.2), and then assess the quality of the
obtained phase velocity images (Section 3.3) and their sensitivity to processing choices and parameters
(Section 3.4).

3. Results
3.1. Background Illumination

Applications of correlation‐based methods for passive imaging assume a diffuse ambient noise wavefield with an
ideally isotropic distribution of seismic energy (Piña‐Flores et al., 2021; Shapiro et al., 2000). Isotropic illumi-
nation is supported by a homogeneous distribution of the original noise sources and multiple scattering. However,
low‐frequency ambient noise is predominantly excited in the oceans or along coastlines, and the positive effect of
multiple scattering (Derode, Larose, Campillo, & Fink, 2003) is frequency dependent and may be insufficient to
mitigate strong, localized source effects. In the frequency range below 20 mHz or above 50 s period, which is of
interest here, the noise wavefield, also referred to as seismic hum, is mainly generated by the interaction between
ocean infragravity waves and the ocean floor (Ardhuin et al., 2015; Nishida, 2017). The North Pacific and
Southern Oceans are two locations of persistent hum generation (Ermert et al., 2017; Nishida, 2017; Rhie &
Romanowicz, 2004, 2006), and thus indicate a non‐uniform noise source distribution at the relevant frequency
range.

The direction to the noise sources can be estimated from the properties of the energy flux of the wavefield, which
is typically determined by applying beamforming or frequency‐wavenumber array analysis techniques to far‐field
observations (Nishida, 2017, and references within). However, even though information about the background
illumination can help mitigate the bias on the phase velocity estimation (Igel et al., 2023), results of these methods
are not routinely used for quality assessment in ambient noise tomography applications. The USArray focal spot
shapes (Figure 3b) are influenced by anisotropic surface wave incidence (Section 2.3). We use the related
wavenumber domain information (Figure 3a) to analyze the direction of the strong and weak Rayleigh wave
energy incidence at each station for T = 100 and 200 s (Figure 5).

At any one station, the Rayleigh wave energy forms a heterogeneous ring‐like feature in the wavenumber domain
at radial wavenumbers smaller than kr= 0.02 rad/m (Figure 3a). For our analysis we associate the direction of the
maximum and minimum value of the amplitude spectrum within the ring with the strong and weak energy
incidence of the surface wavefield, respectively.We search for the maximum value along the ring and estimate the
direction between that location and the center of the spectrum. Along a circle that is centered at the origin and that

Figure 5. Spatial variation of the Rayleigh wave illumination pattern. Directions of strong (black lines) and weak (red lines) Rayleigh wave energy flux obtained from the
ZZ component focal spot analysis in the wavenumber domain for (a) T= 100 s and (b) T= 200 s. For illustrative purposes the length of a line is scaled by the maximum
length in each panel. The orange great circle represents the average maximum direction.
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intersects with the maximum value we then identify the direction of the weakest incidence as the direction toward
the minimum amplitude value. This procedure is implemented for each ZZ component focal spot on the array. In
Figure 5 we plot the direction of strong and weak incidence at the location of each station as black and red lines,
respectively. To enhance the display quality, the lengths are scaled in each panel individually which does not
permit a comparison between strong and weak values.

We compute the average of all maximum directions and plot the resulting orange great circle direction using the
average geographic location of the station coordinates as origin. As suggested by the orientation of the majority of
the strong incidence indicating black lines, for both periods the average direction of maximum energy propagation
points to the North Pacific, which is compatible with observations of hum excitation in this area. The strongest
deviation from the average trend is observed in the West‐Southwest and East‐Northeast areas of USArray. The
black lines in the California region are of equal length compared to the dominating regions West of the Rocky
Mountains. In contrast, the energy flux in the Northeast is weaker. This indicates different mechanisms for the
observed trend at the edges or corners of the study area. In the West, the direction toward the ocean between the
coast and the Sierra Nevada implies a similarly strong flux albeit from a different direction. In contrast, in the
Northeast the intra‐continental location with the greatest distance to an oceanic source region leads to the smallest
amplitudes in the wavenumber domain distributions. We consider these physical mechanisms related to the
proximity to the source area and structural effects to be dominant. They dominate in comparison to 2DFT
amplitude effects associated with the variable spatial sampling of the receiver station locations relative to the
reference station locations in different parts of the array.

The dominant pattern in the distributions of the red indicated directions of weakest energy flow is the difference
between the central region of the imaged area, where the lines are comparatively long, and the regions toward the
image area boundaries to the West and East. This differs from the Southwest‐Northeast edge area pattern of the
strong incidence directions.We hypothesize that the consistent weak incidence line‐length pattern is controlled by
the array shape. In the center, the larger East‐West array extension leads to an higher minimum spectral domain
amplitude level compared to the reference stations along the edges that are associated with more narrow arrays.

These results indicate the anisotropic incidence of the wavefield, which implies that phase velocity estimates from
these focal spots can be biased. However, if the phase velocity is estimated from a focal spot that is sufficiently
reconstructed in all directions, the bias is not significant (Aki, 1957; Boschi et al., 2012; Giammarinaro
et al., 2023; Nakahara, 2006; Tsai & Moschetti, 2010). This is compatible with the observed trend of increased
error estimates along the edges of the array discussed in Section 4.3. Extensions to the isotropic SPAC model that
consider the effect of anisotropic illumination on the autocorrelation fields (Nakahara, 2006) are suitable alter-
natives to mitigate potential biases (Tsarsitalidou et al., 2022) but are not applied in this work.

3.2. Dispersion Curves

Our goal is to demonstrate the effectiveness of the focal spot dispersion analysis for improving the depth reso-
lution of surface wave array records. We apply the parameter estimation described in Section 2.4 to narrow‐band
filtered focal spots computed at each reference station in the period range 60–310 s, which results in dispersion
curves at each station location (Figure 6). We use ZZ component data because of their better SNR compared to ZR
and RZ data (Section 2.4, Figure 4). We use rfit= 1.2λ. Our 60–310 s range extends the T= 150 s long period limit
obtained with a USArray noise tomography (Zhao et al., 2017) by a factor of two, which translates into a similarly
extended depth resolution.

We use k‐means clustering to collect the dispersion curves into k = 3 groups of equal variance by minimizing the
sum of squares of the distances between each sample and the centroid (Pedregosa et al., 2011). This choice reflects
a conservative estimate of the scale that we aim to resolve. The obtained dispersion patterns can be associated with
large‐scale tectonic provinces (Fenneman & Johnson, 1946), which supports our goal and implies that the results
are not governed by imperfect wavefield properties or imaging configurations. Figure 6a shows the resulting three
well separated average dispersion curves that are related to the algorithmically‐defined groups of stations in the
inset. The orange indicated stations to the West exhibit the lowest obtained phase velocities. They comprise the
low‐velocity regions of the Snake River Plain, and the Basin and Range and Colorado Plateau (Obrebski
et al., 2011). The boundary between this group and the second green colored group follows the Rocky Mountains
Front indicated by the manually inserted black line in the inset. This green colored group covers the Great Plains
and the Mississippi Embayment. The third purple indicated group includes stations in the Northeast of the study
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area and is associated with the high velocities of the tectonic regions of the Mid‐Continent Rift and Super Craton
(Fenneman & Johnson, 1946).

We obtain a standard error estimate of the phase velocity value at each station and period (Equation 3). Through
error propagation we compute period dependent error bars of the three average dispersion curves. For all three
clusters, the error increases toward the low‐ and high‐period limits of the dispersion curves, while it remains
comparatively small at the central periods. At short periods the large error is related to the small number of
samples per wavelength and an associated less well constrained estimate. At long periods the 1.2λ criterion
translates to long rfit distances and an increased tendency to break the azimuthal average (Section 2.4).

We investigate the depth resolution of the dispersion curves for the period range explored by our focal spot data to
inform future focal spot‐based 3D shear wave velocity modeling. We invert the average dispersion curves using
the Geopsy tool (Wathelet, 2008) that utilizes the Neighborhood Algorithm (Sambridge, 1999). Following
Durand et al. (2017) we choose a five layer parametrization, where the topmost layer represents the crust and the
four lower layers properties of the mantle. For the starting model, the interface between the fifth layer and the
halfspace is at 900 km depth. We choose the vS values from Durand et al. (2017), and the not further relevant vP
values are taken from the Preliminary Earth Model. For each interface depth and vS value we allow the Neigh-
borhood Algorithm to explore a ±30% variability around the initial values. We evaluate 15,300 models in the
inversion process (Figure S1 in Supporting Information S1).

For each of the three groups, the average of the 1,000 best models (solid line in Figure 6c) is used to compute the
sensitivity kernels shown in Figure 6b (Haney & Tsai, 2017) using the same color convention as in Figures 6a and
6c. Figure 6c combines the average (solid lines) and the 1,000 best models (transparent lines) for each group. The
choice of averaging the 1,000 best shear wave velocity models for the sensitivity kernels and the display in
Figure 6c is arbitrary, yet it is sufficient for our discussion. The three synthetic dispersion curves shown by the
thin lines in Figure 6a correspond to the single best inverted model. They show good agreement to the data for the

Figure 6. Results of the dispersion analysis. (a) Three average dispersion curves sampled with dT = 10 s interval for periods between T = 60 s and T = 310 s. The solid
line is the observed cluster average dispersion curve, which is the target for the inversion of the 1D shear wave velocity model. The uncertainty estimate (Equation 3) is
plotted at each period. The dashed lines indicate synthetic dispersion curves associated with the single best inversion result. The corresponding groups of stations are
shown in the inset. U.S. physiographic divisions are colored in black. The RockyMountain Front is highlighted by the thick line. (b) Sensitivity kernels for six annotated
periods associated with the average of the 1,000 best 1D shear wave velocity models. (c) The averages of the 1,000 best models obtained from the inversion of the three
cluster average dispersion curves in panel (a) are plotted with solid lines. The corresponding 1,000 best models are plotted with transparent lines.
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full period range, except at the largest period T = 310 s. The three groups of sensitivity kernels shown for periods
between 60 and 300 s indicate that the resolution of the focal spot dispersion measurements covers the depth range
down to ∼800 km. The results highlight the complementarity of autocorrelation data from short, potentially sub‐
wavelength distances for passive dense array surface wave imaging. We discuss limits associated with the
anisotropic incidence and the location dependent synchronicity pattern, and the features in the three average
models in Figure 6c in the following sections.

3.3. The Reference Phase Velocity Map

In this section we discuss the imaging result using T= 60 s ZZ focal spot data (Figures 7a and 10a). This reference
result is again used to demonstrate the practicality of the approach by comparing it to tomography results of the
same period. In the next Section 3.4 we perform sensitivity tests to assess the robustness of our short distance
imaging results by changing different processing parameters (Figures 7b–7g). We discuss the ZZ rfit = 1.2λ
results for the full period range in Section 4, where we also systematically consider the obtained uncertainty and
SNR estimates.

The focal spot dispersion measurements assign a cR, εcR, and RSS estimate to each station location. The resulting
phase velocity maps are compiled using a Voronoi tesselation governed by the USArray deployment geometry.
The Voronoi patterning reflects the data driven sampling of the focal spot image that is thus obtained without
regularization or interpolation. This differs from ambient noise tomography imaging, where the size and shape of
the grid cells is typically chosen to optimize the ray coverage in each cell and the solution to the inverse problem
with its inherent smoothing or damping length scales (Schaefer et al., 2011).

The ZZ component 60 s reference image Figure 7a is obtained with the processing described in Section 2.2 and the
parameter estimation from Section 2.4 using rfit = 1.2λ. As shown by numerical experiments (Giammarinaro
et al., 2023, 2024) and demonstrated in Section 3.4.1, a value around 1λwell trades off uncertainty and resolution.
This, together with the test results discussed in Section 3.4, supports our choice to use the parametrization
associated with the image in Figure 7a as reference throughout this study. For this combination of period, wave
speed, data range, and average inter‐station distance, the white circle with the 1.2λ radius indicates that the value
in each pixel is constrained by about 50 amplitude samples.

The practicality of the technique consisting of a fairly standard noise imaging processing chain and parameter
estimation is demonstrated, visually, by the convincing quality of the resulting 60 s image Figure 7a compared to
tomography results, for example, to Figures 6 and 2f in Lin and Ritzwoller (2011) and Shen and Ritzwol-
ler (2016), respectively, and by our formal comparison to results of Jin and Gaherty (2015) and Babikoff and

Figure 7. Results from the sensitivity analysis (Section 3.4) using focal spot data at T= 60 s. All panels show fundamental mode Rayleigh wave phase velocity estimates.
(a) Reference image compiled from ZZ component focal spot data using rfit = 1.2λ. We use the full data set and apply the preprocessing discussed in Section 2.2.
Relevant information is summarized in each panel legend. Variations of the reference case using (b) rfit= 0.5λ, (c) rfit= 1.0λ, (d) rfit= 1.5λ, (e) ZR component data, and
(f) an alternative preprocessing scheme. For (g) we exclude data containing global body wave reverberations excited by earthquakes withMw > 6.0. Most panels use the
same color range to facilitate comparison. In each panel the white circle and the white line illustrate the applied data range rfit and the average wavelength, respectively.

Journal of Geophysical Research: Solid Earth 10.1029/2023JB027417

TSARSITALIDOU ET AL. 12 of 27

 21699356, 2024, 5, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023JB

027417 by C
ochrane France, W

iley O
nline L

ibrary on [26/04/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Dalton (2019) (Section 4.3.1). The focal spot image convinces by its equivalent resolution, which includes the
high similarity of the obtained velocity values in the 3.7–4.3 km/s range, and the position and clarity of the imaged
features, which are further supported by the small εcR = 0.1 km/s scale (Section 4). On a large scale this includes
the low velocities of the tectonically more active region in the West in contrast to the higher velocities indicative
of the more stable area in the East. However, even smaller scale features such as the Yellowstone Snake River
Plain, the Colorado Plateau, the Mississippi Embayment, and the velocity contrast along the Central Valley of
California and the Sierra Nevada are well resolved in comparison to the tomography results.

3.4. Sensitivity Tests

In this section we investigate how the image quality is influenced by the choice of processing parameters for
cross‐correlation and parameter estimation (Figures 7b–7g and Figure S2 in Supporting Information S1). The
order of the discussion follows the significance of the associated effect on the resulting image quality. We test
how the rfit data range, the component, and processing choices associated with amplitude normalization and body
wave minimization affect the focal spot images. We compare the obtained cR maps to the reference image
Figure 7a, but do not evaluate systematic effects on the uncertainty or SNR.

3.4.1. Data Range rfit

In this first test we explore the imaging sensitivity to the rfit distance around the reference station that limits the
data used to constrain the parameter estimation. Numerical simulations on lateral resolution show that spatial
averaging or blurring effects scale approximately linearly with rfit in the range 0.5λ to 2λ (Giammarinaro
et al., 2024). This implies short rfit values support high‐resolution and high‐contrast images. However, small rfit
distances involve fewer data points per wavelength and because data are noisy, the estimated dispersion mea-
surements and images tend to be noisy, too. We test the rfit distances 0.5λ, 1λ, and 1.5λ (Figures 7b–7d) and
compare the results to the reference case with rfit = 1.2λ. We apply the reference parametrization ZZ component,
T = 60 s, and standard deviation clipping.

Compatible with numerical experiments (Giammarinaro et al., 2024), we observe that the longer rfit distance
results in smoother lateral velocity variations (Figure 7d). Larger rfit distances support a more stable estimation of
the phase velocity, as more data points constrain the Bessel function models. However, while a long data range
stabilizes the parameter estimation, it negatively influences the lateral resolution power of the here promoted
dense array local imaging implementation by producing smoother distributions which is equivalent to a loss in
amplitude contrast of small‐scale velocity variations (Giammarinaro et al., 2024). The image quality is probably
slightly enhanced for rfit = 1λ (Figure 7c) compared to the rfit = 1.2λ reference (Figure 7a), considering the
increase in contrast along elongated features, for example, along the Snake River Plain and along the Central
Valley and Sierra Nevada. At the shortest considered data range rfit = 0.5λ (Figure 7b), however, the image still
features the large‐scale structures but is dominated by incoherent fluctuations on the shortest length scale, in
addition to an overall significant offset of the velocity values toward higher estimates. We explain this offset by
the interference of P wave energy. The observed increased velocities are highly compatible with the numerical
results of Giammarinaro et al. (2023) that show the most significant cR overestimation at rfit = 0.5λ across the
range of the tested rfit values 0.25λ, 0.5λ, 1λ, and 1.5λ.

These results demonstrate the strong dependence of the image quality on the data range that is an important tuning
parameter to trade off resolution and uncertainty. The rfit distance should be small enough to maintain a good
resolution and at the same time large enough to mitigate systematic errors associated with body wave incidence or
anisotropic surface wave illumination and random fluctuations (Giammarinaro et al., 2023, 2024). The parameter
estimation at the end of the analysis chain allows for an efficient exploration of the rfit related effects compared to
studying the effects of the more expensive seismogram processing discussed in Sections 3.4.3 and 3.4.4.

3.4.2. Component

In the second test, we compile a 60 s phase velocity map from ZR component cross‐correlations (Figure 7e).
Similar to the reference case we include all available data in the database, we apply the same processing to the
seismograms described in Section 2.2, and we use rfit = 1.2λ. Using the same color range as the reference
Figure 7a shows that the ZR component‐based velocity distribution in Figure 7e features consistently smaller
values. The broad tectonic features are similarly resolved. However, the ZR image is characterized by more
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small‐scale fluctuations, and details in the ZR results differ from the tomography supported ZZ images, in
particular elements along the eastern limit of the imaged area. As mentioned, the ZR autocorrelation fields are
insensitive to P wave energy (Giammarinaro et al., 2023), consistent with the notion that ZR correlations are
generally more robust to interfering wavefield components (van Wijk et al., 2011).

We attribute the difference to the reference results to the overall reduced ZR component data quality. Combined
with the smaller signal amplitude of the model J1 function the overall higher ZR amplitude fluctuations (Figure 4)
yield a significantly lower SNR and higher phase velocity uncertainties (Section 3.3). Hence despite the ad-
vantageous insensitivity to body wave interference, the noisy character of the radial component data requires
improvement strategies for the estimates to be included in potentially combined ZZ, ZR, and RZ‐based Rayleigh
wave speed constraints.

3.4.3. Time Domain Normalization

Processing the continuous records prior to computing the correlation functions is an elementary part of ambient
noise tomography applications. We analyze the influence of two alternative ambient noise preprocessing stra-
tegies on the focal spot image quality. We begin with testing an alternative time domain normalization scheme
(Hillers et al., 2016). The choice of the time domain normalization affects the SNR of the reconstructed prop-
agating wave, and different methods interfere to varying degree with the original amplitude values (Bensen
et al., 2007). The reference image is reconstructed from data clipped at three times the standard deviation of the
amplitude distribution in each 4 hr processing window (Section 2.2). For the test we apply the more aggressive
one‐bit clipping to the reference ZZ data case.

A comparison of the resulting image Figure 7f to the reference velocity distribution Figure 7a implies that the
choice of the clipping threshold has little effect on the image quality. The visual inspection reveals no significant
changes, the results are highly consistent down to each pixel. Hence although the coherency or signal quality of
the correlation wavefield is sensitive to the amplitude processing, the reconstruction of the governing relative
phase information is not affected and hence the resulting spatial velocity distribution does not change, compatible
with the conclusions by Hillers et al. (2016).

This inference is supported by additional tests using a subset of 100 stations deployed in a square area between
112.5°–105°W and 35°–41°N, using one year of data (Tsarsitalidou et al., 2021). Scaling the one‐bit, one, and five
times standard deviation clipping results by the reference three times standard deviation clipping values shows
that the three corresponding cR value distributions are statistically equivalent to unity. For T = 80 s we obtain
1.0046 ± 0.0041, 1.0042 ± 0.0030, and 0.9983 ± 0.0014, respectively. However, there is a trend toward
comparatively higher RSS estimates for the smaller amplitude clipping thresholds, and the ZR signal recon-
struction is also significantly negatively affected by the one‐bit clipping. In conclusion, manipulating time domain
amplitudes to account for wavefield transients does affect the obtained data quality, but the ZZ focal spot images
are insensitive to the details. These findings support focal spot imaging because good results do not critically
depend on a critically tuned processing chain.

This does not suggest that preprocessing is not important. Data processing can be optimized for a specific data
application considering spatial and temporal scales of the acquisition and wavefield properties (Fichtner
et al., 2020). Whereas anisotropic Rayleigh wave incidence can be accounted for using updated focal spot or
autocorrelation models (Nakahara, 2006), optimized data processing can make important contributions to the
separation of different wavefield components (Giammarinaro et al., 2023). Modern wavefield separation tech-
niques (Mousavi & Beroza, 2022) can then also result in Love wave focal spots, which are otherwise unattainable
because Love waves and Rayleigh waves contribute both to RR and TT component autocorrelation fields (Haney
et al., 2012).

3.4.4. Removal of Earthquake Signals

The second alternative preprocessing strategy aims to minimize effects of body wave energy. The interference of
P wave energy with the surface wave focal spot is suggested by the consistently elevated data points above the
best fitting J0 model (Section 2.4, Figure 4) that result in systematically higher cR values (Figures 7a and 7f)
compared to the ZR imaging results (Figure 7e) discussed in the previous section.

Journal of Geophysical Research: Solid Earth 10.1029/2023JB027417

TSARSITALIDOU ET AL. 14 of 27

 21699356, 2024, 5, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023JB

027417 by C
ochrane France, W

iley O
nline L

ibrary on [26/04/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



In this last test, prior to cross‐correlation, we exclude time segments including and after large earthquakes. This
eliminates the steeply incident body wave energy associated with reverberations that continue to be part of the
global wavefield long after the local surface wave coda energy has dissipated (Boué et al., 2013; Boué, Poli,
et al., 2014). We use an empirical relation to calculate the length of the discarded time window td that is based on
the timing and moment magnitude Mw of an event (Boué, Poli, et al., 2014). For example, for a Mw6.0 event
td = 25 hr, Mw7.0 leads to td = 51 hr, and for Mw8.0 td = 108 hr. We exclude windows after events with a
minimummagnitudeMw6.0 that are listed in a global catalog (USGS, 2017). ThisMw6.0 limit removes about 45%
of the data available for cross‐correlation. For alternativeMw5.5 orMw6.5 thresholds the rates are 70% and 20%,
respectively. We use all other reference case parameters, that is, we apply the preprocessing explained in Sec-
tion 2.2, we analyze ZZ component focal spots, and we use rfit = 1.2λ. Inspection of the parameter estimation
results associated with successively smaller Mw thresholds shows a systematically reduced discrepancy between
ZZ amplitude data and the J0 Bessel function model (Figure S3 in Supporting Information S1), which suggests our
approach does reduce interfering P wave energy. For the ZR and RZ results, however, the scatter increases
significantly from the testedMw6.5 toMw5.5 limit, with corresponding changes in the estimated wavenumber and
hence phase speed. This negative effect is exclusively controlled by the reduced temporal averaging considering
the insensitivity of the radial component data to body wave energy (Giammarinaro et al., 2023).

Before we assess the impact of this strategy on the obtained image in Figure 7g we discuss the effects on the
energy distribution in the wavenumber domain illustrated in Figure 8. For a reference station located at the center
of the array, we show wavenumber domain narrow‐band filtered focal spots at T = 60 s (Figures 8a and 8c) and
T = 240 s (Figures 8b and 8d) obtained using the full data set (Figures 8a and 8b) and after removal of time
windows associated with large earthquakes (Figures 8c and 8d). Comparing the test results in the lower row with
the original upper row results shows two effects. First, we can discern a change in relative amplitude at the center
part of the spectrum, and this change is stronger at the long period. It suggests that vertically incident P wave
energy associated with small k values has been reduced. Second, in the case without the large event data, the
azimuthal distribution of the Rayleigh wave energy has improved, it is now more isotropic.

The effect of the earthquake data removal on the focal spot image quality highlights the diverse effects of the
different wavefield components and processing choices. Compared to the reference image Figure 7a the new
T = 60 s results in Figure 7g have an equivalent quality in terms of the feature reconstruction and image
coherence. There is perhaps a small systematic ∼0.1 km/s increase in the estimated cR values that is best seen by
comparing the low‐velocity regions in the western U.S. Here, then, the minimization of P wave energy using
rfit = 1.2λ results in a change toward larger values, that is, the reference image has perhaps a weak tendency to
underestimate cR, which is compatible with the discussion of the Giammarinaro et al. (2023) results in Section 3.3.

Together, the wavenumber domain focal spot properties and the image quality associated with earthquake data
removal suggest a somewhat better performance. However, for the rolling TA deployment with an average two‐
year stationing, data removal can significantly reduce temporal averaging, that is, the target improvement of
removing P wave bias can be compensated or offset by a reduced surface wave focal spot quality. Overall, the
choice of the threshold for the minimum magnitude should trade off the positive and negative effects associated
with minimizing the biasing P wave energy and the data discard, respectively. For surface wavefields, the data
range can be as short as the SNR or residual fluctuations allow. The presence ofPwave energy requires rfit> 1λ for
sufficiently good estimates (Giammarinaro et al., 2023). Alternative processing strategies that can result in similar
improvements of the surface wave focal spot properties include iterative correlation approaches referred to as the
C2 and C3 method, where the reconstructed ballistic surface wave arrival and the correlation coda waveforms are
re‐correlated, respectively (Stehly et al., 2008), with different implications for the long wavelength limit.

3.4.5. Sensitivity Test Summary

In Figure S2 in Supporting Information S1 we show the sensitivity test results Figure 7 that are scaled by the
reference image Figure 7a. This alternative view illustrates some of the consistent cR effects discussed in Sec-
tions 3.4.1 to 3.4.4, for example, the consistently smaller ZRcR level by about 2%–4%, or the systematic effect of the
earthquake removal in the 1%–2% range. In addition, the normalized images contain patterns that mirror imaged
tectonic features (Figures S2b, S2d, and S2e in Supporting Information S1), which suggests systematically
combined effects of processing parameters and structure related wavefield properties, in contrast to the spurious
impression associated with large‐scale linear features (Figures S2f and S2g in Supporting Information S1).
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We conclude this section by comparing estimates from our seven different sensitivity tests to sample 60 s cR
values at three locations in the Great Basin, the Columbia Basin, and the Williston Basin obtained with noise
correlation dispersion analysis (Figure 9 in Lin et al., 2014). Rounded to the next 0.05 km/s interval considering
the uncertainties, the cR values are 3.80, 3.90, and 4.05 km/s. We compare these to values from the single closest
station in the maps in Figures 7a–7g using the same precision. The comparison shows that the agreement of our
results to the tomography samples is within 0.5% for cases with longer rfit (Figures 7a, 7d, and 7f), and that the
difference tends to increase for cases with short rfit and low data quality (Figures 7b, 7e, and 7g). The same trends
are obtained using not rounded values, and averages from the five nearest stations to the sample locations.

Together with the scaled images (Figure S2 in Supporting Information S1) the sample location comparison
suggests our ZZ reference data processing that we use for the dispersion analysis (Sections 3.2 and 4.3) and for the
phase velocity maps (Section 4.3) produces quality results. Although our testing cannot conclusively reconcile the
systematic ZZ and ZR differences, we conjecture that the variable data quality likely controls the observed
different phase velocity levels. We establish that the ZZ results are based on considerably better data quality
compared to the ZR and RZ autocorrelation fields, and that the influence of body wave energy on the image
results can be neglected here.

Figure 8. Wavenumber spectra of ZZ component focal spots associated with the reference station R21A. Patterns for (a) T = 60 s and (b) T = 240 s are associated with
focal spots that are reconstructed from all available data. For the corresponding patterns (c) and (d) we exclude data containing global body wave reverberations excited
by earthquakes with Mw > 6.0. Each spectrum is normalized by its maximum value.
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3.5. Spatial Phase Velocity Variations in Relation to the Imaging Wavelength

In this section we analyze the spatial scale of the lateral phase velocity variations for the period range between 60
and 310 s and compare this size scale to the wavelength that is used to probe the lithosphere. For this we compute a
period dependent ratio (Figure 9) that helps to interpret the obtained focal spot imaging results (Figure 10) in the
next Section 4.

The range of wavelengths that can be analyzed with the focal spot technique depends on the minimum and
maximum size of the reconstructed focal spot. As in seismic tomography, then, the period range of the seismic
surface wave focal spot application is controlled by the array properties. Generally, the shortest and largest
wavelengths are constrained by the interstation distance and the array aperture, respectively. In both cases,
however, the data quality has a significant effect on the resolution. It is advantageous to achieve robust cR es-
timates with a small rfit data range as possible. For any given period, this length scale affects the parameter
estimation and the lateral resolution immediately (Figures 7b–7d) (Giammarinaro et al., 2024), and it thus differs
compared to the propagation distance limit employed in seismic surface wave tomography. For the USArray these
limits facilitate the reconstruction of focal spots and associated phase velocity maps in the 60–310 s period range
(Figure 10a) using a nominal data range value of rfit = 1.2λ.

In Figure 10a, the 60 s phase velocity results are corroborated by their similarity with established tomography
results. Across the imaged domain the distribution is characterized by variations that are smooth compared to the
wavelength that is indicated by the white line inside the circle with radius 1.2λ. Toward the long period limit,
however, the results show variations on scales that are significantly smaller compared to the wavelength. To
quantify this trend, we relate the scale of the spatial variations to a reference scale that we choose as the average
wavelength for each period. This 1λ reference is a conservative interpretation of the diffraction limit and related to
the typical resolution of surface wave tomography implementations (Barmin et al., 2001; Mordret et al., 2013).

For this we apply a Fourier decomposition to the obtained phase velocity maps. Before the 2DFT image analysis,
we compute the positions of the station locations relative to a reference location at the center of the area and
convert the Cartesian to Polar coordinates. We de‐mean the phase velocity distributions at each period and
compute the 2DFT. The resulting amplitude spectrum of the reference 60 s phase velocity distribution Figure 7a is
shown in Figure 9b together with its azimuthal average in Figure 9c. The position of the large amplitude features
in Figures 9b and 9c reflects the dominating pattern of the continental‐scale velocity variations across the U.S. For
periods between 60 and 200 s the spatial scale of the velocity variation is relatively constant with a maximum
amplitude at kr ∼ 0.002 rad/km (Figure S4 in Supporting Information S1), but at longer periods the range extends
to larger kr values and hence smaller wavelengths. The black circle in Figure 9b and the black line in Figure 9c
indicate the average wavenumber computed from the average wavelength which is the considered lateral reso-
lution reference. To estimate the power of the variations below and above that reference we compute the area
below the average spectrum at radial wavenumbers kr that are smaller (blue area in Figure 9c) and larger (red area)
than the mean wavenumber, respectively, and then take the ratio of the two integrals.

We estimate this ratio in the target period range between 60 and 310 s with a 10 s period interval. The ratio is
influenced by the reference wavenumber and by the spectral amplitude distribution. The decreasing trend in
Figure 9a hence reflects the decreasing k threshold, but also the redistribution of energy from smaller to larger kr.
Comparatively large numbers as for the shortest period indicate relatively smooth velocity variations compared to
the probing wavelength. At around T = 160 s the slope flattens significantly toward the small numbers at the long
periods that reflect relatively rough distributions. We use these trends together with data quality markers, and
parameter estimation and sensitivity tests for a comprehensive assessment of the obtained USArray focal spot
imaging results.

4. Discussion
4.1. General Observations

The analogy of modern dense seismic networks to ultrasonic transducers facilitates the application of elastog-
raphy medical imaging concepts to seismic surface wave data. A high station density and clean correlation surface
wavefields support the depth extension compared to ambient noise tomography and potentially sub‐wavelength
resolution of lateral medium variations. Numerical experiments targeting the lateral resolution power of the focal
spot method demonstrate that the data range is the most important tuning parameter. Although the choice of
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rfit affects the contrast, the phase characteristics of the imaged velocity variations are robust (Giammarinaro
et al., 2024). Overall, the application to dense local array data (Hillers et al., 2016) and the numerically inves-
tigated resolution properties (Giammarinaro et al., 2023, 2024) demonstrate the effectiveness of the focal spot
technique for a wide range of imaging applications including feature detection and accurate wave speed estimates,
that is, the technique supports discovery mode and inference mode imaging (Tsai, 2023). Here we apply this
method for the first time on a continental scale using USArray data to estimate dispersion and to image phase
velocity distributions of the fundamental mode Rayleigh wave between 60 and 310 s period.

In this section we discuss the ZZ component results that are obtained with our reference processing which in-
cludes standard deviation amplitude clipping during the preprocessing stage. The ZZ focal spot data are analyzed
using a model associated with isotropic propagation and a data range rfit = 1.2λ. Our data analysis implies that P
wave energy interferes with the surface wave measurements. However, at T = 60 s, the sensitivity tests, a sample
comparison to tomography phase speed estimates, and the high similarity of the images to equivalent tomography
maps together demonstrate that our ZZ results are accurate and not systematically biased. We prefer to not use ZR
results in our conclusive discussion due to the considerably lower SNR and the associated reduced image quality.
Future focal spot applications to three‐component data can potentially benefit from reconciling ZZ and ZR ob-
servations for yet better constrained estimates of the Rayleigh wave phase speed.

In the next section we continue the discussion from Section 3.2 about the dispersion results and the associated
vertical resolution. Lateral resolution is then examined in a detailed discussion of the imaging results including
uncertainty and quality estimates. We conclude with implications for resolving anelastic attenuation and medium
anisotropy, and on the general significance of focal spot imaging.

Figure 9. Period dependent partitioning of phase velocity image variation scales. (a) The ratio quantifies the blue indicated
area in relation to the red indicated area in panel (c), the relation of variations on scales that are smaller and larger,
respectively, than the reference seismic wavenumber associated with the period dependent wavelength. (b) The 2DFT
amplitude spectrum of the T= 60 s phase velocity map (Figure 7a) obtained from ZZ component focal spots. The black circle
indicates the average seismic wavenumber at this period. (c) Azimuthal average of the spectrum in panel (b). The black line
separating the blue from the red area corresponds to the circle in panel (b).
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4.2. Vertical Resolution

Our k‐means cluster approach (Section 3.2) yields three average dispersion curves that show a general increase in
the seismic velocities from West to East (Figure 6a). The uncertainty associated with each average dispersion
curve suggests well separated clusters. The effectiveness of the focal spot method to increase the vertical reso-
lution compared to array surface wave tomography (Section 3.2) is suggested by the good agreement between the
data and the synthetic dispersion curves up to periods of 300 s. The sensitivity kernels (Figure 6b) associated with
the averaged five‐layer models imply a depth resolution down to the ∼800 km range. Averaged over the full
period range, the decreasing error of 0.016, 0.015, and 0.014 km/s for the three clusters fromWest to East can be
connected to the increasingly homogeneous conditions in the respective regions. By averaging the 1,000 best
shear wave velocity models for the display in Figure 6c we consider a large enough number of sufficiently
converged solutions. Details in the depth dependent profiles depend on this choice, and to a lesser degree also on
the parameter sampling by the Neighborhood Algorithm.

From a suite of alternative average models associated with different random seeds we can identify three robust key
features in Figure 6c. First, the crust and upper mantle in the top 300 km in the West shows slower velocities
compared to the regions to the East. Second, the purple profile exhibits a low‐velocity zone between 300 and
600 km, which is compatible with the relative low‐velocity feature at the same depth along aNorth‐South profile at
about 92°West imaged by Porritt et al. (2014, their Figure 8). Third, the velocities in themantle transition zone and
lower mantle below 400–500 km depth are consistently higher in the East. These observations are averaged over

Figure 10. Focal spot imaging results between T = 60 s and T = 300 s obtained with ZZ component data and rfit= 1.2λ. (a) Phase velocity distributions. In each map the
white circle and the white line illustrate the applied data range rfit and the average wavelength, respectively. The 60 s map is the same as Figure 7a. (b) The corresponding
standard error estimate (Equation 3). (c) The normalized residual sum of squares (RSS) of the parameter estimation using the Bessel function model. (d) The low‐pass
filtered phase velocity distributions from panels (a) using a Gaussian kernel of size equal to the average seismic wavelength at each period. (e) The phase velocity
distribution from panels (a) shown as perturbation around the average seismic velocity at each period.
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relatively large areas, but the compatibility with results from other imaging techniques generally demonstrates the
increased depth resolution of focal spot passive surfacewave imaging for extended 3D shearwave velocitymodels.

4.3. Properties of Phase Velocity Maps

Figure 10a shows the focal spot obtained Rayleigh wave phase velocity maps at six periods. The phase velocities
increase from around 4 km/s at T = 60 s to around 5.5 km/s at T = 300 s. Figure 10b illustrates one of the key
advantages of the focal spot approach, that is, the access to the location dependent error estimate for the imaged
area. As discussed for the dispersion results in Figure 6a the error is period dependent, with the largest values
around 0.1 km/s at T = 60 s, smallest values around 0.035 km/s at T = 150 s, and then again larger values around
0.06 km/s toward the 300 s long period limit. Another measure of the data quality is the RSS value shown in
Figure 10c. This shows a similar period dependence but here the values around 0.035 at T = 60 s are matched
again at T = 200 s and then increase to 0.07 at T = 300 s. The best values of the RSS quality proxy are found at
100–150 s period. The RSS values are normalized to remove the effect of the number of samples that varies for a
nominally constant range of rfit = 1.2λ for the considered wide period band. To facilitate the comparison with
global tomography models we show in Figure 10d the low‐pass filtered phase velocity distributions. We use a
Gaussian kernel that has the same scale as the seismic wavelength at each period which is indicated by the white
lines in the panels in Figure 6a. Figure 10e illustrates the original maps as perturbations in percent around the
mean phase velocity estimate.

Supported by the information in Figures 10b–10e, the discussion of the phase velocity images in Figure 10a is
divided into a part that focuses on the shorter period range where we can compare the results to surface wave
tomography results, and a long period part for which no reference surface wave observations are available. For
results between 60 and 180 s, we discuss a quantitative comparison between our focal spot images and the to-
mography results of Jin and Gaherty (2015), Zhao et al. (2017), and Babikoff and Dalton (2019) (Figure S5 in
Supporting Information S1).

4.3.1. The Short Period Range 60–150 s

In the 60–150 s range we can compare our results to the images obtained using both earthquake (Babikoff &
Dalton, 2019; Jin & Gaherty, 2015) and ambient noise data (Zhao et al., 2017). The obtained USArray phase
velocity results present updated information about the crustal and mantle structure beneath the U.S. that is
presented in numerous structural studies summarized by Shen and Ritzwoller (2016). The high similarity of our
60 s results in Figures 10a and 10e to the maps in Figure 9 in Jin and Gaherty (2015) and Figure 6 in Zhao
et al. (2017) emphasizes, again, the equivalent focal spot imaging quality.

Zhao et al. (2017) extend the long period limit of their ambient noise tomography by applying a comparatively
short 1λ cutoff distance. This allows phase velocity estimates up to 150 s period. This 1λ threshold is the shortest
propagation distance between two sensors considered for an unbiased speed estimate, whereas our 1.2λ data range
is the maximum distance of the spatial autocorrelation field data used to constrain the local Bessel function model.
The two approaches target different components of the surface wavefield (Figure 1), yet they are similarly
sensitive to the physical medium properties.

At 100 s, we can consider the results of the two earthquake tomography studies by Jin and Gaherty (2015) and
Babikoff and Dalton (2019). We find that the large‐scale velocity structure of the generally slower velocities to
the West of the Rocky Mountain Range, but also the comparatively higher velocities in South‐East Texas, are
equally resolved by our focal spot approach and by the ambient noise and earthquake tomography. Our 150 s
results show a similar correspondence of the large‐scale features in the images in Zhao et al. (2017). At smaller
scale we highlight the consistently imaged high‐velocity patch at the border of Oregon, California, and Nevada,
and the North‐South trending red indicated linear low‐velocity feature to the North of the Texas Panhandle in
Figure 10a. This feature is displayed in yellow color in the perturbation map Figure 10e, and, because of the
domain size dependent mean value, in white color in the corresponding panel in Figure 6 in Zhao et al. (2017). The
resolution of this one pixel wide feature in the 300 km depth range is noteworthy considering the indicated rfit data
range and wavelength. It supports the notion that focal spot imaging has sub‐wavelength resolution properties.

At these intermediate periods, however, the similarity between the tomography and the focal spot images is not as
convincing compared to the 60 s reference case. Not all small‐scale features agree. The velocity pattern obtained
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at 150 s in the Washington and Oregon area differs between the noise‐based solutions, which is likely influenced
by the location close to the edge of the imaging domain. In addition to the Helmholtz tomography Babikoff and
Dalton (2019) produce phase velocity maps between 25 and 180 s period that are computed from six different 3D
shear wave velocity models. Differences between the obtained images are attributed to the variable sensitivity of
the different methods and data sets. Comparing our focal spot to tomography results we can conclude that focal
spot imaging is competitive in the 60–150 s range.

We compute the percentage difference (Figure S5 in Supporting Information S1) between the focal spot phase
velocities obtained with the reference processing (Section 3.3) and results from three tomography studies
(Babikoff & Dalton, 2019; Jin & Gaherty, 2015; Zhao et al., 2017). Spatial distributions of the percentage dif-
ference and the respective histograms show that the focal spot method tends to overestimate values compared to
the other studies. The histograms exhibit an approximately Gaussian shape centered at +2% difference. As
discussed in Section 3.4.4, a larger velocity is a likely effect of the P wave energy that interferes with the ZZ
component surface wavefield. Stronger velocity differences are observed toward the edges, where our formal
error estimates are also larger (Figure 10b). Apart from these wavefield anatomy and configuration effects, we
observe consistent small‐scale features in the comparison maps that are associated with tectonic variations in the
western part of the U.S. such as Yellowstone and the Snake River Plane. This is related to different contrasts
across lateral variations obtained with our autocorrelation and the cross‐correlation tomography implementations
(Giammarinaro et al., 2024).

The uncertainty estimates (Figure 10b) are typically much smaller away from the domain edges. The size of the
area that is affected by the edges increases with wavelength. However, we can extend our observation from
Section 3.3 to the full image domain and conclude that the formal uncertainty is small compared to the imaged
phase velocities. This implies sufficiently resolved speed variations, which supports the conclusion from the
comparison to tomography results.

The normalized residual sum of squares RSS (Figure 10c) allows an alternative assessment of the regression
results. Generally there is a tendency of the best RSS values to be located away from the edges. Compared to the
uncertainty estimates, however, the RSS maps show more texture, which is governed by North‐South oriented
features in the here considered period band. The pattern of good RSS values—along the Rocky Mountains, along
the northern and eastern image edge—and bad RSS values—to both sides of the Rocky Mountains, in southeast
Texas—does not seem to be controlled by a single structural, wavefield, or deployment feature. Instead, the ZZ
data scatter around the best fitting model appears to be influenced by a combination of various mechanisms that
require further investigation to be more completely understood.

For the period band 60–150 s, the average uncertainty estimates (Figures 10b and 10c) decrease with increasing
period. At the same time, the amplitude of the velocity variation decreases as well (Figure 10e), and together with
the fact that in this period band the azimuthal average is almost complete for most stations, we interpret the large
uncertainty at the smallest 60 s period to be controlled by stronger lateral heterogeneity. This is compatible with the
effect of local scatterers on the focal spot reconstruction observed by Hillers et al. (2016). As summarized in the
next Section 4.3.2, the error increase toward longer periods ismostly attributed to insufficient azimuthal averaging.

The low‐pass filtered images (Figure 10d) are compatible with results from global tomography. The general
West‐East trend of increasing wave speed is similarly resolved by the hum‐based images of Haned et al. (2015). In
comparison to these low‐resolution images the regional tomography‐calibrated original maps (Figure 10a) show
that the employed data range rfit = 1.2λ effectively increases the resolution. Figure 7d implies that a data range of
rfit = 2λ or longer yield similarly low‐pass filtered results. Longer data ranges degrade the amplitude contrast
(Giammarinaro et al., 2024), but the resolution‐uncertainty trade‐off can help to improve estimates from noisy or
biased data (Giammarinaro et al., 2023). We demonstrate this relation here, it is relevant for the discussion of the
results at T ≥ 200 s for which only comparatively low‐resolution global tomography results are available.

We iterate that the simplemodels (Equations 1 and 2) used for the cR estimation assume isotropic illumination or an
equivalent complete azimuthal average. The general robust similarity to the surface wave tomography results even
in regions close to the image boundary such as the velocity structure along the California Central Valley and the
Sierra Nevada suggests that the images in the here considered 60–150 s range are not systematically biased by the
directive surface wave energy flux (Figure 5). Incomplete averaging can influence the higher uncertainty estimates
along the boundaries, but does not degrade the overall image quality here.

Journal of Geophysical Research: Solid Earth 10.1029/2023JB027417

TSARSITALIDOU ET AL. 21 of 27

 21699356, 2024, 5, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023JB

027417 by C
ochrane France, W

iley O
nline L

ibrary on [26/04/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



4.3.2. The Long Period Range 200–300 s

We emphasize that our 200–300 s imaging results in Figure 10 exceed the T= 150 s period range limit reached by
Zhao et al. (2017) using USArray ambient noise correlations. The images are obtained using the same workflow
used for the tomography compatible 60–150 s results. We observe a continuation of the large‐scale velocity
structure from the 150 s to the 200 s results, that then show an increase in the small‐scale variability in the 250 and
300 s images (Figure 10a). This increased variability in relation to the probing wavelength (Figure 9) differs from
the resolution of upper mantle features that is commonly provided by tomographic inversion results. The reso-
lution of this structure is generally supported by the associated formal uncertainty estimates (Figure 10b).

We begin the interpretation of these long period imaging results by comparing the low‐pass filtered images
(Figure 10d) to global tomography results (Durand et al., 2017; Haned et al., 2015) and find that our focal spot‐
based maps are, again, showing the generally observed West‐East trend. For the original 200 s map (Figure 10a),
higher resolution phase velocity images obtained with USArray earthquake data at T = 180 s (Figure S5 in
Supporting Information S1, comparison with Babikoff & Dalton, 2019) also agree on the large‐scale features, but
tend to become more dissimilar at scales smaller than one wavelength, an impression that can be enhanced by the
different color ranges and grids. For this period range, our results also tend to have faster velocity estimates. Our
three phase velocity maps at 200, 250, and 300 s period correspond to the upper mantle and transition zone
approximately in the 300–600 km depth range (Figure 6b). The obtained perturbations in the − 6 to+6% range are
larger compared to the values reported for relative body wave variations below the contiguous U.S. (Porritt
et al., 2014). As quantified by the flattening curve in Figure 9, the scale of our obtained variations is much shorter
compared to the imaging wavelength, which challenges the reliability of the imaged features beyond the general
compatibility of the low‐pass filtered trends.

As said, the focal spot imaging procedure for the full 60–310 s period range is the same. Together with the
established capability of sub‐wavelength resolution (Giammarinaro et al., 2023, 2024), and supported by the
uncertainty estimates, this suggests a period‐independent homogeneous image quality. We also do not discern a
consistent correspondence between the imaged high‐ or low‐velocity features and the uncertainty and SNR
patterns that could indicate a universal biasing effect. Features in the goodness‐of‐fit patterns can be indicative of
structural variations that influence the wavefield and hence the amplitude pattern locally (Hillers et al., 2016). The
increasing RSS estimates from the 0.015–0.030 range at T = 150 s to the 0.04–0.01 range at T = 300 s is
associated with the increasingly elliptical focal spot shapes at these longer periods (Figure 3). The ellipse shape
appears as a systematically wider data range around the azimuthal average J0 model (Figures 4a–4c). Looking for
correspondences, the band of low uncertainties and low RSS values reaching from Southern California into Texas
suggests the complex velocity structure in this area is well resolved. Another consistent feature in the uncertainty
and RSS maps is the high‐value region along the west coast at T = 200 s that focuses toward an area below
Northern California at T = 300 s, but that does not have a similarly recognizable phase velocity analog.

We conclude with a discussion of factors that require an extended analysis to assess the potential influence on the
obtained images. The nominal rfit = 1.2λ data range is actually not homogeneously implemented in the parameter
estimation. This can be seen from the radii of the white circles in Figure 10a in relation to the width of the
synchronous acquisition patterns illustrated in Figure 2. More than at the short periods the wavefield is not
sampled equally in all directions, with azimuthally variable rfit distances. We note, however, that the shorter data
ranges at these longer wavelengths do not imply similarly granular images obtained for the 60 s rfit = 0.5λ case
(Figure 7b) that is more extreme considering the few samples at the short period limit (Figure 4a). Another
position dependent effect on the wavefield sampling and hence parameter estimation is the spatially variable
illumination pattern (Figure 5). An only partially sampled ellipse‐shaped focal spot can influence the velocity
estimate obtained with the isotropic model assumption. While the flux patterns vary on scales that are much
longer compared to the imaged velocity variations, the anisotropic background illumination has a greater effect on
the long period velocity estimates compared to the shorter periods where the azimuthal average is more complete
for more reference stations.

4.4. Summary and Outlook

From our comparison of results at T ≤ 150 s to tomographic studies (Babikoff & Dalton, 2019; Jin & Gah-
erty, 2015; Zhao et al., 2017) we can summarize that even for non‐optimal imaging conditions associated with
anisotropic Rayleigh wave incidence the focal spot method can reliably estimate elastic medium properties using
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autocorrelation data collected at distances on the order of one wavelength using models based on isotropic surface
wave propagation. Giammarinaro et al. (2023) demonstrate that biasing body wave energy can be mitigated using
longer data ranges for the surface wave assumption. Alternative strategies include the implementation of filters
prior to or after correlation, or the consideration of the—potentially oblique—body wave incidence in the
autocorrelation parametrization that can be further constrained by radial component data. As seismic energy
redistribution through scattering at the longer periods T ≥ 200 s is less efficient compared to the crustal scales the
associated focal spots are more influenced by the directive illumination. Together with the acquisition patterns
and a smaller effective data range the obtained small‐scale velocity variations require independent verification.
However, the variations do not reflect a systematic connection to any of the considered control parameters
including the relative sensor position, uncertainty, goodness‐of‐fit, or local flux pattern.

To further evaluate the consistency of the focal spot results we predict phase velocity maps (Babikoff &
Dalton, 2019) from the global model SEISGLOB2 (Durand et al., 2017). We convert the S wave velocity per-
turbations relative to PREM to absolute vS values in km/s in each layer. The Pwave speed vP in km/s and density ρ
in units of g/m3 are estimated using vP = 1.73vS and ρ = 0.32vP + 0.77. We compute dispersion curves (Herr-
mann, 2013) on a 1° × 1° grid and compile period dependent phase velocity distributions. The predicted images
(Figure S6 in Supporting Information S1) are low‐pass filtered versions of the focal spot results, which is also
evident from the similarity of the SEISGLOB2 predictions to the Gaussian‐smoothed focal spot images in
Figure 10d. That is, the broad patterning is consistent, with a correspondingly larger spatial scale of the phase
velocity variations predicted from the global model. However, at short 60–150 s periods the small‐scale features
in the focal spot and the dense array tomography images (Section 4.3.1) are more similar to each other than to the
SEISGLOB2 predictions. These observations highlight the need for controlling the imaging sensitivities asso-
ciated with different acquisition patterns, wavefield components, theories, techniques, and algorithmic and
parameter choices.

Our results suggest that the focal spot technique is a useful complementary imaging tool that can enhance the
resolution of vertical and horizontal velocity variations of the mantle structure below the U.S. for the study of
mantle dynamics and plate tectonics. Controlling cleaner surface wavefield properties the here applied rfit = 1.2λ
data range can potentially decrease and in turn the lateral resolution can increase. The explicit consideration of the
anisotropic illumination effect using updated SPAC expressions (Nakahara, 2006) can improve imaging results.
We anticipate more significant enhancements at the longer periods compared to the shorter periods where suf-
ficient azimuthal averaging has been shown to yield accurate estimates. Azimuth dependent surface wave speed
variations are resolved in the 7–46 s range below the western U.S. (Lin & Ritzwoller, 2011; Lin et al., 2009;
Zigone et al., 2015). A strong azimuthal Rayleigh wave speed dependence is inferred in the ∼1 km2‐scale focal
spot analysis in the San Jacinto fault zone environment (Hillers et al., 2016). This suggests that medium wave
speed anisotropy at longer periods can be studied using USArray focal spot data, which requires a mitigation of
the potentially interfering effects of anisotropic illumination (Giammarinaro et al., 2023; Nakahara, 2006; Roux
et al., 2005). Prieto et al. (2009) apply SPAC to dense array data in California to estimate the anelastic structure.
Nakahara (2012) and Magrini and Boschi (2021) confirm the application of the used ad‐hoc exponential term that
parametrizes the excess amplitude decay for weakly attenuating media. For this, however, it is essential to use
long data ranges, hence constraining attenuation from noisy data at short one‐wavelength focal spot distances
appears challenging. The effectiveness of focal spot imaging to resolve first order wave speed variations
compared to second order direction dependent and anelastic effects underlines universal principles of elastic and
seismic wave propagation.

5. Conclusions
Focal spot imaging is an established medical imaging method. In contrast to tomography the local wave speed is
estimated from properties of spatial autocorrelation fields. In seismology, the technique involves the application
of SPAC models to dense array autocorrelation data at distances on the order of one wavelength, and this short
scale allows an exploration of longer periods compared to tomography. In this work we apply focal spot imaging
to noise correlation functions obtained from USArray data to estimate fundamental mode Rayleigh wave
dispersion between periods of 60 and 310 s. The similarity to regional seismic tomography results in the 60–150 s
range in this first large‐scale survey demonstrates the effectiveness of passive seismic surface wave focal spot
imaging. The local inversion‐free imaging approach excels in dense array applications, which suggests its use-
fulness for the analysis of spatially dense data sampled by distributed acoustic sensing systems.
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Our sensitivity tests show that the data range is an effective tuning parameter that trades off resolution and un-
certainty. The test results at 60 s period reflect the better signal‐to‐noise ratio of the ZZ compared to ZR and RZ
data, and that anisotropic illumination or interfering body wave energy do not critically influence the overall high‐
quality, tomography‐compatible ZZ images. Importantly, the local SPAC model regression yields estimates for
the goodness‐of‐fit and the phase velocity error at each image pixel. Together with the depth sensitivity analysis
results, this shows that 3D shear wave velocity models can be inverted using USArray focal spot phase velocity
data and their uncertainties at periods up to 300 s.

The challenge to reconcile long period focal spot images in the 200–300 s range with results from comparatively
low‐resolution global tomography highlights the need to manage the data sensitivities, processing effects, and
uncertainties. For focal spot imaging, better control over the combined effects of the array shape, relative position
dependence, local flux pattern, wavefield component biases, and factors governing data quality and hence un-
certainty can be rewarded with improved images of elastic material properties at previously unattainable depth
ranges, and potentially also of anisotropy and anelastic properties.

Data Availability Statement
The continuous seismic records and the earthquake catalog data are available through the EarthScope Consortium
Web Services (https://service.iris.edu/). We use data from the BK (Northern California Earthquake Data Cen-
ter, 2014), CI (California Institute of Technology and United States Geological Survey Pasadena, 1926), TA
(IRIS Transportable Array, 2003), and the US (Albuquerque Seismological Laboratory (ASL)/USGS, 1990)
network. The Python software package used to process the continuous data can be accessed from Boué and
Stehly (2022). The Python code used to estimate the phase velocity maps are accessible at Giammarinaro and
Hillers (2022).
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