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31000,Toulouse,FRANCE
marc.boyer@onera.fr

https://orcid.org/0000-0003-0344-6991

April 26, 2024

Abstract

Real-time systems often consist of numerous subsystems engaged in extensive data exchange.
Despite their complexity, a critical challenge lies in effectively incorporating real-time constraints
within these systems. To address this challenge, designers typically conduct analyses to establish
upper bounds on delays, ensuring they remain within the deadlines of incoming requests. How-
ever, adopting a pessimistic approach often results in over-dimensioning the systems. Then, to
reduce the pessimism, we want to take into account the fact that a subsystem cannot propagate
more requests/data than it can execute. This phenomenon is well-known in network analysis as
it reduces the burst of data. As a consequence, this notion is easier to grasp in theories devel-
oped to compute delay bounds in networks. That is why we choose, in this paper, to perform
the analysis using the Network Calculus theory, since it offers the possibility to easily aggregate
flows (i.e. sum flows) and then take into account the phenomenon of smoothing the traffic.
To handle tasks and networks, our model relies on packetization and workload scaling. In this
paper, we improve some results regarding the already existing elements of Network Calculus
and the aggregation. Also, we update and complete definitions and results related to workload
scaling.

Keywords— R eal-Time System, Response Time Analysis, Network Calculus, Aggregation of Flows

1 Introduction

Nowadays, real-time systems are increasingly complex and can be composed of a large number of
subsystems exchanging a large number of requests/data. One of the challenges is to be able to
guarantee that each request will meet its deadline. To do so, several analyses of such real-time
systems can allow designers to compute worst-case delay upper bounds and make sure the time
constraints are met (if the bounds are lower than the deadlines). However, the analysis can be
pessimistic and can lead to oversizing of the system if the bounds are too large wrt. the worst case.
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To reduce this pessimism, a little-considered phenomenon could be taken into account: a sub-
system cannot propagate more requests/data than it can execute. It means that two propagated
requests from the same element of the system are, at least, separated by the time to execute the first
one. In a network, it is a phenomenon known as it reduces the bursts of data, i.e. the accumulation
of data at the same time.

In this paper, we model this phenomenon in distributed systems where tasks communicate
through a network and some tasks are released by the reception of a message or the end of the
execution of a previous one (released task chains). As a consequence, we will be looking at task
chains communicating through a network and computing delay bounds on these chains.

Various theories perform the analysis of such chains. However, as we want to perform bounds on
chains communicating through networks like Time Sensitive Networking networks (TSN, [1]) and
taking into account the phenomenon described above, we choose to perform the analysis using the
Network Calculus theory. One of the strengths of Network Calculus is the possibility to aggregate
requests modelled as flows (i.e. to sum flows) easily and use the build-in shaping to model the fact
that the total output of a system is limited by its maximal capacity.

To model release task chains in Network Calculus, we first need to model tasks. Inspired by [2],
we give the arrival and departure functions for these tasks based on job characteristics (release
time, completion time, and workload). To model task chaining we use existing network elements
(putting in sequence a server, a packetizer and a multiplier). A packetizer is a network element that
waits for the end of the execution of the request before releasing it instantaneously. A multiplier
(called scaling function in [3]) is an element of the system that can change the size of a flow.

To be able to benefit from the smoothing/shaping capacity in this context, we extend properties
of this packetizer and multiplier in the context of aggregated flows.

The paper is organized as follows. Section 2 presents our model of the release task chain with
Network Calculus. A state of the art is presented in Section 3 and notations are introduced in
Section 4. Next, Section 5 reminds the Network Calculus basics with new results regarding the
aggregation in the packetizer. Then, Section 6 presents an element modifying the workload, the
multiplier, inspired by the scaling function from [3]. Finally, we use the proven results in Section 7
with a sample.

2 System model

Model of tasks and release task chains A task, which we will note T , is an infinite sequence
of jobs: (Jn)n∈N. And a job, J , is characterized by a tuple ⟨r;w; e⟩ where r is the release time (i.e.
the time when the job is ready to start), w the workload (i.e. the number of CPU cycles required
to execute the job) and e ≥ r the completion time (i.e. the time when the all workload has been
served). We assume that the jobs of a task are ordered in ascending order of the release times.

Regarding the task chains, there are two types, both predicated on a precedence relation between
tasks (T → T ′): “release task chain” where the end of the execution of a job from T releases a job
of T ′ and “triggered task chain” where the jobs are independently released but each job of T ′ uses
the results of the last executed jobs of T . Here, the release time chains are considered, i.e. two
tasks T , T ′ are chained if the completion time of the job Ji of the task T is the release time of the
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Figure 1: Illustration of the passing from T to T ′, two chained tasks.

job J ′
i of the task T ′: ∀n ∈ N, r′n = en.

Model in Network Calculus Inspired by [2], we propose a way to model the tasks using
in Network Calculus. When modelling a network, a cumulative curve represents the cumulative
amount of data up to the current instant. When modelling a task T , it represents the amount of
workload (number of CPU cycles) generated by a task. Then, it can be defined as

AT (t) =
∑

n∈N|rn≤t

wn.

Network Calculus models the task scheduling by counting the work done into the cumulative curve
DT (cf. Figure 1).

To model a task chain T → T ′, we need to derive the arrival AT ′ from AT . First, the completion
times of jobs can be can be derived from AT using the network calculus element called packetizer
(designed to store bits up to having a full packet, which is equivalent as storing work up to full
execution). And to generate the workload w′

i of the next job, one just have to multiply the excuted
workload wi by w′

i/wi. Figure 1 illustrates this sequence of elements that model the task chain.
In this figure, a task T with two jobs represented (J0 = ⟨r0, w0, e0⟩ and J1 = ⟨r1, w1, e1⟩) is

chained to a second one, T ′ (J ′
0 = ⟨r′0, w′

0, e
′
0⟩ and J ′

1 = ⟨r′1, w′
1, e

′
1⟩ with r′0 = e0 and r′1 = e1) as

shown at the top of the figure. It can be modelled, in Network Calculus, with an input curve AT
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which pass through a server S, a packetizer PL, and a multiplier M as shown at the bottom of the
figure. The curve associated with the output of each element is drawn at the middle of the figure.

3 Related work

Curve-based models The Real-time Calculus (RTC) has been developed as a fork of Network
Calculus devoted to the analysis of complex real-time systems. An equivalence between the main
equations can be found in [4, 5]. To deal with task chain, and especially the change of workload,
it uses a dedicated workload curves per task (γ, γ′ for tasks τ , τ ′), and the composition γ′ ◦ γ−1

corresponds to our sequence of packetizer and multiplier elements [6, 7]. They do not address the
consideration of aggregation of flows.

In Network Calculus these elements have been studied per se and come with several interesting
properties (cf. Sections 5.5 and 6.2).

In the Compositional Performance Analysis (CPA), the model is based on the notion of Event
Stream, often denoted η, each event being either a task release or a message reception. Modelling the
fact that one task T releases task T ′ is done by transforming the event stream of T , often denoted
η, into another event stream η′, being the event stream of T ′. This model is well established, and
most work is done on the response time analysis of such chains, as in [8] (focusing on chains where
all tasks do not have the same priorities) and [9] (considering also blocking due to sub-calls).

Conversely to Network Calculus, the workload associated with each job is not in the event
stream itself, but as a separated parameter, often denoted q, and added when doing the response
time analysis. It then does not have to face the problem of the difference in workload size between
releasing and released jobs. But when considering an aggregation of several tasks of different sizes,
the analysis must consider each individual workload.

Other models to analyse release task chains In [10], the authors consider only periodic
tasks using three parameters: the workload, the period and a deadline. Each task can be a subse-
quence of tasks defined also by a workload, a deadline and they add a priority. Then, a framework is
proposed to analyse the schedulability using the notion of busy periods. However, only the periodic
task on a fixed priority scheduling is considered. In our manuscript, we try to model the task and
task chain with another framework and be as generic as possible regarding the scheduling policy.

In [11], the aim is not simply to compute the response time of a chain, but to take into account
the chain to count deadline misses in a weakly-hard real-time system.

Then, in [12], the task chain is formally defined in Definition 3.2 (it is quite similar to our
definition except that it is more specific because, for instance, they include a deadline and the
execution policy in the definition of the task chain). They also define the task model in Definition
3.1 considering that a task is defined only by a priority and a worst-case execution time where we
choose to base our model on [2]. Since then, [12] suggests an analysis of the task chain based on
the busy window.

A holistic approach, analysing a system made of different computing resources can also be
done [13].

Model cooperation It is shown in [14] how two methods (CPA and RTC) can be combined
to analyse a single case study, by analysing each element with one or the other method. One can
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also analyse each element with two methods, and get the best of both [15] with CPA and network
calculus. The task response time analysis can be used to generate a data flow arrival curve taking
into account the task scheduling [16].

Modelling task in Network Calculus A formal equivalence between subset of Network
Calculus and the Classical Response Time Analysis presented in the [2]. Our work extends the
results to be able to analyse chains of tasks using only the elements of the Network Calculus that
are already in place.

4 Notations

We first introduce some notations useful for the following sections.
First, R and R+ denote the set of reals and non-negative reals respectively. N denotes the set

of natural integers and Z the set of integers. ◦ represents the composition operator, i.e. let f, g be
two fonctions from R+ to R+ and t a non-negative real, f ◦ g(t) = f(g(t)).

Also, ∧ denotes the minimum operator i.e. a ∧ b
def
= min(a, b).

δ0 : R+ → R+ denotes the function such that δ0(0) = 0 and ∀t > 0, δ0(t) = +∞.
Also, we note U : N → R the function associated to a sequence (Un)n∈N such that U(n) = Un.

Then, we will either note Un or U(n).
Finally, F denotes the set of functions from R+ to R+ piecewise continuous, R the subset of F

such that the functions are right continuous. And, for any X ⊆ F , X↑ denotes the subset of X such
that the functions are non-decreasing and X0 denotes the subset of X such that ∀f ∈ X0, f(0) = 0.

5 Network Calculus basics

Here start the Network Calculus basics inspired from [5], [17]. This section gives the base of the
Network Calculus that we need in the following. First, we introduce mathematical basics, then we
give definitions and properties regarding the cumulative curves, the arrival curves, and the network
elements (servers, packetizers and multipliers).

5.1 Operators

In the Network Calculus theory, the main operators are the (min,plus) convolution (noted ∗),
the (min,plus) deconvolution (noted ⊘), the (max,plus) convolution (noted ∗) and the (max,plus)
deconvolution (noted ⊘), defined respectively, for all f, g ∈ F two functions and for all t ∈ R+, by

(f ∗ g)(t) def
= inf

0≤v≤t
{f(t− v) + g(v)} ,

(f ⊘ g)(t)
def
= sup

v≥0
{f(t+ v)− g(v)} .

(f ∗ g)(t) def
= sup

0≤v≤t
{f(t− v) + g(v)} ,
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(f ⊘ g)(t)
def
= inf

v≥0
{f(t+ v)− g(v)} .

Note that it is possible to move a constant out of the convolution [17, Rule 7 of Theorem 3.1.5],
i.e. let f, g ∈ F and K ∈ R+. Then,

(f ∗ g) +K = f ∗ (g +K). (1)

Also, other operators and definitions are needed in this paper.

Definition 1 (Sub/Super-additivity). A function f ∈ F is said to be super-additive if for all
x, y ∈ R+, f(x+ y) ≥ f(x) + f(y).

The same way, f is said to be sub-additive if for all x, y ∈ R+, f(x+ y) ≤ f(x) + f(y).

Property 1 (Sub/Super-additivity and convolution). Let f, g, h ∈ F↑. If h is sub-additive, then
h(f ∗ g) ≤ (h ◦ f) ∗ (h ◦ g).

If h is super-additive and if h is right-continuous or f, g are left-continuous, then h(f ∗ g) ≥
(h ◦ f) ∗ (h ◦ g).

Proof. Let t ∈ R+.
By definition of the infimum ∀s ∈ R+, 0 ≤ s ≤ t, f ∗ g ≤ f(t− s)+ g(t). As h is non-decreasing,

h(f ∗ g) ≤ h(f(t− s) + g(t)). If h is sub-additive, h(f(t− s) + g(t)) ≤ h(f(t− s)) + h(g(s)). Then,
h(f ∗ g) ≤ h(f(t− s)) + h(g(s)). As is it right for all s, we have h(f ∗ g) ≤ h ◦ f ∗ h ◦ g.

Also, if f and g are left-continuous: we have that ∃s ∈ R+, 0 ≤ s ≤ such as f ∗ g(t) =
f(s) + g(t− s). As h is nondecreasing, h(f ∗ g)(t) = h(f(s) + g(t− s)) and as h is super-additive,
h(f ∗ g)(t) ≥ h ◦ f(s) + h ◦ g(t − s) ≥ inf0≤s≤t {h ◦ f(s) + h ◦ g(t− s)}. Otherwise, if h is right-
continuous: by definition of the infimum, ∀ε > 0, ∃sε such that f ∗ g(t) + ε > f(t − sε) + g(sε).
As h is nondecreasing, we have h(f ∗ g(t) + ε) > h(f(t − sε) + g(sε)). If h is super-additive,
h(f(t−sε)+g(sε)) ≥ h◦f(t−sε)+h◦g(sε). Then, h(f ∗g(t)+ε) ≥ inf0≤s≤t {h ◦ f(t− s) + h ◦ g(s)}.
Using the limit, we then have h(f ∗ g)(t) ≥ inf0≤s≤t {h ◦ f(t− s) + h ◦ g(s)}.

Here, it seems that continuity can be a problem in respecting the hypothesis of Property 1.
However, in Network Calculus, it is common to consider all functions as left-continuous or right-
continuous and not mix different continuities in the same model. This is enough to meet the
assumptions because if we are using left-continuous functions, then f and g are left-continuous,
and we consider only right-continuous ones, h is then right-continuous.

In the rest of the paper, we assume that all the functions have the same continuity, either right
or left continuous.

5.2 Cumulative curves

In Network Calculus, flows are modelled by cumulative functions A ∈ F↑
0 such that A(t) counts the

total amount of data of a flow passed through some observation point up to time t. Since a flow
is a cumulative amount of data, it must be a non-decreasing function. The condition on a finite
number of discontinuities in a finite interval (A ∈ F) is related to the discrete aspect of computer
behaviour and simplifies the mathematical part. The condition of null value at 0 (A ∈ F0) is related
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to the fact that all results in network calculus are based on differences: a quantity A(t) has to be
understood as A(t)−A(0).

Commonly, the left continuity is preferred and most of the known results are developed with
this assumption. However, due to the fact that we use results from [18], we will deal with the
right continuous one, in this paper. However, recent results show that it exists, under conditions,
a bridge between the two assumptions [19].

One of the strenghs of the Network Calculus theory is the possibility to aggregate flows, i.e.
the sum of two cumulative curves remains a cumulative curve.

5.3 Arrival curves

The notion of arrival curves is introduced to bound the cumulative curve on any interval of time
and for A ∈ F↑

0 : a cumulative curve, α ∈ F↑, respectively α ∈ F↑, is a maximal, respectively
minimal, arrival curve for A, if

∀t, d ∈ R+ : α(d) ≤ A(t+ d)−A(t) ≤ α(d).

From Proposition 5.2 in [5], a property regarding the minimum of arrival curves will be useful.

Property 2 (Minimum between maximal arrival curves). Let A ∈ F↑
0 be a cumulative curve, and

α ∈ F↑ be a maximal arrival curve for A. Then, if α′ is another maximal arrival curve of A, α∧α
is also a maximal arrival curve for A.

5.4 Servers (size-invariant)

The common servers in the Network Calculus theory are size invariant elements, i.e. the output
data size is exactly the same as the input ones. With this assumption, the departure amount is
at any time less or equal to the arrival amount. Network elements able to change the size of the
processed data will be called “multipliers” and will be defined in Section 6.

A server S is defined as a relation in R↑
0×R↑

0, associating to each arrival at least one departure
(i.e. left-total1). A server is not a function since some non-determinism may associate several
departures to a given arrival.

Formally, the definition of a server is as follows.

Definition 2 (Servers). A server S ⊆ R↑
0 ×R↑

0 is a server that satisfies ∀(A,D) ∈ S =⇒ A ≥ D.

We denote A
S→ D for (A,D) ∈ S.

There exist various servers with different properties. Let’s recall those useful for this paper,
from the literature, as the minplus minimal service, the maximal service, and the shaper.

Definition 3 (Kinds of service). Let S be a server, and β ∈ F↑, βM ∈ F↑
0 , σ ∈ F↑

0 .

The server S offers a min-plus minimal service curve β if ∀A, ∀D : A
S→ D =⇒ D ≥ A ∗ β.

It offers a maximal service curve βM if ∀(A,D) ∈ S =⇒ D ≤ A ∗ βM .
It is a σ-shaper (also said offers a shaping service curve σ) if ∀(A,D) ∈ S =⇒ D ≤ D ∗ σ.

1A relation S is left-total when ∀A ∈ R↑
0,∃D ∈ R↑

0 | (A,D) ∈ S
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Remark 1. If the input curve A is an aggregate flow, i.e. a sum of cumulative curves, and we want
to compute the delay of a specific curve, it is necessary to find the service curve associated with this
input curve. This service curve is called the residual service curve, i.e. the service remaining for
the flow of interest, assuming that the other flows are served correctly.

Now, we can compute an output arrival curve of a server knowing the input arrival curve with
Theorem 5.3 from [18].

Theorem 1 (Output arrival curve). Let S be a server such that S and A be an arrival cumulative

curve that has maximal arrival curve α and minimal arrival curve α. Then for all D ∈ R↑
0 such

that (A,D) ∈ S, D has maximal arrival curve α′ and minimal arrival curve α′ with

α′ =
((
α ∗ βM

)
⊘ βm

)
∧ σ

α′ = α ∗
(
βm⊘βM

)
.

Then, let introduce the delay of a server.

Definition 4 (Delay). Let S be a server, and consider A and D respective cumulative arrival and

departure functions: A
S→ D.

For t ≥ 0, hDev(A,D, t) is the virtual delay associated to flow A at time t:

hDev(A,D, t) = inf
{
d ∈ R+ | A(t) ≤ D(t+ d)

}
.

Then, the worst-case delay is hDev(A,D) = supt∈R+ {hDev(A,D, t)} .

Then, we can see a server as a jitter.

Theorem 2 (Server as a jitter [5, Thm. 6.2]). Let S be a server, and A one arrival cumulative
process. If the delay in the server for every bit of data always between dm and dM , then S offers to
A a min-plus service δdM and a maximal service curve δdm.

Using the approximation curve, we can compute a bound on the worst-case delay.

Property 3 (Bound on the worst-case delay [5, Thm 5.2]). Let S be a server, α ∈ F↑, and β ∈ F↑
0 .

If (A,D) ∈ S such that A has maximal arrival curve α and S offers a min-plus minimal service
curve β, then the maximum delay can be bounded by hDev(A,D) ≤ hDev(α, β).

But, if a flow is crossing several servers, we have the pay burst only once phenomenon which
is the fact that it is possible to concatenate the servers to compute a smaller delay bound than
the one computed with the sum of the delay bounds for each server. This phenomenon is first
introduced in [20, Thm. 3] and reformulate using the (min, plus) convolution in [21, Thm. B] but
for the following part, we choose the modern formulation given in [17, Thm. 1.4.6] or [5, Thm. 6.1].

Theorem 3 (Concatenation of servers). A system made of a sequence of two servers, A
S−→ B

S′
−→ C,

can be seen as a single server A
S;S′
−−→ C. Moreover, if S, S′ respectively offer min-plus service curves

β and β′, then S;S′ is offering a min-plus service curve β ∗ β′.
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5.5 Packetizer

A packetizer is also a size-invariant element which stores bits up to the end of a packet and delivers
instantaneously the whole packet, considering that the flow is composed of a sequence of packets.
We can, then, consider the packet length sequence as the function that associates the number of
packets to its cumulative amount of data.

Definition 5 (Cumulative packet length). A function L : N → R+ is a cumulative packet length
function if

1. it is increasing (n < n′ =⇒ L(n) < L(n′))

2. it is null at 0 (L(0) = 0)

3. it is divergent (limn→+∞ L(n) = +∞).

If the i-th packet has size li, then, L(n) =
∑n

i=1 li, and conversely, li = L(i) − L(i − 1). The
maximal packet size is lu = supn∈N {L(n+ 1)− L(n)}.

Definition 6 (Packetizer, from [17]). Consider a sequence L of cumulative packet lengths. An
L-packetizer is the system that transforms the input A(t) into PL(A(t)) with

PL(x) = L(n) ⇔ L(n) ≤ x < L(n+ 1).

Remark 2. It comes: x− lu ≤ PL(x) < x.

Useful properties/definitions regarding the packetizer are given in [5] and [17]. Let us remind
them.

Definition 7 (L-packetized, from [17]). We say that a flow A(t) is L-packetized if ∀t, A(t) =
PL(A(t)).

Corollary 1 (Packetizer as a delay , from Corollary 8.2 [5]). Let S be a server and P be a packetizer.
If a cumulative arrival function A is L-packetized, then the system S;P offers the pure-delay min-
plus service curve δhDev(A,S) to A.

As we want to challenge our model with aggregations, i.e. the sum of different cumulative
curves (that is one reason why we chose the Network Calculus theory), we may use a packetizer on
aggregate flows. However, it is not proved yet. Then let introduce a new property on the arrival
curve of the aggregation from a packetizer.

Property 4 (Server/Packetizer on aggregate flows). Let A1, A2 two cumulative curves with re-
spectively α1, α2 their arrival curve and α1,2 the arrival curve of the aggregate flow. Let S be a

server such that (A1, A2)
S→ (B1, B2). Let PL

1 , P
L
2 be two packetizers with maximum packet size lu1 ,

respectively lu2 such that Bi
PL
i→ Ci. If A1 is L1-packetized, A2 is L2-packetized and S a server with

a minplus minimal service curve βm, a maximal service curve βM and a shaping curve σ. Let d1,

9
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Figure 2: Illustration of two flows passing through a common server and their own packetizer.

respectively d2, be an upper bound on the delay of the flow A1, respectively A2, in the server S.
Then, the aggregate cumulative departure function C has maximal arrival curve

min

 (
α1,2 ∗ βM

)
⊘ (βm − (lu1 + lu2 ))

σ + (lu1 + lu2 )
α1,2 ⊘ δmax(d1,d2)


Remark 3. d1 and d2 can be computed with the residual service curve depending to the policy of
the server ( e.g. Static Priority, Round Robin, etc...).

Figure 2 illustrates the purpose of Property 4. The idea is to have an arrival output curve of
the aggregate C1 + C2 knowing that C1 and C2 cross the same server S but are packetized with
their own packetizer.

It may be surprising to find lu1 + lu2 , but it comes from the fact that the flows can be preempted.
Indeed, a maximal size packet of A2 can start to be served, preempted just before the end by
a maximal size packet of A1 and finished to be served after the packet of A1 is served. As a
consequence, the output curve can have a jump of lu1 + lu2 bits without any chance to distinguish
the packet from A1 to one of A2.

Proof. Let note Ŝ the server such that A1 +A2
Ŝ→ C1 + C2.

The proof is composed of two parts:

� prove that the server Ŝ offers a minimum service curve βm − (lu1 + lu2 ), a maximal service βM

and a shaping curve σ + (lu1 + lu2 ).

Then, Theorem 1 gives us the two first terms.

� Prove that the last term is also a maximal arrival curve of C.

Finally, Proposition 2 concludes: the minimum of two arrival curves for C is also an arrival
curve for C.

Let i ∈ {1; 2} be an index.

10



� Let prove the different kinds of curve of Ŝ

– Minplus minimum service curve: We have a packetizer betweenBi and Ci then, according
to Remark 2, Ci ≥ Bi− lui and we have a minplus minimal service between A1+A2 and
B1 +B2, so (B1 +B2) ≥ (A1 +A2) ∗ βm. Consequently,

C1 + C2 ≥ B1 − lu1 +B2 − lu2

= (B1 +B2)− (lu1 + lu2 )

≥ (A1 +A2) ∗ βm − (lu1 + lu2 )

= (A1 +A2) ∗ (βm − (lu1 + lu2 ))

from Equation. (1)

Then, βm − (lu1 + lu2 ) is a minimal service curve for Ŝ.

– Maximal service curve: We have a maximal service between Ai and Bi and a server
between Bi and Ci. Consequently, C1 +C2 ≤ B1 +B2 ≤ (A1 +A2) ∗ βm. Then, βm is a
maximal service curve for Ŝ.

– Shaping curve: We have a shaping service between Ai and Bi and we have a server
between Bi and Ci. Then,

C1 + C2 ≤ B1 +B2 ≤ (B1 +B2) ∗ σ
≤ (C1 + lu1 + C2 + lu2 ) ∗ σ
= (C1 + C2) ∗ (σ + lu2 + lu1 )

Then, σ + lu2 + lu1 is a shaping curve for Ŝ.

� Let prove the last term is a maximal arrival curve for the aggregate flow. Let d1, respectively
d2 be an upper bound on the delay of the flow A1, respectively A2 passing through S. Using
Corollary 1 and Theorem 2, we have C1 ≤ A1 ∗ δd1 and C2 ≤ A2 ∗ δd2 . So

C1 ≤ A1 ∗ δmax(d1,d2)

C2 ≤ A2 ∗ δmax(d1,d2)

As A ∗ δmax(d1,d2) = A(t+max(d1, d2)), then

C1 + C2 ≤ (A1 +A2) ∗ δmax(d1,d2)

Then, the server Ŝ offers a minplus service curve δmax(d1,d2). Consequently, α1,2 ⊘ δmax(d1,d2)

is a valid arrival curve for the aggregate flow.
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6 Non-size invariant elements

As mentionned Section 5.4, the servers in the Network Calculus theory are size invariant elements,
i.e. the output data size are exactly the same as the input ones.

This section will introduce multipliers, a renaming of scaling servers. But before giving formal
definition, Section 6.1 justify some choices, and in particular that fact that a multiplier has no
delay.

6.1 Model justification

They are several flow “transformers” in the network calculus literature: servers (with different
flavours: minplus, strict...), packetizers, Pi-regulator [22], and scaling elements [3].

We propose to split into two groups, as illustrated in Figure 5.
To justify this hierarchy and the property of the delay, let us start with an example. Consider

the four functions A,B,C, and D plotted in Figure 3.
Function A represents a data flow sending bits at a constant rate from time 0 to 2, then sending

nothing from time 2 to time 4, then it re-sends bits, with a given slope during 1 time unit, and
slower up to time 7, and then stops.

Function B represents a data flow that sends bits in a constant way, starting at time 1, with
different slopes up to time 4. Nothing is sent between 4 and 5, then it restarts at a constant rate
up to 7 and then stops.

Function C represents a data flow that sends instantaneously 10 data units at time 5, 20 at
time 6 and 15 at time 9. It can represent the emission of three packets, of respective size 10, 20
and 15, but also 9 packets, all of size 5, sending by a burst of 2, 4 and 3 packets.

Similarly, function D represents a data flow that sends instantaneously 16, 32 and 21 units of
data at instants 7, 8 and 11.

Consider a sequence of three network elements S, S′, S′′ such that A,B,C,D are respective

input/output (denoted A
S−→ B

S′
−→ C

S′′
−−→ D).

Note that S and S′ matches the current definition of a server, but S′′ does not since the rules
D ≤ C is violated.

The delay experienced by a flow crossing a server is defined as the horizontal deviation, denoted
hDev, between the arrival and the departure curve, which is the smaller deviation such that the
arrival goes beyond the departure. The worst delay is of course the supremum of the delay on the
set of all possible departures. This definition assumes that all packets inside a flow are served each
one after the previous one, what is called ’per-flow FIFO’ behaviour2.

Then, S can model a server receiving a fluid amount of data, and forwarding it with a different
fluid shape after a non-constant delay. And S′ can model a server storing bit and delivering packets,
2 times units after having received the last bit of the packet.

We may like to interpret S′′ has a server encapsulating some packet, forwarding at time 7 a
packet received at time 5, and adding an overhead of 6 data units, forwarding at time 8 a packet

2If it is not a ’per-flow FIFO’ behaviour, we can decompose into several FIFO flows and the Network Calculus
also models non-FIFO schedulers such as Round Robin, Static Priority, etc...
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Figure 5: Illustration of the hierarchy of the network elements in Network Calculus.

received at time 8, with an overhead of 12 data units, and forwarding at time 11 the packet received
at time 9, with an overhead of 6 data units.

However, the common constraint that C ≥ D is violated, and no simple definition of delay
appears. The first aim of this paper is to give a definition that can capture such behaviour.

Another situation is depicted in Figure 4. It can represent either a system that introduces a
delay of 2 time units before forwarding data, or a system that has dropped the two first units
of data (multipliers can model dropping elements by setting null size to a bunch of data) and
instantaneously forward the rest.

It illustrates the fact that it is hard to handle both data multiplying and delays in the same
element. Then, it is easier to consider that a multiplier introduces no delay. If a real system
encapsulating data introduces some delay, it will be modelled as the concatenation of a delay and
a multiplier.

In the following, we will then define the two types of network elements and introduce the
elements as the multiplier (inspired by [3]), the servers and the packetizers. Also, some new results
on the packetizer, a server which waits for the entire bit of a packet before delivering it, are
presented.

6.2 Multiplier definition

The notion of multiplier is inspired from the scaling servers from [3]. However, to go further with
this notion as explain in this following, we need to adapt the notation and results.

Definition 8 (Multiplier). A multiplier M is a size-variant element such that ∀(A,D) ∈ M ,

∀t, t′ ∈ R+ : A(t) = A(t′) =⇒ D(t) = D(t′). (2)

The condition in eq. (2) implies that there is no data output if there is no data input during
the same time interval.

Then, we can introduce the multiplier function as followed.

14



Definition 9 (Multiplier function). Let M be a multiplier, and (A,D) ∈ M . Then, a multiplier
function for (A,D) is a non-decreasing function MA,D : R+ → R+ such that

∀t : MA,D(A(t)) = D(t).

This definition is slightly different from the one of [3]: “a scaling function S assigns an amount
of scaled data S(a) to an amount of data a.”

The first reason is related to non-determinism: a scaling element may have different outputs,
depending on the input. For example, the CAN MAC layer introduces one bit of opposite value
after a sequence of five equal bits. If C denotes such a layer, then, for a given input A (representing
some amount of bits arrivals at each instant), there may exist several departure D,D′, depending
on the values of the bit sequence, not only on the amount.

The second reason is related to math: giving A and D is not sufficient to define a function: if
A is not continuous, it will exists some a ∈ R+ such that there is not t with A(t) = a, and then,
S(a) is not defined.

Finally, we chose to rename the “scaling” as “multiplier” to avoid any confusion with the server
(we use to abbreviate the network element with the first letter) and because we slightly change the
definition of the network element.

Then, we can define the multiplier curves.

Definition 10 (Multiplier curves). Let M be a multiplier. Then, a function µ ∈ F↑ (resp. µ ∈ F↑)
is a maximal (resp. minimal) multiplier curve if ∀t, d ∈ R+,∀(A,D) ∈ M : µ(A(t + d) − A(t)) ≤
D(t+ d)−D(t) ≤ µ(A(t+ d)−A(t)).

Then, we assume here that the multiplier is instantaneous.

Postulate 1 (No delay for multipliers). The delay of multipliers is zero.

Remark 4. The reason is given in Section 6.1. Thus, if a network element change the size and
introduces a delay, is will be modelled as a sequence composed of a server and a multiplier.

Some properties are also useful concerning the multiplier as the canonical multiplier, Property 5.

Property 5 (Canonical multiplier). Let f be a super-additive function. Then, the network element
that associates f(A) to any arrival A is a multiplier with minimal multiplier curve f .

The proof only consists in applying the definition of a super-additive function on f .

Property 6 (Sequence of multipliers). A sequence of multipliers M , M ′ is also a multiplier,
denoted M ;M ′. If M (resp. M ′) has minimal and maximal multiplier curves µ, µ (resp. µ′, µ′),
then M ;M ′ has minimal and maximal multiplier curves µ′ ◦ µ and µ′ ◦ µ.

The proof only consists in applying the definition of a multiplier.
One of the good properties of the Network Calculus theory is that it supports well the aggre-

gation of flows. Then, to be able to do that with a multiplier, we introduce a property on the
aggregate flows passing through them.
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Theorem 4 (Multiplier of aggregate flow). Let M1,M2 be two multiplier of respective minimal and
maximal multiplier curves µ

1
, µ

2
, µ1, µ2. Then, the aggregate multiplier M12 that associates to each

input A1 +A2 an output D1 +D2 such that Ai
Mi−−→ Di admits µ1 ∗ µ2 and µ

1
∗µ

2
as minimal and

maximal multiplier curves.

Proof. By definition of multiplier, we have ∀t, d ∈ R+

µ
1
(A1(t+ d)−A1(t)) ≤ D1(t+ d)−D1(t) ≤ µ1(A1(t+ d)−A1(t))

µ
2
(A2(t+ d)−A2(t)) ≤ D2(t+ d)−D2(t) ≤ µ2(A2(t+ d)−A2(t))

=⇒ µ
1
(A1(t+ d)−A1(t)) + µ

2
(A2(t+ d)−A2(t)) ≤ (D1 +D2)(t+ d)− (D1 +D2)(t)

≤ µ1(A1(t+ d)−A1(t)) + µ2(A2(t+ d)−A2(t)).
(3)

Now, by definition of the min-plus and max-plus convolution, ∀f, g ∈ F and u, v ∈ R+

(f ∗ g)(u+ v) ≤ f(u) + g(v) ≤ (f ∗ g)(u+ v).

The, eq. (3) leads to

=⇒ (µ
1
∗ µ

2
)(A1(t+ d)−A1(t) +A2(t+ d)−A2(t)) ≤ (D1 +D2)(t+ d)− (D1 +D2)(t) ≤
(µ1 ∗µ1)(A1(t+ d)−A1(t) +A2(t+ d)−A2(t))

⇐⇒ (µ
1
∗ µ

2
)((A1 +A2)(t+ d)− (A1 +A2)(t)) ≤ (D1 +D2)(t+ d)− (D1 +D2)(t) ≤
(µ1 ∗µ1)((A1 +A2)(t+ d)− (A1 +A2)(t)).

Finally, adapted from [3, Theorem 3.1], we rewrite the inversion of the server and the multiplier.
The aim is to be able to regroup on one side all the multipliers together and on the other side all the
servers to be able to compute the delay using for instance the Pay Burst Only Once (PBOO, [17]).

Theorem 5 (Inverting multiplier and server). Let S be a server offering a minimal min-plus service
of function βm and a maximal service curve βM and shaping curve σ. Also, let M be a multiplier,
with a minimal multiplier curve µ and a maximal multiplier curve µ. And let A,B, and C be

respective input/output of the sequence: A
S−→ B

M−→ C.

If µ is super-additive and µ is sub-additive, then it exists B′ and S′ such that A
M−→ B′ S′

−→ C

where S′ offers a minimal min-plus service of function µ(βm) and a maximal service curve µ(βM )
and a shaping curve µ(σ).

Figure 6 illustrates the result of Theorem 5: the inversion of the server and the multiplier.
Under the assumptions, the left sequence can be replaced by the right sequence.

Such result was previously presented in [3], but the proof was using some false argument (dis-
cussed in Appendix 9.1 ), and the formal definition of scaling/multipliyer was slightly different
(for reasons given in Section 6.1),leading to a new proof. In [3], the inversion is possible also in
the opposite way, assuming that the scaling function is bijective, an assumption that is not done
in this work (cf. Section 6.1).
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A
S : βm, β

M , σ
B M : µ, µ C A M : µ, µ B′

S ′ : µ(βm), µ(β
M), µ(σ) C

Figure 6: Theorem 5 allows replacing the left part with the right part.

Proof. Looking for the shaping curve, according to Definition 3, we have that ∀t, d ∈ R+, C(t +
d) − C(t) ≤ µ(B(t + d) − B(t)) ≤ µ(σ(d)). Consequently, it is equivalent to the system where A
passes thourgh a multiplier M and a shaper µ(σ).

Now, we will focus on the minimal min-plus and maximal services. Using Definition 3, we have

A ∗ βm ≤ B, A ∗ βM ≥ B.

Also, using Definition 10 (with t = 0), we have

µ(B) ≤ C, µ(B) ≥ C.

As µ and µ are nondecreasing, we can combine the results:

µ(A ∗ βm) ≤ µ(B) ≤ C, µ(A ∗ βM ) ≥ µ(B) ≥ C.

Then, if µ is super-additive and µ is sub-additive, we can use Property 1 and we have{
(µ ◦A) ∗ (µ ◦ βm) ≤ µ(A ∗ βm) ≤ µ(B) ≤ C,

(µ ◦A) ∗ (µ ◦ βM ) ≥ µ(A ∗ βM ) ≥ µ(B) ≥ C.

Consequently, it corresponds to pass through a multiplier with a minimal multiplier curve µ and
a maximal multiplier curve µ and a server S′ which offers a minimal min-plus service of function
µ(βm) and a maximal service curve µ(βM ) and a shaping curve µ(σ).

7 Use of results

The aim of this section is to compare the results of the previous modelization in Network Calculus
with the results of the CPA theory. To do that, we will analyse a system illustrated in Figure 7
composed of:

� CPU1: a Static Priority Preemptive CPU with 3 periodic tasks (T1, T2, T3) in ascending
order of priority.

� CPU2: a Static Priority Preemptive CPU with 3 periodic tasks (T4, T5) in ascending order
of priority.

� CAN Bus: a Static Priority Non Preemptive bus with 3 release tasks (T ′2, T ′3, T ′4) respec-
tively released by (T2, T3, T4) in ascending order of priority.

� CPU3: a Static Priority Preemptive CPU with 3 released tasks (T ′′2, T ′′3, T ′′4) respectively
released by (T ′2, T ′3, T ′4) in ascending order of priority.
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Figure 7: Illustration of the system of the case study.

Table 1: Parameters for the case study (ms)

Task Period Processing time Task Processing time

T1 15 3 T2′ 4

T2 30 4 T3′ 8

T3 45 15 T4′ 2

T4 60 5 T2′′ 2

T5 120 10 T3′′ 4

T4′′ 1

The strength of the Network Calculus is to be able to aggregate flows. Here, this example is
interesting thanks to the possibility of aggregating T2 and T3 to compute an upper bound on the
delay of T4.

We will use a set of parameters detailed in Table 1.
The aim is to calculate the worst-case execution times of the three task chains: C2: T2 →

T2′ → T2′′, C3: T3 → T3′ → T3′′, and C4: T4 → T4′ → T4′′.
This system will be analyzed with 1) the CPA method (the results will be noted CPA), with 2)

current Network Calculus methods, i.e. considering SFA and TFA combined with [3] and keeping
the minimum) (the results will be noted NC ) and 3) with the same Network Calculus algorithms
plus our results Note that as the tasks T2 and T3 come from the same source and have the same
route, the Network Calculus allows us to compute the worst-case execution time considering the
aggregate flow composed of these two tasks.

The results of the three analyses are given in Table 2. The code is given in Appendix B. In
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this case, the TFA algorithm gives always the smaller bounds, but no generic conclusion can be
derived from this simple case (cf. [23]),

Table 2: Results of the analyse of the case study.

Task chain
Worst-case bounds (ms)
CPA NC NC-agg

C2 21 21 21

C3 45 45 45

C4 26 30 23.2

First, we note that the worst case execution time of the task chains C1 and C2 are the same
regardless of the analysis used. However, we see a difference with the task chain C4. As we said,
one of the pluses of the Network Calculus theory is the easy handling of aggregate flows. The
shaping on the tasks T2 and T3 and the released one allows the Network Calculus to improve the
results of the analysis. Note that without the aggregation, the Network Calculus cannot improve
the results and is more pessimistic than CPA.

8 Conclusion

In this paper, we present novel results concerning packetization/scaling and flow aggregation within
the Network Calculus framework. These results were motivated by the objective of enhancing the
bounds of released task chains, considering the inherent limitation that a subsystem cannot transmit
more data than it can process. Additionally, we demonstrate the efficacy of our results through an
illustrative example, showcasing the benefits of flow aggregation in Network Calculus.
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9 Appendix

9.1 Continuity issue in the proof of the inversion of a server and a multiplier

As mentioned after Theorem 5, the third equation of the proof of [3, Thm. 3.1] can be wrong due
to a continuity issue. Let us remind the equation: S, F , and β are three nondecreasing functions
and t a positive real, then, the proofs states that

S

(
inf

0≤s≤t
{F (s) + β(t− s)}

)
= inf

0≤s≤t
{S (F (s) + β(t− s))} .

However, this equation can be wrong depending in continuity. Here is a counter-example. Consider
β(t) = t,

S(t) =

{
0 if t ≤ 1

1 otherwise
, F (t) =

{
0 if t < 2

3 otherwise
.

We will compute both sides of the equation with t = 3.

1. left side: it is equal to S(F ∗ β)(3) = 0.

2. right side: First, note that, as S is nondecreasing, the infimum for s ∈ [0, 3] of the expression
S (F (s) + β(3− s)) will be reached at the same point than the expression inside the function
S: F (s) + β(3− s).

We then need to compute the infimum of this latter expression:

F (s) + β(3− s) =

{
3− s if 0 ≤ s < 2

6− s if 2 ≤ s ≤ 3
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As a consequence, F (s)+β(3− s) > 1, but the infimum tends towards 1, by above. However,
if t > 1, S(t) = 1. Then, inf0≤s≤t {S (F (s) + β(t− s))} = 1 which is different from the result
of the left side.

9.2 Network Calculus code to compute delay bounds on the case study with
and without the results of this paper

The code presented in Listing 1 give the delay bounds computed with the SFA and TFA algorithms
for the case study introduced Section 7. It can be run online3.

// Per iods o f ta sk s
P T1 := 15
P T2 := 30
P T3 := 45
P T4 := 60
P T5 := 120

// Workloads (p means ’ ) o f t a sk s
C T1 := 3
C T2 := 4
C T3 := 15
C T4 := 5
C T5 := 10

C T2p := 4
C T3p := 8
C T4p := 2

C T2pp := 2
C T3pp := 4
C T4pp := 1

// Maximum a r r i v a l curves f o r input ta sk s
aT1 := s t a i r (0 , P T1 , C T1)
aT2 := s t a i r (0 , P T2 , C T2)
aT3 := s t a i r (0 , P T3 , C T3)
aT4 := s t a i r (0 , P T4 , C T4)
aT5 := s t a i r (0 , P T5 , C T5)
aT23 := aT2 + aT3

// Se rv i c e curves f o r a l l the s e r v e r s
beta m := a f f i n e (1 , 0 )
beta M := a f f i n e (1 , 0 )
sigma := a f f i n e (1 , 0 )

// Res idual s e r v i c e curve in the CPU1/2 ( S t a t i c P r i o r i t y Preept ive )

3https://www.realtimeatwork.com/minplus-playground
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b r T1 := beta m
b r T2 := nnupclosure ( beta m = aT1)
b r T3 := nnupclosure ( beta m = aT1 = aT2)
b r T4 := beta m
b r T5 := nnupclosure ( beta m = aT4)
b r T23 := nnupclosure ( beta m = aT1)

// Local de lays o f the f i r s t s e r v e r (CPU1 or CPU2 depends on the task )
delay T1 := hDev(aT1 , b r T1 )
delay T1
delay T2 := hDev(aT2 , b r T2 )
delay T2
delay T3 := hDev(aT3 , b r T3 )
delay T3
delay T4 := hDev(aT4 , b r T4 )
delay T4
delay T5 := hDev(aT5 , b r T5 )
delay T5
delay T23 := hDev(aT23 , b r T23 )
delay T23

// Output maximal a r r i v a l curve be f o r e the s c a l i n g ( Server + Packe t i z e r )
aT2p aS := ( ( aT2 * beta M ) / ( b r T2 = C T2 ) )

/\ ( sigma + C T2) /\ (aT2 / de lay ( delay T2 ) )
aT3p aS := ( ( aT3 * beta M ) / ( b r T2 = C T3 ) )

/\ ( sigma + C T3) /\ (aT3 / de lay ( delay T3 ) )
aT4p aS := ( ( aT4 * beta M ) / ( b r T2 = C T4 ) )

/\ ( sigma + C T4) /\ (aT4 / de lay ( delay T4 ) )
aT23p aS := ( ( aT23 * beta M ) / ( b r T23 = C T2 = C T3 ) )

/\ ( sigma + C T2 + C T3) /\ ( aT23 / de lay ( delay T2 /\ delay T3 ) )

// Sca l i ng f unc t i on s between CPU1/2 and BUS
s2 := a f f i n e (C T2p/C T2 , 0)
s3 := a f f i n e (C T3p/C T3 , 0)
s4 := a f f i n e (C T4p/C T4 , 0)
s23 := ( s2 * s3 )

// Output maximum a r r i v a l curves a f t e r the s c a l i n g
aT2p := s2 comp aT2p aS
aT3p := s3 comp aT3p aS
aT4p := s4 comp aT4p aS
aT23p := s23 comp aT23p aS

// Res idual s e r v i c e curve in the BUS ( S t a t i c P r i o r i t y NON Preept ive )
b r T2p := nnupclosure ( beta m = (C T3p \/ C T4p ) )
b r T3p := nnupclosure ( beta m = aT2p = C T4p)
b r T4p := nnupclosure ( beta m = aT2p = aT3p)
b r T4p aggr := nnupclosure ( beta m = aT23p )
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b r T23p := nnupclosure ( beta m = C T4p)

// Local de lay o f the second s e r v e r (BUS)
delay T2p := hDev(aT2p , b r T2p )
delay T2p
delay T3p := hDev(aT3p , b r T3p )
delay T3p
delay T4p := hDev(aT4p , b r T4p )
delay T4p
delay T4p aggr := hDev(aT4p , b r T4p aggr )
de lay T4p aggr
delay T23p := hDev(aT23p , b r T23p )
delay T23p

// Output maximal a r r i v a l curve be f o r e the s c a l i n g ( Server + Packe t i z e r )
aT2pp aS := ( ( aT2p * beta M ) / ( b r T2p = C T2p ) )

/\ ( sigma + C T2p) /\ (aT2p / de lay ( delay T2p ) )
aT3pp aS := ( ( aT3p * beta M ) / ( b r T2p = C T3p ) )

/\ ( sigma + C T3p) /\ (aT3p / de lay ( delay T3p ) )
aT4pp aS := ( ( aT4p * beta M ) / ( b r T2p = C T4p ) )

/\ ( sigma + C T4p) /\ (aT4p / de lay ( delay T4p ) )
aT23pp aS := ( ( aT23p * beta M ) / ( b r T23p = C T2p = C T3p ) )

/\ ( sigma + C T2p + C T3p) /\ ( aT23p / de lay ( delay T2p /\ delay T3p ) )

// Sca l i ng f unc t i on s between BUS and CPU3
s2p := a f f i n e (C T2pp/C T2p , 0)
s3p := a f f i n e (C T3pp/C T3p , 0)
s4p := a f f i n e (C T4pp/C T4p , 0)

// Output maximum a r r i v a l curves a f t e r the s c a l i n g
aT2pp := s2p comp aT2pp aS
aT3pp := s3p comp aT3pp aS
aT4pp := s4p comp aT4pp aS
aT23pp := ( s2p * s3p ) comp aT23pp aS

// Res idual s e r v i c e curve in the CPU3 ( S t a t i c P r i o r i t y Preept ive )
b r T2pp := nnupclosure ( beta m )
b r T3pp := nnupclosure ( beta m = aT2pp)
b r T4pp := nnupclosure ( beta m = aT2pp = aT3pp)
b r T4pp aggr := nnupclosure ( beta m = aT23pp )
b r T23pp := nnupclosure ( beta m )

// Local de lay o f the th i rd s e r v e r (CPU3)
delay T2pp := hDev(aT2pp , b r T2pp )
delay T2pp
delay T3pp := hDev(aT3pp , b r T3pp )
delay T3pp
delay T4pp := hDev(aT4pp , b r T4pp )
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delay T4pp
delay T4pp aggr := hDev(aT4pp , b r T4pp aggr )
delay T4pp aggr
delay T23pp := hDev(aT2pp , b r T23pp )
delay T23pp

// Global de lays (sum of l o c a l de lay )
de l ay to ta l T2 := delay T2 + delay T2p + delay T2pp
de l ay to ta l T2
de l ay to ta l T3 := delay T3 + delay T3p + delay T3pp
de l ay to ta l T3
de l ay to ta l T4 := delay T4 + delay T4p + delay T4pp
de l ay to ta l T4
de l ay to ta l T23 := delay T23 + delay T23p + delay T23pp
de l ay to ta l T23

// Global de lay ( aggregat i on o f 2/3 to compute 4)
d e l ay t o t a l T4 agg r := delay T4 + delay T4p aggr + delay T4pp aggr
de l ay t o t a l T4 agg r

// Global de lays (PBOO)
b T2 := ( b r T2 = C T2) \/ 0
b T2p := ( b r T2p = C T2p) \/ 0
b T2pp := ( b r T2pp = C T2pp) \/ 0
beta PBOO T2 := ( ( s2 * s2p ) comp b T2 ) * ( s2p comp b T2p ) * b T2pp
delay PBOO T2 := hDev ( ( ( s2 * s2p ) comp aT2 ) , beta PBOO T2)
delay PBOO T2
b T3 := ( b r T3 = C T3) \/ 0
b T3p := ( b r T3p = C T3p) \/ 0
b T3pp := ( b r T3pp = C T3pp) \/ 0
beta PBOO T3 := ( ( s3 * s3p ) comp b T3 ) * ( s3p comp b T3p ) * b T3pp
delay PBOO T3 := hDev ( ( ( s3 * s3p ) comp aT3 ) , beta PBOO T3)
delay PBOO T3
b T4 := ( b r T4 = C T4) \/ 0
b T4p := ( b r T4p = C T4p) \/ 0
b T4pp := ( b r T4pp = C T4pp) \/ 0
beta PBOO T4 := ( ( s4 * s4p ) comp b T4 ) * ( s4p comp b T4p ) * b T4pp
delay PBOO T4 := hDev ( ( ( s4 * s4p ) comp aT4 ) , beta PBOO T4)
delay PBOO T4
b T4 aggr := ( b r T4 = C T4) \/ 0
b T4p aggr := ( b r T4p aggr = C T4p) \/ 0
b T4pp aggr := ( b r T4pp aggr = C T4pp) \/ 0
beta PBOO T4 aggr := ( ( s4 * s4p ) comp b T4 aggr )

* ( s4p comp b T4p aggr ) * b T4pp aggr
delay PBOO T4 aggr := hDev ( ( ( s4 * s4p ) comp aT4 ) , beta PBOO T4 aggr )
delay PBOO T4 aggr

Listing 1: Network Calculus code to compute delay bounds on the case study
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