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Abstract 

In excitation-emission fluorescence spectroscopy, the simultaneous quantitative prediction and 

qualitative resolution of mixtures of fluorophores using chemometrics is a major challenge because 

the scattering and reabsorption effects (turbidity) presented mainly in bio-materials. The measured 

fluorescence spectra are distorted by multiple scattering and reabsorption events in the surrounding 

medium, thereby diminishing the performance of the commonly used three-way resolution methods 

such as PARAllel FACtor (PARAFAC) analysis or Multivariate Curve Resolution–Alternating 

Least Squares (MCR–ALS).  

In this work we show that spectral loadings and concentration profiles from model mixtures 

provided by PARAFAC and MCR-ALS are severely distorted by reabsorption and scattering 

phenomena although both models fit rather well the experimental data in terms of percentage of 

the explained variance.  

The method to correct the fluorescence Excitation-Emission Matrix (EEM) consisted in measuring 

the optical properties (absorption parameter μa, scattering parameter μs, and anisotropy factor g) of 

samples and calculating the corresponding transfer function by means of the Monte Carlo 

simulation method. Applying this transfer functions to the measured EEM it was possible to 

compensate for reabsorption and scattering effects, and restore the ideal EEM, i.e., the EEM that 

is due only to fluorophores, without distortions from the absorbers and scatterers that are present. 

The PARAFAC and MCR-ALS decomposition of the resulting ideal EEMs provided spectral 

loadings and concentration profiles that matched the true profiles.  

Key words: Fluorescence Spectroscopy; Reabsorption; Scattering; Monte Carlo; MCR-ALS; 

PARAFAC. 
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INTRODUCTION 

Fluorescence spectroscopy is a fast, non-destructive technique with high sensitivity and selectivity 

providing quantitative and qualitative information in a wide variety of biological materials.1-3 In 

fluorescence excitation-emission spectroscopy, a sample containing a mixture of fluorophores is 

excited by a beam of light at several wavelengths which causes it to emit light at different 

wavelengths, resulting in an excitation-emission matrix (EEM).3 When several EEMs are measured 

the data can be arranged in a three-way array, X (I ×J × K), where i = 1,…, I represents the sample 

mode, j = 1, …, J the emission mode and k = 1,…, K represents the excitation mode. Note that, 

throughout this paper, scalars are shown in italics, vectors are bold lowercase letters, two-way 

matrices are bold uppercase letters, and three-way arrays are underscored bold uppercase letters. 

Using curve resolution methods, it is possible under some circumstances, to perform the so-called 

mathematical chromatography; that is, to decompose the three-way array X into the contributions 

from the underlying individual fluorophores. For each fluorophore, the pure excitation and 

emission spectra are obtained as well as the relative concentration. Among the existing algorithms, 

PARAFAC4-6 and MCR-ALS7-9 are most frequently mentioned in the literature. Assuming 

trilinearity, the PARAFAC decomposition factorizes the three-way array X into a sum of finite 

series of tensor products of three vectors. A major advantage of data following this model is that 

the decomposition is unique,10 permitting vectors associated with individual component of mixture 

(spectra, concentration profiles) to be extracted directly. The trilinearity hypothesis underlying 

PARAFAC implies that only the concentrations of fluorophores are allowed to change from one 

EEM to the other. The excitation and emission spectra on the other hand, should remain the same. 
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MCR-ALS method is capable of dealing with non-trilinear EEMs sharing only one order in 

common (either pure excitation or pure emission spectra). In MCR-ALS, the three-way array X is 

first unfolded along the mode which breaks the trilinear structure to create an augmented matrix. 

This augmented matrix is then decomposed either by rows (excitation) or by columns (emission) 

according to a bilinear model. If the matrix is decomposed by columns, MCR-ALS would yield 

sets of emission profiles for each factor (one set for each EEM), and one set (common to all EEMs) 

of excitation profiles for each factor. If the matrix is decomposed by rows, MCR-ALS would yield 

one set of emission profiles for each factor and sets of excitation profiles for each factor (one set 

for each EEM). A single set of emission or excitation profiles may then be selected for comparison, 

or all recorded sets may be averaged to create one set of emission or excitation profiles. The 

intensity at each wavelength is then related to the concentration of each component in the mixture. 

However, if the data set is not trilinear, the solution provided by MCR-ALS method is not unique 

due to the presence of rotation ambiguities. Hence, constraints are essential to improve the quality 

of the final results and decrease the space of feasible solutions.11 

Fluorescence spectra measured from biological samples are very often distorted due to reabsorption 

and scattering of the exciting light (known as primary inner filter effect) as well as the fluorescent 

light (known as secondary inner filter effect).12 Additional dips or shoulders occur in the measured 

emission and excitation spectra at the position of absorption bands of natural chromophores such 

as hemoglobin in animal tissues or beta-carotene in fruit and vegetables. The inner-filter effect is 

immensely strong in the spectra from biological media because multiple scattering increases the 

path lengths of photons inside the sample.13 In previous work,14 fluorescence Monte Carlo model 

was used to simulate fluorescence data originating from mixtures of three known fluorophores 
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embedded in different absorbing and scattering environments. It has been shown that the 

fluorescence spectral information is severely altered by multiple scattering and reabsorption events 

in the surrounding medium, thereby preventing the consistent resolution and quantitative 

determination of the mixture by using multivariate data analysis methods such as PARAFAC and 

MCR-ALS. This is why fluorescence studies in undiluted biological samples require that inner 

filter effects be minimized or compensated for before a qualitative and quantitative analysis can be 

made. 

Inner filter effects were studied for a long time now15-17 and several models for correcting the 

fluorescence emission spectra for inner filter effects were proposed.17-24 The formulation of these 

models assumes that the fluorescence spectra are measured in non-scattering media and the light 

intensity decreases exponentially along the axis of propagation. Unfortunately, these assumptions 

don’t hold in the context of fluorescence spectroscopy of biological samples. The Monte Carlo 

stochastic method based on random walk of photons offers a flexible, yet rigorous approach to 

photon transport in absorbing and scattering media.25 

In this paper, Monte Carlo based approach will be used to remove the aforementioned effects from 

the measured EEM and recover the ideal EEM. The starting point is that the measured EEM is 

theoretically related to the ideal EEM by a transfer function (TF) that accounts for the absorption 

and scattering properties of the medium. The TF of the sample is simulated by means of the Monte 

Carlo method on the basis of the optical properties of the medium (the absorption coefficient µa, 

the scattering coefficient µs, and the anisotropy factor g). These optical properties were calculated 

from integrating sphere measurements by using the inverse adding doubling software. The 

accuracy of the method will be tested on a laboratory-made fluorescence EEM data sets measured 
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from synthetic solutions of three fluorophores (Eosin Y, Fluorescein and Rhodamine B), an 

absorber (1,1′-Diethyl-2,2′-cyanine iodid) and a scatterer (Intralipid20%). 

MATERIALS AND METHODS 

Preparation of fluorescent synthetic solutions 

Synthetic solutions mimicking the absorption, scattering and fluorescence properties of biological 

specimens were prepared using selected concentrations of Eosin Y (HT110280, Sigma-Aldrich), 

Fluorescein (46945, Sigma-Aldrich) and Rhodamine B (R6626, Sigma-Aldrich) as fluorophores, 

1,1′-Diethyl-2,2′-cyanine iodide (323764, Sigma-Aldrich) as an absorber and Intralipid20%  (I141-

100ML, Sigma-Aldrich) as a source of scattering. Studies were carried out in ten solutions prepared 

in deionized water using different concentrations of fluorophores, 1,1′-Diethyl-2,2′-cyanine iodide, 

and fixed concentration of Intralipid20%, as listed in Table I. Notice that the absolute 

concentrations of fluorophores and absorber were chosen very low to fulfill the probability of more 

light scattering than light being absorbed like in real biological samples. 1,1′-Diethyl-2,2′-cyanine 

iodide is one of Cyanine dyes known for its cytotoxic effects and used as potential anticancer agents 

in the pharmaceutical sector. It is minimally fluorescent in the region between 300 and 650 nm26, 

27 and has absorption maxima at 490 and 525 nm. These peaks fall in the fluorescence excitation 

and emission wavelengths of the selected fluorophores. Intralipid20% is a standardized aqueous 

fat emulsion used for clinical applications as an intravenous nutrient.   

In biomedical optics it is commonly used as a scattering medium to investigate light propagation 

in biological tissues.28 The background absorption of diluted Intralipid20% is close to that of water 
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in which it is diluted in.29 No traces of precipitation were noticed in the Intralipid20% solutions 

with fluorophores neither deterioration of solutions over time. 

Determination of the optical properties  

The absorption coefficient (μa), scattering coefficient (μs), and anisotropy factor (g) of samples 

were determined by applying the inverse-adding doubling (IAD) method to the measurements of 

total diffusive reflectance RD, total diffusive transmittance TD and collimated transmittance TC.30 

All measurements were performed in the 300 to 700 nm range using a scanning. monochromator 

spectrophotometer (Evolution 600, Thermo Fisher Scientific, Madison, WI, USA). An average 

integration time of 0.4 s, a signal band width of 4.0 nm and a wavelength interval of 1.0 nm were 

applied in setting the photomultiplier tube (PMT) detector. Measurements with an integrating 

sphere set up were described earlier.30,31 

Experimental values of RD, TD and TC were input into the inverse-adding doubling program32 to 

obtain the values of μa, μs, and g coefficients. The core of the IAD program consists of a numerical 

solution to the one-dimensional radiative transport equation (RTE)33,34 which describes light 

propagation at steady state in a scattering medium, by means of the adding-doubling approach with 

a Henyey-Greenstein phase function.32 Since this numerical solution of the RTE calculates the total 

reflectance RT and the total transmittance TT for a given set of optical properties, the Levenberg-

Marquardt nonlinear least squares-fitting algorithm35 has been used to find a set of feasible optical 

properties for which the calculated reflectance and transmittance values match the measured ones. 

The IAD software package can be freely downloaded from the Oregon Medical Laser Center web 

page (http://omlc.ogi.edu/). 
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Fluorescence measurements  

A spectrofluorometer (Fluorolog 3, Model FL3-21, Jobin-Yvon Horiba, Longjumeau, France) was 

used to record fluorescence EEMs from synthetic solutions. The Fluorolog 3 was equipped with a 

450 W Xenon short arc lamp source that was focused onto tunable, double excitation spectrometer 

(Czerny-Turner 1200/mm kinematic grating blazed at 330 nm) to produce a monochromatic 

collimated excitation beam at the sample at any desired wavelength from 290-900 nm. The remitted 

fluorescence was collected at 22.5° from the excitation direction, collimated, and dispersed by a 

tunable double emission spectrometer (Czerny-Turner 1200/mm kinematic grating blazed at 500 

nm) into a multialkali photomultiplier tube detector. The system was interfaced to a computer via 

custom software (FluorEssence) that allowed an automated scanning of the sample. The sample 

was front illuminated to obtain the EEM for 17 excitation wavelengths between 320 and 400 nm 

while monitoring the emission between 354 - 584 nm (at 5 nm increments). The acquisition time 

of a single EEM was approximately 6 minutes. 

Extraction of ideal fluorescence EEM  

Under so-called “ideal” or optically dilute conditions, the fluorescence intensity EEMIDEAL (λk, λj) 

at particular excitation (λk) and emission (λj) wavelength due to F fluorophores is defined according 

to “Eq. 1”:14  

𝐸𝐸𝑀𝐼𝐷𝐸𝐴𝐿(𝜆𝑘, 𝜆𝑗) = ∑ 𝑎𝑓𝑏𝑓(𝜆𝑗)𝑐𝑓(𝜆𝑘)
𝐹
𝑓=1  (1) 

where fa , fb  and fc represent the relative concentration, the excitation spectrum and the emission 

spectrum of the fth fluorophore, respectively.  
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Fluorescence in absorbing and scattering media consists of three components: the distribution of 

the excitation light in the medium which is a function of the optical parameters at the excitation 

wavelength λk; the fluorescence of isotropically radiating point sources located at different depths 

within the medium; and the total fluorescence escaping the medium surface which is a function of 

optical parameters at the emission wavelength λj. The measured or raw EEM EEMRAW can be 

written as the product of the ideal EEM EEMIDEAL and the transfer function TF which accounts 

for absorption and scattering effects:14 

𝐸𝐸𝑀𝑅𝐴𝑊(𝜆𝑘, 𝜆𝑗) = 𝐸𝐸𝑀𝐼𝐷𝐸𝐴𝐿(𝜆𝑘, 𝜆𝑗) × 𝑇𝐹(𝜆𝑘, 𝜆𝑗) (2) 

This fundamental relation provides the key for linking the intrinsic fluorescence matrix which is 

independent of the sample’s optical properties, EEMIDEAL, to the raw fluorescence matrix 

EEMRAW, depending on both the fluorophores and the sample’s optical properties. “Equation 2” 

can be used to calculate EEMIDEAL by dividing the observed fluorescence EEMRAW by the transfer 

function matrix TF. Conventional PARAFAC and MCR-ALS methods can be then applied to the 

resulting data matrices. 

The transfer function TF depends only on the sample optical parameters and is evaluated using the 

Fluorescence Monte Carlo program described earlier.14  

 

Accuracy of the method: numerical simulations 

There are two important sources of error that can influence the TF performance: errors related to 

the determination of optical parameters and those related to the noise of measurements. Although 

the noise is relatively small in steady state fluorescence spectroscopy, dividing this by the TF can 

significantly amplify this noise and particularly in the spectral regions where TF << 1 (with huge 
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absorbance regions). The impact of these two sources of error was evaluated through numerical 

simulations: 

EEMIDEAL of a mixture of three fluorophores was first simulated according to Eq. 1. Figure 1 shows 

the excitation and emission spectra of these three fluorophores and the corresponding EEMIDEAL.  

Using the Monte Carlo method, TF(𝜆𝑘,  𝜆𝑗)  of a turbid medium was then calculated. This simulated 

medium was characterized by its absorption parameter (μa), scattering parameter (μs) and 

anisotropy factor (g) (Figure 2).  μa presents two typical peaks and varies from 0 cm-1 to 50 cm-1, 

while μs and g are constants with values of 100 cm-1, and 0.6, respectively.  It should be noted that 

the absorption and scattering values used in this simulation are high compared to those observed 

in biological tissues36. 

The contaminated EEMRAW by absorption and scattering effects was finally calculated by 

multiplying point by point EEMIDEAL and TF (Eq. 2) (Figure 3). 

In the determination of optical parameters error was introduced by varying the initial values of 

optical parameters simultaneously (Figure 2) from -40% (under estimation) to 40% (over 

estimation) by 5% increments: 

{
 
 

 
 𝜇𝑎

𝑒𝑟𝑟 (𝜆) = (1 +
𝛥𝜇𝑎

𝜇𝑎
) 𝜇𝑎(𝜆)

𝜇𝑠
𝑒𝑟𝑟 (𝜆) = (1 +

𝛥𝜇𝑠

𝜇𝑠
) 𝜇𝑠(𝜆)

𝑔𝑒𝑟𝑟(𝜆) = (1 +
𝛥𝑔

𝑔
)𝑔(𝜆)

 (3) 

For each triplet (𝜇𝑎
𝑒𝑟𝑟 , 𝜇𝑠

𝑒𝑟𝑟 , 𝑔𝑒𝑟𝑟) TF was simulated and applied to 𝐄𝐄𝐌𝐑𝐀𝐖 to get 𝐄𝐄𝐌𝐈𝐃𝐄𝐀𝐋
𝐄𝐒𝐓𝐈𝐌_𝟏 ,  

𝐸𝐸𝑀𝐼𝐷𝐸𝐴𝐿
𝐸𝑆𝑇𝐼𝑀_1(𝜆𝑘, 𝜆𝑗) =

𝐸𝐸𝑀𝑅𝐴𝑊(𝜆𝑘, 𝜆𝑗)

𝑇𝐹(𝜆𝑘, 𝜆𝑗)
 (4) 
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The effects in the determination of optical parameters on the restoration quality of EEMDIL were 

quantified by the term r1 given by: 

𝑟1[%] = 100
∑ ∑ (𝐸𝐸𝑀𝐼𝐷𝐸𝐴𝐿(𝜆𝑘, 𝜆𝑗) − 𝐸𝐸𝑀𝐼𝐷𝐸𝐴𝐿

𝐸𝑆𝑇𝐼𝑀_1(𝜆𝑘, 𝜆𝑗))
2

𝑀
𝑗=1

𝑁
𝑘=1

∑ ∑ (𝐸𝐸𝑀𝐼𝐷𝐸𝐴𝐿(𝜆𝑘, 𝜆𝑗))
𝑀
𝑗=1

𝑁
𝑖=1

2  (5) 

To quantify the influence of measurement noise: 

-  (a) 𝐄𝐄𝐌𝐑𝐀𝐖 is contaminated with Gaussian noise of variance σ2 and with zero mean:   

𝐸𝐸𝑀𝑅𝐴𝑊
𝑁𝑂𝐼𝑆𝑌(𝜆𝑘, 𝜆𝑗) = 𝐸𝐸𝑀𝑅𝐴𝑊(𝜆𝑘, 𝜆𝑗) +  𝜎𝐵(𝜆𝑘, 𝜆𝑗) (6) 

𝜎 = 10(
−𝑆𝑁𝑅

20
) ×

‖𝐄𝐄𝐌𝐑𝐀𝐖‖F
‖𝐁‖F

 (7) 

where 𝐁 is a matrix of same size as 𝐄𝐄𝐌𝐑𝐀𝐖 whose elements are Gaussian random variables with 

zero mean and unit variance, SNR is the signal to noise ratio and ‖ ‖𝐅  denotes the Frobenius 

norm symbol. 

- (b) 𝐄𝐄𝐌𝐑𝐀𝐖
𝐍𝐎𝐈𝐒𝐘 was then divided by TF to get 𝐄𝐄𝐌𝐈𝐃𝐄𝐀𝐋

𝐄𝐒𝐓𝐈𝐌_𝟐, that is to say the ideal EEM 

estimated in presence of measurement noise:  

𝐸𝐸𝑀𝐼𝐷𝐸𝐴𝐿
𝐸𝑆𝑇𝐼𝑀_2(𝜆𝑘, 𝜆𝑗) =

𝐸𝐸𝑀𝑅𝐴𝑊
𝑁𝑂𝐼𝑆𝑌(𝜆𝑘, 𝜆𝑗)

𝑇𝐹(𝜆𝑘, 𝜆𝑗)
 (8) 

The noise effect on the quality of restoration of EEMDIL is quantified by the term r2 given by: 

𝑟2[%] = 100
∑ ∑ (𝐸𝐸𝑀𝐼𝐷𝐸𝐴𝐿(𝜆𝑘, 𝜆𝑗) − 𝐸𝐸𝑀𝐼𝐷𝐸𝐴𝐿

𝐸𝑆𝑇𝐼𝑀_2(𝜆𝑘, 𝜆𝑗))
2

𝑀
𝑗=1

𝑁
𝑘=1

∑ ∑ (𝐸𝐸𝑀𝐼𝐷𝐸𝐴𝐿(𝜆𝑘, 𝜆𝑗))
𝑀
𝑗=1

𝑁
𝑖=1

2  (9) 
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Trilinear model 

When several fluorophores (F) are present in weakly absorbing, dilute sample set, the fluorescence 

intensity can be described as a trilinear model: 

𝐹𝐼𝐷𝐸𝐴𝐿
𝑖𝑗𝑘

=∑𝑎𝑖𝑓𝑏𝑗𝑓𝑐𝑘𝑓

𝐹

𝑓=1

+ 𝑒𝑖𝑗𝑘 (10) 

where  𝐹𝐼𝐷𝐸𝐴𝐿
𝑖𝑗𝑘

 is the intensity of fluorescence for the sample i at emission wavelength j and 

excitation wavelength k. Parameter 𝑎𝑖𝑓  is directly proportional to the true concentration of the 

component f in the ith sample. A vector 𝐛𝐟 of elements 𝑏𝑗𝑓  (j = 1, 2, 3,…) represents the true 

emission spectrum of component f, a vector 𝐜𝐟 of elements 𝑐𝑘𝑓 (k = 1, 2, 3,…) denotes the true 

excitation spectrum of component f, and 𝑒𝑖𝑗𝑘 accounts for a residual term.  

Optical properties effect on trilinearity 

In the previous paper14, Monte Carlo simulations were run to simulate fluorescence EEM data sets 

in turbid media. Although higher values for the percentage of variance explained [Fit (%)] achieved 

by PARAFAC and MCR-ALS models, none of these two methods yielded satisfactory results for 

both spectral and sample (concentration) modes. This means that both algorithms successfully fund 

out the true underplaying causes of data variations but without any physical and chemical meaning. 

These results could be explained by the mechanism by which the optical properties of samples 

contribute to the turbid (raw) EEMs. This mechanism consists to introduce in “Eq. 3” three 

parameters; each of them depends only on one mode: the first parameter (𝑎𝑖𝑓
𝑇𝐹) is concentration 

(sample) dependent, the second parameter ( 𝑏𝑗𝑓
𝑇𝐹) depends on the emission wavelength and the last 
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parameter (𝑐𝑘𝑓
𝑇𝐹)depends on the excitation wavelength. Theoretically, the elements 𝐹𝑅𝐴𝑊

𝑖𝑗𝑘
 of the kth 

turbid EEM should be described by: 

𝐹𝑅𝐴𝑊
𝑖𝑗𝑘

=∑𝑎𝑖𝑓𝑎𝑖𝑓
𝑇𝐹𝑏𝑗𝑓𝑏𝑗𝑓

𝑇𝐹𝑐𝑘𝑓𝑐𝑘𝑓
𝑇𝐹

𝐹

𝑓=1

+ 𝑒𝑖𝑗𝑘 (11) 

In “Eq. 4”, we can make the following substitutions: 𝑎𝑖𝑓
′ = 𝑎𝑖𝑓𝑎𝑖𝑓

𝑇𝐹 , 𝑏𝑗𝑓
′ = 𝑏𝑗𝑓𝑏𝑗𝑓

𝑇𝐹  and 𝑐𝑘𝑓
′ =

𝑐𝑘𝑓𝑐𝑘𝑓
𝑇𝐹. This leads to: 

𝐹𝑅𝐴𝑊
𝑖𝑗𝑘

=∑𝑎𝑖𝑓
′ 𝑏𝑗𝑓

′ 𝑐𝑘𝑓
′

𝐹

𝑓=1

+ 𝑒𝑖𝑗𝑘 (12) 

It is clear that this is a trilinear model and that is why both PARAFAC and MCR-ALS gave 

satisfactory results in terms of both percentage of variance explained Fit [%] and CORCONDIA. 

On the other hand, as can be seen from “Eq. 5”, the elements 𝑎𝑖𝑓 , 𝑏𝑗𝑓  and 𝑐𝑘𝑓  are multiplied 

respectively by bound variables (𝑎𝑖𝑓
𝑇𝐹, 𝑎𝑗𝑓

𝑇𝐹 and 𝑐𝑘𝑓
𝑇𝐹), which cannot be taken outside the sum. Then, 

the use of curve resolution methods based on bilinear or trilinear models leads necessarily to 

estimates of 𝐚𝐟
′ , 𝐛𝐟

′  and 𝐜𝐟
′ instead of 𝐚𝐟 , 𝐛𝐟 , and   𝐜𝐟 . This is why PARAFAC and MCR-ALS 

models failed to provide pure-analyte profiles.  

It is worth noting that in the particular case where the two variables 𝑏𝑗𝑓
𝑇𝐹 and 𝑐𝑘𝑓

𝑇𝐹 are fluorophore- 

independent variables, “Eq. 5” corresponds exactly to the ideal trilinear model for fluorescence 

EEMs in the presence of quenching proposed by Wentzell et al.37  

Multiway Analysis of Fluorescence Data 

The reference, raw and ideal EEMs were grouped in three three-way data sets A, B and C, 

respectively, containing each 25 excitation wavelengths, 44 emission wavelengths and 10 samples. 
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PARAFAC and MCR-ALS methods were then used to decompose the datasets into several spectral 

profiles of the contributing components. The recovery of relative concentration and spectral 

profiles was assessed by the relative residual sum of squares (RRSS): 

𝑅𝑅𝑆𝑆 = 100 ×
∑ (𝑥𝑖

𝑐𝑎𝑙𝑐 − 𝑥𝑖
𝑡𝑟𝑢𝑒)

2
𝑖

∑ (𝑥𝑖
𝑡𝑟𝑢𝑒)2𝑖

 (13) 

Where 𝐱𝐜𝐚𝐥𝐜 and 𝐱𝐭𝐫𝐮𝐞 are respectively the response profile calculated with PARAFAC or MCR-

ALS, and the true response profile. The lower the value of the RRSS term is, the closer the 

calculated profile is to the true response. 

PARAFAC modeling was carried out using the N-way Toolbox for MATLAB.38 A convergence 

criterion of 1×10-6 (default in the algorithm) and a maximum number of iterations of 2500 were 

chosen. The unconstrained models were chosen because an attempt to fit a PARAFAC models with 

non-negativity constraints in the spectral mode resulted in no significant improvement compared 

to the unconstrained option (data not shown). MCR-ALS analysis was carried out with software 

currently available in the MCR-ALS home page (http://www.ub.edu/mcr/welcome.html). The 

MCR-ALS decomposition was done using non‐negativity constraints for both spectral modes 

performed with the fast non-negative least- squares algorithm. The structure of the reference and 

estimated ideal EEMs was assumed trilinear while a non-trilinear structure was selected for the 

MCR-ALS decomposition of the raw EEMs. The matrix of emission profiles provided by 

PARAFAC model was taken as the initial estimate for emission spectra. 

The MCR-ALS procedure decomposes an unfolded fluorescence three-way array into two 

matrices: one matrix containing the excitation spectra as a function of the sample index k (here 1≤ 

k ≤ 10), and the second matrix containing the emission spectra which are common to all samples. 

Thus for clarity reasons only the excitation spectra corresponding to the first sample (the less 
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affected by absorption and scattering effects) will be shown later on. The MCR-ALS relative 

concentration profiles are given by the maximum peak value of each one of the excitation spectra. 

Before decomposing the EEM data sets, the underlying number of factors was estimated according 

to the percentage of the explained variance [Fit (%)] and CORe CONsistency DIAgnosis 

[CORCONDIA].39 Results shown in Table II indicate that 3 factors are suitable for the EEM 

PARAFAC decomposition. 

RESULTS AND DISCUSSION 

Simulation results 

Figure 4 shows the evolution of 𝑟1[%] based on the relative error on the determination of optical 

parameters. As we can see, the term r1 is relatively stable, it increased by only 10% when the error 

on each one of the three parameters is 40%, which corresponds to a ratio of 0.25. This result 

demonstrates that the Monte Carlo based TF is stable regarding the uncertainties on the 

determination of optical parameters. 

Figure 5 shows EEMIDEAL
ESTIM_2 for some values of SNR. As can be seen the division by TF does not 

introduce a drastic amplification of the measurement noise even in regions of strong absorption. 

Figure 6 shows the evolution of r2 term as a function of SNR. The value of r2 falls from 28% to less 

than 1% when the SNR increases from 5 dB to 25 dB. For SNR values greater than 25 dB, values 

generally obtained in steady state fluorescence spectroscopy of biological media, r2 values become 

irrelevant. This result demonstrates the robustness of TF with respect to the noise of measurement. 
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Recovery of the ideal EEM (EEMIDEAL) from measured EEM (EEMRAW) 

Figure 7 shows the representative raw EEM EEMRAW, the simulated transfer function TF, the 

reference EEM EEMREF (first row) and the ideal EEM EEMIDEAL for model solution 1 (Table I), 

model solution 5 (second row) and for model solution 10 (third row) in the form of contour plots.  

EEMREF was measured for each solution from the corresponding pure solution, i.e. the solution 

that contains the same mixture of fluorophores (Eosin Y, Fluorescein and Rhodamine), without the 

absorber (1,1′-Diethyl-2,2′-cyanine iodide), and without the scatter (Intralipid20%). All figures 

were plotted on a log scale for clarity. 

The impact of the TF, i.e. the optical properties, is clearly visible on the raw EEM EEMRAW. One 

can observe severe deformations of the line shapes (contours) and the appearance of a dip at around 

520 nm excitation wavelength, which is due to 1,1′-Diethyl-2,2′-cyanine iodide absorption peak. 

When the absorption becomes stronger (high concentration of 1,1 '-Diethyl-2, 2'-cyanine iodide) 

this dip gave rise to a fluorescence peak at wavelength pair (λk = 508 nm, λj = 570 nm). 

The ideal EEM EEMIDEAL was calculated from dividing the raw EEM EEMRAW by the TF. A 

good agreement was observed in comparing EEMIDEAL to EEMREF. The two EEMs share the same 

features and the contour plots practically match. In comparing the EEMRAW and EEMIDEAL, the 

most obvious change was the disappearance of the fluorescence peak at wavelength pair (λk = 508 

nm, λj = 570 nm) in the calculated EEMIDEAL. In addition, the dip shown in the EEMRAW at around 

520 nm, which is due to 1,1 '-Diethyl-2, 2'-cyanine iodide absorption, was also corrected in the 

calculated EEMIDEAL.  
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PARAFAC and MCR-ALS loadings 

The results obtained from the three-component PARAFAC and MCR-ALS models fitted to the 

data set A (Reference EEMs) are shown in Figure 8. The pure profiles were also plotted for 

comparison. The spectral profiles of the three components retrieved by PARAFAC and MCR-ALS 

are perfectly representative of the analytes in the model solutions (Figure 8). Component C1 

corresponds to Eosin Y, component C2 to Fluorescein and component C3 to Rhodamine B. The 

relative concentration profiles estimated by the two algorithms were close to the mixing 

proportions of the three fluorophores. The values of the RRSS terms were insignificant for all three 

fluorophores (Table III). These results confirm that the solutions were properly prepared and that 

the inner structure of the data set A is perfectly trilinear.  

The results obtained by three-component PARAFAC and MCR-ALS models fitted to the data set 

B (raw EEMs) are shown in Table IV and Figure 9. According to the RRSS terms values listed in 

Table IV the solutions provided by MCR-ALS model were clearly better than those from 

PARAFAC model. This could be explained by the higher similarity of MCR-ALS underlying 

model to the real variation in the data set as stated by de Juan and Tauler.9 However, the MCR-

ALS recovered profiles remained far from the true profiles (Figure 9). 

Figure 10 shows the results of four-component PARAFAC and MCR-ALS models fitted to the 

data set B (raw EEMs). Comparing these results to the three-component models (see Figure 9), the 

first three components have similar profiles; however, the fourth component has no chemical 

meaning. This fact confirms that the absorption and scattering effects cannot be compensated or 

eliminated by adding more components to the PARAFAC or MCR-ALS models.  
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These results confirm the conclusions obtained with the simulated data reported in previous paper14 

and briefly remembered in the beginning of the present paper (see Optical properties effect sub-

section).   

Figure 11 shows the profiles retrieved by three-component PARAFAC and MCR-ALS models for 

data set C (ideal EEMs). For spectral modes, the recovered profiles are remarkably similar to the 

pure profiles allowing the three fluorophores to be identified easily. For the sample mode, the trend 

in the estimations of the relative concentrations followed rather well the true relative concentrations 

of samples considering the different possible sources of error. Especially the Rhodamine B 

estimations were very close to the true values, whereas the Fluorescein estimations differed the 

most (Table IV). Obviously, this difference is related to the fact that the recovered concentration 

profile of Fluorescein is the most influenced by the absorption and scattering effects and 

Rhodamine B the least (see Table III). 

Finally, in terms of performance, PARAFAC gave slightly better results than MCR-ALS (Table 

V). The reason is probably the uniqueness of the solutions obtained and relaxation of some 

constraints which were not applied in PARAFAC. 

Comparison with existing methods 

As mentioned earlier, several methods have been developed to avoid inner filter effects from 

fluorescence emission spectra17-24. However, the performances of these methods cannot be 

compared to those of our method for two reasons. The first reason is of technical order. The existing 

methods are based on measurements which are not possible to perform in turbid media such as 

biological media. To perform corrections these methods use either the sample’s absorbance17-22, 

the EEM of the sample twice diluted23 or the 1st order Raman scatter peak contained in the 
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measured fluorescence emission spectra24. The measurements of sample’s absorbance, and the 

twice diluted methods are very easy to achieve in a dissolved organic matter solution23, however 

such measurements have no meaning in the case of a solid sample such as an animal tissue or a 

food product. On the other hand, we need also to consider the fact that most biological samples 

exhibit strong fluorescence emission in the spectral Raman region, which often swamps the 

relatively weak Raman signals. The second reason emerges from the mathematical model of 

fluorescent light propagation. The methods mentioned above assume that fluorescence spectra are 

measured in pure absorbing (non-scattering) samples where the intensity of fluorescence light 

(excitation light and emitted light) decreases exponentially along the axis of propagation. 

Unfortunately, these assumptions don’t hold in the context of fluorescence spectroscopy of 

biological samples. After propagating over a few hundred micrometers, fluorescence light would 

become highly diffusive. Monte Carlo simulation is the only technique that accurately traces 

photon paths and gives an accurate estimation for light propagation in turbid media. 

CONCLUSION 

Reabsorption and scattering phenomena in turbid samples such as biological specimens severely 

deform their EEMs data while preserving their trilinear structure. The application of chemometric 

methods assuming a trilinear structure which is the case of PARAFAC or bilinear structure which 

is the case of MCR-ALS gives effectively good results in terms of percentage of explained 

variance; however these results have no chemical meaning. This could mislead the analyst when 

dealing with data sets from complex biological specimens containing multiple unknown 

components in the sense that the percentage of explained variance is used as criterion to determine 
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the inner structure of data sets, and allows to determine afterwards which family of data analysis 

(PARAFAC or MCR-ALS) methods is most appropriate to deal with.  

Depending on the spectral localization of the fluorophore in the transfer function spectral plane, 

the effects of scattering and reabsorption can affect more or less severely the three modes 

(excitation, emission, and sample mode) of the same fluorophore, and for a given mode the 

distortion can be severe for one fluorophore and moderate or even insignificant for another 

fluorophore.  

To eliminate the effects of scattering and reabsorption the Monte Carlo based approach was 

experimentally tested in model mixtures containing three fluorophores (Eosin Y, Fluorescein and 

Rhodamine) with controlled absorption and scattering properties imitating the optical properties of 

biological media. For each sample, the optical parameters were obtained from integrating sphere 

measurements and inverse adding doubling algorithm. The ideal EEM was accurately recovered 

from the measured EEM by dividing it by the wavelength-dependent transfer function which was 

simulated on the basis of the determined optical parameters. PARAFAC and MCR-ALS 

decompositions of the recovered ideal EEMs provided spectral and relative concentration profiles 

similar to the true profiles. 

Synthetic mixtures of up to three fluorophores embedded in absorbing and scattering solutions 

were examined in this study. Although this method could accurately recover the ideal EEMs and 

extract the pure-analyte contributions from a mixture, there is an important limitation associated 

with it. This method uses the optical parameters of samples which are measured separately using 

an integrating sphere set-up. A future work would be done to improve this method for online 

setting, where the integrating sphere measurements may often be impractical.  
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Captions for figures  

 

Figure 1: Simulated (a) excitation spectra, (b) emission spectra, and (c) EEMIDEAL calculated from 

Eq. 1 for three fluorophores .  

Figure 2: Optical parameters and simulated TF by using the Monte Carlo method. (a) absorption 

parameter 𝜇𝑎, (b) scattering parameter 𝜇𝑠,  (c) anisotropy factor g, (d) Simulated TF. 

Figure 3: 𝐄𝐄𝐌𝐑𝐀𝐖 calculated from Eq. 2 by using EEMIDEAL from Figure 1 and TF from Figure 

2D. 

Figure 4: Evolution of r1(%) as a function of errors on the determination of optical parameters. 

Figure 5: 𝐄𝐄𝐌𝐈𝐃𝐄𝐀𝐋
𝐄𝐒𝐓𝐈𝐌_𝟐 for SNR = 10 dB, SNR = 20 dB and SNR = 30 dB.  

Figure 6: Evolution of r2(%)  ratio as a function of SNR. 

Figure 7: Contour plots of raw EEM EEMRAW (first column), simulated transfer function TF 

(second column), ideal EEM EEMIDEAL (third column) and reference EEM EEMREF (fourth  

column) for model solutions 1 (first row), 5 (second row) and 10 (third row) respectively (see Table 

I). The vertical dashed line at λk = 520 nm in the EEMRAW of model solutions 5 and 10 indicates 

the dip introduced by the TF giving rise to a secondary fluorescence peak at wavelength pair (λk  = 

508 nm, λj  = 570 nm). 

Figure 8: Comparison of three-factor PARAFAC decomposition (dotted lines) and MCR-ALS 

(dashed lines) models of data set A (Reference EEMs) with pure profiles (solid lines) from three 

components (C1-C3). The pure excitation and emission spectra of each fluorophore were measured 

from the corresponding diluted standard solution. The spectral loadings are normalized by the 

maximum (maximum unity) and the concentration profiles (score loadings) are normalized by the 
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sum (sum unity). The concentration profiles represent thus the mixing proportions of the three 

fluorophores. Identification of components C1-C3 is given in the title of the upper subplots. 

Figure 9: Comparison of three-component PARAFAC (dotted lines) and MCR-ALS (dashed lines) 

models of the data set B (raw EEMs) with true profiles (solid lines) from three components (C1-

C3). The spectral loadings are normalized by the maximum (maximum unity) and the concentration 

profiles (score loadings) are normalized by the sum (sum unity). The concentration profiles 

represent thus the mixing proportions of the three fluorophores. Identification of components C1-

C3 is given in the title of the upper subplots. 

Figure 10: Comparison of four-component PARAFAC (dotted lines) and MCR-ALS (dashed 

lines) models of data set B (raw EEMs) with true profiles (solid lines) from three components (C1-

C3). The spectral loadings are normalized by the maximum (maximum unity) and the concentration 

profiles (score loadings) are normalized by the sum (sum unity). The concentration profiles 

represent thus the mixing proportions of the three fluorophores. Identification of components C1-

C3 is given in the title of the upper subplots. 

Figure 11: Comparison of three-component PARAFAC (dotted lines) and MCR-ALS (dashed 

lines) models of data set C (ideal EEMs) with true profiles (solid lines) from three components (C1-

C3). The spectral loadings are normalized by the maximum (maximum unity) and the concentration 

profiles (score loadings) are normalized by the sum (sum unity). The concentration profiles 

represent thus the mixing proportions of the three fluorophores. Identification of components C1-

C3 is given in the title of the upper subplots. 
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Table I: Composition of ten model solutions used for pointing out experimentally the absorption 

and scattering effects on fluorescence spectra of biological media.  

Solution Eosin Y 

(μM) 

FITC 

(μM) 

Rhodamine B 

(μM) 

1,1′-Diethyl-

2,2′-cyanine 

iodide 

(mg/L) 

Intralipid20% 

(mL/L) 

1 1.00 0 0 5.00 55.00 

2 0.72 0.21 0.07 15.56 55.00 

3 0.51 0.28 0.21 26.11 55.00 

4 0.37 0.27 0.36 36.67 55.00 

5 0.26 0.23 0.50 47.22 55.00 

6 0.19 0.19 0.62 57.78 55.00 

7 0.14 0.15 0.72 68.33 55.00 

8 0.10 0.11 0.79 78.89 55.00 

9 0.07 0.09 0.84 89.44 55.00 

10 0.05 0.06 0.89 100.00 55.00 
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Table II: Decomposition of EEM data sets. Percentage of explained variance Fit [%] and 

CORCONDIA values from PARAFAC model as a function of the number of factors.  

Number of factors 1 2 3 4 5 6 7 

Data set A (reference EEMs) 

Fit [%] 90,40 98,91 99,96 99,97 99,97 99,97 99,97 

CORCONDIA [%] 100,00 100,00 97,48 0,64 0,20 0,06 0,02 

Data set B (raw EEMs) 

Fit [%] 87,39 98,94 99,75 99,79 99,83 99,84 99,85 

CORCONDIA [%] 100,00 100,00 94,49 31,03 2,14 0,23 0,19 

Data set C (ideal EEMs) 

Fit [%] 90,70 99,07 99,97 99,97 99,97 99,97 99,97 

CORCONDIA [%] 100,00 100,00 98,51 12,75 -0,03 -0,08 0,09 
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Table III: Relative residual sum of squares (RRSS) terms obtained from PARAFAC and MCR-

ALS models for data set A (reference EEMs).  

Model Mode RRSS term [%] 

  Eosin Y Fluorescein Rhodamine B 

     

 Excitation mode 0,29 0.72 0.14 

PARAFAC Emission mode 0,10 0.05 0.79 

 Sample mode 0,60 0.70 0.32 

 

 

 

 Excitation mode 0,28 1.52 0.18 

MCR-ALS Emission mode 0,10 0.05 0.81 

 Sample mode 0,59 0.69 0.32 
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Table IV: Relative residual sum of squares (RRSS) terms obtained from PARAFAC and MCR-

ALS models for data set B (raw EEMs). 

Model Mode RRSS term [%] 

  Eosin Y Fluorescein Rhodamine B 

     

 Excitation mode 13,26 86,07 38,33 

PARAFAC Emission mode 7,70 41,91 14,59 

 Sample mode 97,31 368,00 5,16 

 

  
 Excitation mode 1,14 26,64 23,98 

MCR-ALS Emission mode 6,12 40,73 14,84 

 Sample mode 23,37 65,12 2,45 
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Table V: Relative residual sum of squares (RRSS) terms obtained from PARAFAC and MCR-

ALS models for data set C (ideal EEMs). 

Model Mode RRSS term [%] 

  Eosin Y Fluorescein Rhodamine B 

     

 Excitation mode 0,32 3,92 2,41 

PARAFAC Emission mode 0,41 1,92 2,36 

 Sample mode 2,91 8,43 0,30 

 

  
 Excitation mode 0,33 0,42 4,85 

MCR-ALS Emission mode 0,40 2,09 2,33 

 Sample mode 2,97 10,47 0,31 
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