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Abstract 

Three-way fluorescence data originating from mixtures of fluorophores embedded in turbid 

media such as biological media get strongly modulated by wavelength dependent absorption 

and scattering phenomena. Thus the consistent resolution and quantitative determination of the 

mixture becomes a difficult task. In this study two chemometric methodologies frequently used 

to deal with this type of data were applied to fluorescence simulated data sets qualitatively 

similar to those measured in biological samples: Parallel Factor Analysis (PARAFAC) that does 

require the fulfillment of trilinearity, and multivariate curve resolution–alternating least squares 

(MCR–ALS) which decomposes the data according to a model lacking this structure. Monte 

Carlo simulations were used to simulate fluorescence excitation-emission matrices (EEMs) of 

known fluorescent mixtures under separated and simultaneous variations of the absorption 

parameter μa and the scattering parameter μs. PARAFAC and constrained MCR-ALS models 

were then fitted to the simulated data. Both algorithms failed the recover the true profiles. The 

results obtained with PARAFAC and MCR-ALS models are similar and the recovered profiles 

exhibit severe distortions due to the absorption and scattering effects. Finally, qualitative and 

quantitative effects of the absorption and scattering on the fluorescence data were assessed and 

discussed.  

 

Key words: Fluorescence Spectroscopy, Absorption, Scattering, Monte Carlo, Trilinearity, 

PARAFAC. 
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1. Introduction 

Fluorescence spectroscopy combined with Parallel Factor Analysis (PARAFAC) [1] is 

becoming a valuable tool in analytical chemistry [2, 3, 4]. This method allows to identify and 

quantify different fluorescent compounds such as environmental, therapeutic drugs and 

metabolites, and food molecules. The process involves exciting samples over a range of 

wavelengths and recording the fluorescence emission over a different range of wavelengths. 

When the structure of the data set is trilinear, the PARAFAC decomposition provides an 

estimation of the relative concentrations, and pure emission as well as excitation spectra of the 

individual analytes. The trilinear structure of the data means that the fluorescence signals should 

be linear in concentration, additive and hence independent of each other, and that the spectral 

response of a given analyte must remain the same in all samples.  

These assumptions are valid only in the case of highly diluted samples. For intact biological 

samples the internal structure of the data is probably non-trilinear due to perturbations 

influencing the measured spectra and that cannot be modeled by adding one or more additional 

components in the PARAFAC decomposition. Multivariate curve resolution–alternating least 

squares (MCR–ALS) method [5, 6, 7, 8, 9] is probably the best chemometric technique for the 

analysis of this type of data as it allows (small) deviations to the trilinear model in all the 

components or in some of them.  

Depending on the nature of the sample and the geometry of spectra acquisition, there are two 

distinct phenomena responsible for the non-trilinear structure of fluorescence data. In the case 

of purely absorbing substances (non-scattering) fluorescence measurements are performed 

using right angle optics, i.e. the excitation light is focused at the center of the sample and the 

fluorescence emitted within a certain solid angle is measured at the right angle to the excitation 

beam direction. The non-trilinear structure of data is due to inner filter effects [10, 11] whose 

modeling has been the subject of several papers [12, 13, 14, 15]. Based on the assumption of 
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an exponential attenuation of the intensity, several models relating the true (bilinear) 

fluorescence signal to the measured fluorescence have been developed and experimentally 

validated. These models require the acquisition of the sample absorbance [11, 16] or the 

fluorescence of the original sample diluted several times [17].  

In the case of strongly scattering and absorbing media, front-face fluorescence detection mode 

is used in which fluorescence is viewed from the same side as the excitation beam. The optical 

path in this case is sufficiently low so that the reabsorption of the excitation light and emitted 

fluorescence by the fluorophores can be ignored [18, 19]. However, contrary to what is often 

stated in the literature [20], the acquisition of spectra from turbid media with front-face 

fluorescence detection mode does not necessarily guarantee the conditions of trilinearity. For 

instance, biological samples such as plant and animal tissues or milk are turbid with diverse 

fluorophores, scatters and absorbing molecules. Light incident on and emitted from such media 

experiences multiple scattering and absorption events before it re-emerges from surface. The 

combined outcome of absorption and scattering can influence the intrinsic fluorescence and 

makes the PARAFAC loadings difficult to interpret.  

Christensen et al. [21] discussed the factors that can affect the fluorescence emission signals 

from intact foods. This discussion remains incomplete because the authors (i) do not rigorously 

describe the phenomena responsible for the optical distortion of fluorescence spectra and (ii) 

do not give a physical model linking the observed and intrinsic fluorescence of a mixture of 

fluorophores in such media.  

Several research groups have applied PARAFAC for analysis of fluorescence data measured 

from intact food systems with front-face optics. Airado-Rodriguez et al. [22] used PARAFAC 

for identification of fluorophores present in wine. PARAFAC was used to monitor the evolution 

of naturally occurring and neo-formed fluorescent compounds in oils during thermal treatment 

[23]. Synchronous fluorescence spectroscopy coupled with PARAFAC was used for the 
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determination of heterocyclic aromatic amines in grilled meat [24] and for the characterization 

of milk molecular changes during mild heating [25]. The same strategy was proposed by 

Rizkallah et al., [26] for the identification and rapid quantitative estimation of neoformed 

contaminants in industrially processed cookies. There are numerous other examples on the use 

of front-face fluorescence data and PARAFAC in food analysis: detection and characterization 

of active photosensitizers spectrally in butter [27], evaluation of yogurt during storage [28], 

evaluation of light-induced oxidation of semi hard cheese [29], and quality monitoring of dry-

cured Parma ham [30]. However, one must be particular careful when fitting the PARAFAC 

model to fluorescence data measured from intact food samples. Light scattering and the 

presence of absorbing pigments may give a model inadequacy, influencing the estimated model 

parameters.  

In this work, Monte Carlo (MC) simulations were used to simulate fluorescence EEMs 

qualitatively similar to those observed in biological samples and intact food systems. Each 

simulated EEM included contributions from three fluorophores and took into account the 

absorption and scattering effects. PARAFAC and MCR-ALS are applied to these data and the 

recovered profiles were compared with the pure profiles used in the simulation (excitation 

spectra, emission spectra, and true concentrations).  

The paper is structured as follows: The physical principles governing the interaction of light 

with turbid media are briefly described in section 2. Mathematical models describing the 

propagation of excitation and fluorescent light through a turbid medium are discussed in section 

3. MC modeling used to simulate the propagation of excitation light and the resulting 

fluorescence is presented in section 4. The basic of PARAFAC and MCR-ALS models is briefly 

discussed in section 5. The simulation of fluorescence data sets in different optical 

environments is described in section 6. Finally, PARAFAC and MCR-ALS models were 



6 

applied to each data set and the deterioration of the loadings due to absorption and scattering is 

assessed and discussed in section 7. 

2. Optical properties  

Light propagation in turbid media can be described by the Radiance Transport Equation with 

three optical specified parameters: absorption parameter μa [m
-1], scattering parameter μs [m

-1], 

and the anisotropy factor g [31].  

The absorption parameter μa is defined as the probability for a photon to be absorbed per unit 

length. Thus, the probability of absorption in infinitesimal distance ds is μa.ds. The mean free 

path for an absorption event, i.e. the mean distance a photon travels before it is absorbed, is 

1⁄μa. 

Similarly, the scattering parameter μs is defined as the probability per unit length for a photon 

to be scattered. The probability of scattering in infinitesimal distance ds is then μs.ds and the 

mean free path for a scattering event is 1⁄μs. 

When an incident photon along a direction described by the unit vector ŝ experiences a 

scattering event (Fig. 1), the angular probability of this photon to be scattered into ŝ' direction 

is given by the normalized phase function f(ŝ, ŝ'). It can be assumed that the probability 

distribution is a function of the angle between the incident and scattered photon only, and that 

it does not depend on the angle of incidence relative to the scatterer. For light transport in a 

biological medium the Henyey-Greenstein function is most often used [32]: 
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The anisotropy can be characterized in terms of the mean cosine of the scattering angle which 

is called the anisotropy factor g: 

( ) ( )
+

−

=

1

1

coscoscos .θdθθfg  (3) 

The value of g ranges between -1 (for total back scattering) and 1 (for total forward scattering), 

while g = 0 corresponds to isotropic scattering. 

3. Model of Excitation and Emission Matrices (EEMs) in absorbing and scattering 

medium 

Identification and quantification of fluorescent compounds in complex mixtures is performed 

by means of PARAFAC decomposition applied to hyphenated fluorescence spectroscopy data 

[33]. The data set under consideration is a three-way array or third-order tensor in which several 

EEMs are stacked. A single EEM is obtained by scanning the excitation wavelength range, 

producing an emission spectrum for each excitation wavelength. Thus, one dimension of the 

tensor corresponds to the excitation wavelength (λi), the second corresponds to the emission 

wavelength (λj) and the third to the sample index (k). The PARAFAC decomposition of the 

third-order tensor is often unique under minor assumptions [34]; this is due to the fact that the 

third-order tensor is not merely a collection of EEMs, but there is actually an internal 

relationship between each of the EEMs.  

In this section, an expression for the fluorescence EEM measured from the surface of 

homogeneous absorbing and scattering medium containing a uniform distribution of 

fluorophores is developed.  
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3.1 Optically diluted homogeneous medium 

For a set of diluted samples containing several fluorophores, the normalized fluorescence 

intensity of the kth sample detected at wavelength λj when excited at wavelength λi can be 

described as a trilinear expression [3], 

( )

K.kJ,jI,i

,)(λφ)(λε(k)χ,k,λλEEM jfif

F

f

fjiDil
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=
=
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1  (4) 

where (k)χ f is the wavelength independent factor of fluorophore f in the sample k that explains 

how the EEM depends on the concentration, )(λε if is the molar absorptivity of fluorophore f at 

excitation wavelength iλ  and )(λφ jf  is the fluorescence emission intensity of fluorophore f at 

emission wavelength jλ . F is the number of fluorophores, I the number of excitation 

wavelengths, J the number of emission wavelengths and K the number of samples. 

3.2 Turbid medium 

The fluorescent light in a turbid medium is absorbed and scattered before emerging from the 

surface. Thus measurements of fluorescence intensity detected at the surface depend on the 

optical properties of both the fluorophores and the medium. 

In general, a one-dimensional model of fluorescence must describe the attenuation of the 

excitation beam as it passes through the turbid sample and the attenuation of the fluorescence 

as it travels from the point of generation to the sample surface. These effects can be 

mathematically described by recognizing that a turbid sample can be treated as a dilute solution 

if its thickness is small compared to the photon mean free path (i.e., the mean distance traveled 

by a photon before being absorbed or scattered). We divide a turbid sample of thickness LTur 

into a number of thin layers of thickness dz along the optical axis. This allows us to calculate 
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the contribution to the fluorescence dEEMTur, collected from the front surface of a thin layer 

with thickness dz and located at depth z (Fig. 2), as follows [35]: 
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In this expression, Hin describes the fraction of the incident excitation light that reaches the 

layer of concern, and Hout describes the fraction of fluorescence generated at depth z that reaches 

the front surface. Note that for a dilute solution with isotropically emitting fluorophores, Hin is 

1 and Hout is 1/2. 

The total fluorescence emitted from the front surface of a sample k is obtained by integrating 

over the depth z: 
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If fluorophores are homogeneously distributed within the sample, the summation can be taken 

outside the integral, which yields: 
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Combining Eqs. (4) and (7) yields: 
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This fundamental result provides the key for relating the "true" fluorescence signal, EEMDil, 

which is independent of the optical properties of the medium, to the measured fluorescence of 

a turbid sample, EEMTur, by the wavelength dependent Transfer Function (TF). 

The form of the TF depends on the details of the light propagation within the sample. Several 

models of light propagation have been described in the literature and can be used to calculate 

the dependence of the TF on the sample’s optical properties, collection and detection geometry, 

and mismatch in the index of refraction at the sample surface [36]. Once the form of the TF has 

been determined, its value can be computed as a function of the excitation and emission 

wavelengths, given the total optical properties of the turbid sample at these wavelengths and 

the thickness of the sample.  

The MC technique offers a flexible and accurate approach to these problems, since it can handle 

turbid media with complex geometries and since it can score multiple physical quantities 

simultaneously. Hence MC simulation can be used to estimate the TF. 

4. Fluorescence Monte Carlo Simulation (FMCS) 

Modeling fluorescence in turbid media must account for the following stages: (i) propagation 

of excitation light from the medium’s surface into its interior, (ii) absorption by fluorophores, 

(iii) conversion to fluorescence, (iv) emission of the fluorescent light from the fluorophores, 

and (v) propagation of that light back up to the surface (we neglect here re-emission of the 

absorbed light). Besides, we assume that the absorption and emission spectra of the fluorescent 

molecules do not overlap. Hence, the excitation and emission processes take place at different 

wavelengths denoted by λi and λj > λi, respectively. 
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Consider a short light pulse at the excitation wavelength λi, which enters the medium in the 

direction perpendicular to its surface, as illustrated in Fig. 3. The solid lines show simulated 

excitation photon paths. When it is absorbed by a fluorophore, a new fluorescence photon is 

emitted at the wavelength λj (dashed line). The fluorescence photon propagates through the 

medium and is eventually absorbed or reaches the surface and is observed.  

The modeled medium is represented by a semi-infinite slab with infinite x, y dimensions and 

homogeneously distributed interaction (absorption or scattering) centers, with thickness LTur, 

refractive index nmedium, optical properties at the excitation wavelength [μa, μs, g](λi) and optical 

properties at the emission wavelength [μa, μs, g](λj)]. 

Three coordinate systems are employed in the FMCS: (a) a Cartesian coordinate system (x,y,z) 

is used to trace the photon movements, (b) a cylindrical coordinate system (r, z, φ) is used to 

record the internal photon absorption and fluorescence as a function of r and z, and (c)  a moving 

spherical coordinate system, of which the z-axis is dynamically aligned with the photon 

propagation direction, is used for sampling the propagation direction of a photon packet. 

Photon packets are traced inside the slab as they are absorbed and scattered in the interaction 

centers (marked by circles in Fig. 3), analogous to a random walk in three dimensions.  

FMCS consists of two separate MC simulations. The first simulation deals with the excitation 

light traveling from the light source to the fluorophore. The second simulation deals with the 

emitted fluorescence photon traveling from the fluorophore to the surface.  

FMCS determines separately (a) the absorption probability distribution, and (b) the emission 

probability distribution. The combination of these two probabilities provides the TF.  

We use an open source MC simulation package provided by Wang et al. [37] to determine the 

absorption probability distribution A(λi, r, z), defined as the probability per unit volume for an 

excitation photon to be absorbed at a radial distance r and a depth z from the injection point (0, 
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0). The software (both executables and source codes) along with a thorough manual is available 

at [38]. 

This software was modified according to Swartling et al. [39] to determine the emission 

probability distribution E(λj, r, z), defined as the probability per unit area that a photon at 

position (0, z) will exit the surface of the medium at position (r, 0).  

After A(λi, r, z) and E(λj, r, z) have been simulated, the one-dimensional photon absorption 

function Hin(λi, z) and photon fluorescence function Hout(λj, z) are obtained by numerical 

integration over the radial distance r: 

( ) ( ) ,2
0




= drrπ,r,zλA,zλH iiin  (10) 

( ) ( ) ,2
0
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Finally, the TF follows from Eq. (9).  

5. Multiway data analysis 

Both PARAFAC [1, 2, 3] and MCR-ALS [5, 6, 7, 8, 9] models have been discussed in detail 

elsewhere and only a brief description is presented here.  

5. 1 Parallel factor analysis (PARAFAC) 

Let X   IRI×J×K be a three-way fluorescence data array. Then an F-component PARAFAC 

model can be expressed as in Eq.12, where aif and bjf are the elements of the loading matrices 

A   IRI×F and B  IRJ×F respectively, and ckf  is the element of the scores matrix C   IRK×F. 

xijk represents an entry of X in the ith row, jth column and kth tube and eijk are the elements of the 

residual array E  IRI×J×K, which contains the variance not captured by the model.  

http://www.sciencedirect.com/science/article/pii/S0165993607001896#bib12
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In the context of the three-way fluorescence data analysis, the F columns of A represent pure 

excitation spectra, the F columns of B represent pure emission spectra and the F columns in C 

contain the relative concentrations of each analyte in the different samples. 

There are several techniques for finding a valid PARAFAC model for describing fluorescence 

excitation-emission data. The appropriate number of components is determined based on 

several different criteria. For example, the variance explained by the model, the visual 

appearance of loadings, the number of iterations of the algorithm and the core consistency 

diagnostic (CORCONDIA) [40] are used. Among these techniques, CORCONDIA has been 

commonly applied in literature [41]. However, for complex data, the determination of the 

number of factors by CORCONDIA remains elusive [42]. Therefore, it is often suggested that 

several diagnostic tools are used together rather than a single method [40]. 

5.2 MCR-ALS 

The strategy to perform MCR-ALS decomposition of the three-way fluorescence data array X 

  IRI×J×K is to unfolded X along the mode that is suspected of breaking the trilinear structure 

[5, 6]. Both emission-column-wise and excitation-column-wise matrix augmentations are 

possible. In the emission-wise augmentation used here, an emission- augmented matrix Xaug  

IRIK×J is created by setting one EEM   IRI×J on top of the others and keeping the common 

emission wavelengths in the same column. The MCR-ALS decomposition of Xaug   IRIK×J is 

performed according to the expression [7, 8]: 
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http://www.sciencedirect.com/science/article/pii/S0165993607001896#bib12
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where xij is the ijth element in the augmented matrix Xaug, dif is the ifth element in the column-

wise augmented matrix D   IRIK×I of excitation spectra, bfj is the fjth element in B   IRJ×F, and 

eij is the residual term. In other words, D matrix contains the sets of excitation spectra (one set 

for each EEM) for each factor and B matrix contains the emission spectra common to all 

samples. A single set of excitation profiles may then be selected for comparison or all recorded 

sets may be averaged to create one set of excitation profiles. The intensity at each wavelength 

is then related to the concentration of each component in the mixture. 

6. Description of simulated data 

In order to assess the effect of the absorption and scattering independently and in combination, 

MC simulations were performed to simulate fluorescence EEMs of a fluorophores mixture 

emitting in different optical environments: (i) optically clear (dilute) media (ii) purely scattering 

media containing Intralipid and (iii) absorbing and scattering media containing Intralipid and 

β-carotene.  

Intralipid is a fat emulsion that is used clinically as an intravenously administered nutrient. In 

biomedical optics, it is used for providing the scattering component in a tissue phantom to 

investigate propagation of light in tissue [43, 44].  

Three fluorophores with fairly similar spectral properties were used in this simulation. The three 

compounds are Vitamin A (ViTA), Vitamin B6 (VitB6) and the Reduced Nicotinamide 

Adenine Dinucleotide (NADH). Their excitation and emission spectra, downloaded from 

FoodFluor Database at [45], were mixed according to (Eq. 4) to produce a set of 20 EEMs. The 

relative concentrations profiles (proportions of the mixtures) were chosen so that the uniqueness 

of the PARAFAC decomposition is guaranteed (random and linearly independent profiles). 

These data are referred to as data set 1.  

These EEMs were then affected by scattering and absorption effects via MC simulated TFs 

according to (Eq.9). The TFs were simulated using the absorption parameter (μa) of β-carotene 
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and the scattering parameters (μs and g) of Intralipid. These were obtained from [38] and shown 

in Fig.4. 

To investigate scattering effect, MC simulations were performed using the scattering 

parameters (s, g) of the Intralipid and fixing the absorption parameter μa to 0. The simulations 

were conducted as follows: The first simulation is run with parameters s and g of  

Fig. 4. The scattering coefficient, μs, is then varied by linearly increasing the concentration of 

Intralipid and a new simulation is launched. The added concentration of Intralipid was chosen 

in such way to achieve an increase of 100% at the last simulation. At the kth simulation, a new 

TF is calculated and multiplied point by point with the kth EEM of data set 1 to get the kth EEM 

data set 2.  

To examine the effect of absorption and scattering in combination, the values of μa and s were 

simultaneously varied. The absorption parameter μa was varied by altering the concentration of 

β-carotene in such way to reach an increase of about 100% at the last simulation. At the kth 

simulation, a new TF is generated and applied to the kth EEM du data set 1 to get the kth EEM 

of data set 3. 

Examples of fluorescence EEMs simulated in different optical environments are shown in Fig.5 

together with the corresponding simulated TFs. 

7. Results and discussion 

The simulated data sets were stacked in a three-way arrays (excitation × emission × samples), 

of which the dimensions corresponded to 25 excitation wavelengths (mode one), 44 

wavelengths (mode two) and 20 samples (mode three) respectively. PARAFAC and MCR-ALS 

methods were then used to decompose the three data sets into several spectral profiles of the 

contributing components. 
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PARAFAC modeling was carried out using the N-way Toolbox for MATLAB [46]. As 

convergence criteria a value of 1×10-6 and a maximum number of iterations of 2500 were used. 

The unconstrained models were chosen because an attempt to fit a PARAFAC models with 

non-negativity constraints in the spectral mode resulted in no significant improvement 

compared to the unconstrained option (not shown). The calculations associated to the MCR-

ALS method were performed using several programs implemented in MATLAB and obtained 

from [47]. The MCR-ALS decomposition of the three data sets was done using a non -negativity 

constraints for both spectral modes performed with the Fast non-negative least-squares 

algorithm. The structure of the data set 1 was assumed trilinear while non-trilinear structure 

was selected for the MCR-ALS decomposition of data sets 2 and 3. The matrix loading B of 

the PARAFAC model was taken as the initial estimate for the emission spectra. 

Unconstrained PARAFAC models of the fluorescence data sets were fitted using from one to 

seven components. The results of the model evaluation criteria are shown in Table 1.  

For data set 1, three components is obviously the ideal number. The variance explained by the 

model was close to 100% and the core consistency test showed a CORCONDIA of 100 %. 

When a four-component model was fitted the CORCONDIA dropped significantly to around 

32%. This result is consistent with the data set 1 constituted from only the three fluorophores. 

For data set 2, the explained variance is close to 100 % using from three to seven components.  

The analysis using CORCONDIA indicates that three components are necessary, because the 

utilization of more factors leads to a great decrease of CORCONDIA and hence of the 

trilinearity of the data modeled. Three components give a CORCONDIA value of 100% (a 

perfect trilinear model) whilst, when using four or more components, this value diminishes to 

values below to 32%. 

Four components provide a valid PARAFAC model For Data set 3. The four-component model 

explains approximately 99.9% of the variation in the data and gives a CORCONDIA of 87.4%. 
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The CORCONDIA of the five-component model of 19% indicates that this model might not be 

stable.   

The explained variance and the CORCONDIA criteria show that the intrinsic EEMs of data sets 

2 and 3 are constituted by three and four components respectively. This is not consistent with a 

priori knowledge. The data set 2 was constituted from 3 fluorophores plus scatter, what gives 

at least four factors. The data set 3 was constituted from 3 fluorophores plus absorber and 

scatter, what gives at least five components. Consequently, the four- component model for data 

set 2 and the five-component model for data set 3 deserve further analysis.  

As mentioned above, the MCR-ALS procedure decomposes an unfolded fluorescence three-

way array into two matrices: one matrix containing the excitation spectra as a function of the 

sample index k ( here 1 ≤ k ≤ 20 ), and the second matrix containing the emission spectra which 

are common to all samples. Thus for clarity reasons only the excitation spectra corresponding 

to the first sample (the less affected by absorption and scattering) will be shown hereafter. 

Spectral loadings and scores profiles obtained from the three-component PARAFAC model 

were fitted to the data set 1 (Fig. 6) and data set 2 (Fig. 7). The pure excitation and emission 

spectra of VitA, VitB6 and NADH as well as the excitation and emission spectra obtained by 

MCR-ALS were also plotted for comparison. The scores were plotted against the true 

concentrations and a linear fit was performed. The deformation induced by absorption and 

scattering on the linear relationship between the PARAFAC scores (fluorescence intensity) and 

fluorophores concentration was evaluated by the Mean Relative Error (MRE %) (Table 2). 

The PARAFAC and MCR-ALS emission and excitation spectra of the three components 

extracted from data sets 1 and 2 are quite similar and perfectly matched to the pure spectra (Fig. 

6, and 7). Thus PARAFAC and MCR-ALS were able to perfectly resolve the three fluorophores 

even in presence of scattering effects. Accordingly, the TF of Intralipid may not have had any 

effect on the trilinear structure of the data set 2.  
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In a pure scattering medium, modulation of fluorescence by the TF is limited to a scaling by a 

factor α ≥ 1, at least for the values of μs that were considered. Fig. 5C shows a nearly constant 

TF, and Fig. 5B shows an EEM that is very similar to the corresponding unaffected EEM (Fig. 

5A). Hence, the emission and excitation profiles were accurately recovered. 

For the concentration mode, the data set 1 PARAFAC scores are proportional to the 

concentrations of fluorophores. As a result the predicted fluorophore concentrations have a 

good agreement with their true concentrations. 

As for data set 2, the scattering produced by Intralipid resulted in an overall increase in 

fluorescence intensity. Despite of some dispersion of predicted concentrations around the linear 

fit, good agreements between the predicted and the true concentration were obtained. The 

maximum prediction MRE was less than 3.5 %. 

As mentioned above, the pure scattering samples (data set 2), at least in the considered range 

of μs values, the TF modulation is limited to scaling by a factor α. In this range, the sample to 

sample TF variations are relatively small. Thus the PARAFAC scores correspond more or less 

to the true PARAFAC scores, increased by a constant factor α.  

The estimated spectral loadings and scores from fitting the four-component PARAFAC model 

to data set 3 are illustrated in Fig. 8. The profiles recovered in the MCR-ALS analysis as well 

as the pure excitation and emission spectra of the analytes are also shown. The PARAFAC and 

MCR-ALS were found to be similar. While no scattering effects were observed, it is clear that 

absorption did introduce spectral distortions in both spectral loadings obtained from data set 3. 

By comparing PARAFAC and MCR-ALS spectral loadings with pure spectra of VitA, VitB6 

and NADH it was determined that only VitB6 (2nd component) was well matched, although 

some differences in the profiles. However, VitA (1st component) and NADH (3rd component) 

did not matched.  
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The recovery of the true spectral profiles from data set 3 using PARAFAC and MCR-ALS 

becomes difficult because the absorption and scattering effects destroy not only the trilinear but 

also the bilinear structure of the data. Therefore, without a prior knowledge, the chemical 

interpretation of the PARAFAC and MCR-ALS loadings is a hard task. Even if the profiles 

look reasonable, the presence of β-carotene avoids VitA and NADH to be identified. In real 

applications, components 1 and 3 might have been identified as other fluorophores.  

The observed spectral deformations are likely due to the modulation by the TF where the β-

carotene absorption characteristic plays clearly a role. The β-carotene absorption peaks produce 

a narrow valley centered at 280 nm (excitation and emission) and a wide valley centered at 450 

nm (emission) in the TF (Fig. 5E). The effects of these valleys can be clearly observed in the 

fluorescence EEM of Fig. 5D. The extended valley along the 450 nm emission line flattens the 

emission spectra of VitA and NADH from 354 nm to 490 nm by including an emission peak 

shift toward higher wavelengths. The narrow valley centered at 280 nm in the TF is responsible 

of the distortion of the excitation spectra between 260 and 380 nm. On the other hand, the 

excitation and emission spectra of VitB6 are less affected because they are located outside the 

β-carotene absorption bands.  

For the concentration mode, there is no correlation between the PARAFAC scores and 

fluorophore concentration vectors. For the 3rd component (NADH) concentrations and 

PARAFAC scores varies in the opposite direction. The MRE in the predicted concentrations 

ranged from 29.6% (1st component, VitA) to 233 % (3rd component, NADH). 

In absorbing and scattering samples, there is a variable reduction of the emitted fluorescence 

that becomes more pronounced with increasing levels of absorption. As mentioned above, the 

absorption parameter μa increases linearly in subsequent samples (data set 3). On the other hand, 

the concentrations of the three fluorophores are random in all the data sets. If the concentration 

of the fluorophore remains constant between two successive samples, the measured 
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fluorescence intensity decreases due to a higher amount of β-carotene. On the other hand, if the 

fluorophore concentration increases, two different effects work in opposite directions: The 

increase of the fluorophore concentration tends to increase the signal intensity while the 

absorption parameter μa of β-carotene tends to decrease the signal. In this case the evolution of 

the fluorescence intensity is unpredictable as it can be seen for NADH (3rd component) in Fig. 

8C. 

Figs. 9 and 10 show the loadings and scores of the four- and five-component models fitted to 

the data set 2, and 3, respectively. For data set 2, the first three components have similar 

loadings and scores as the three components estimated using the three-component model. 

Besides components 1, 2 and 3, a fourth component emerged which had similar excitation and 

emission profiles as component 1. The increase of component 4 is related to the increase of the 

sample index which is probably due to the scattering process which tends to enhance the 

fluorescence signal. 

Fig 10 shows the loadings and scores of the five-component model fitted to data set 3; The five 

component model didn’t improve as much the fitting. Compared to the four-component model, 

the first four components have similar loadings and scores; however, the fifth component has 

no chemical meaning. 

The effects absorption and scattering on fluorescence measurements cannot be eliminated by 

adding more components to the PARAFAC model. This fact clearly indicates that the 

absorption and scattering effects need to be removed from fluorescence data to get an accurate 

estimation of fluorophore excitation and emission spectra. 

7. Conclusions 

Due to the non-bilinear (consequently non-trilinear) structure of the multi-way fluorescence 

data, resolution of the pure component spectral and concentration profiles from mixtures of 
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fluorophores embedded in absorbing and scattering samples cannot be accomplished with the 

use of the current chemometric methodologies using the second order advantage.  

By modeling the excitation and fluorescence light propagation in absorbing and scattering 

media, the measured EEM was related to the intrinsic (bilinear) EEM by means of a transfer 

function (TF). The former is due only to fluorophores and the latter depends upon absorption 

and scattering properties at both excitation and emission wavelengths. 

Based on this theoretical formalism, a series of Monte Carlo simulations were run to generate 

fluorescence EEMs which are qualitatively similar to those observed from biological samples.  

PARAFAC and MCR-ALS decompositions of these EEMs provided deformed and hence non-

reliable component loadings. This demonstrates that the absorption and scattering effects 

destroyed the bilinear (and consequently the trilinear) structure of the data. Furthermore, no 

correlation was found between the true concentrations and the concentrations predicted by 

PARAFAC scores. Simulation results showed also that the pure profiles cannot be recovered 

by adding more components to the model. In order to obtain interpretable component loadings 

and correctly interpret the spectra, it is necessary to disentangle the effects of absorption and 

scattering from the measured fluorescence EEMs. 
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FIGURE CAPTIONS 

Figure 1: A scattering event causes a deflection at angle θ from the original forward trajectory. 

Figure 2: Geometry for the fluorescence model in a turbid medium. Hin represents the 

probability that an excitation photon will reach a thin layer dz, located at depth z below the 

sample surface. Similarly, Hout represents the probability that an isotropically emitted 

fluorescence photon generated in the layer dz will reach the front surface of the sample. 

Figure 3: Schematic illustration of fluorescence excitation and emission process from a turbid 

medium. Solid line represents a path of an excitation photon and the dotted line is a path of 

emission photon. 

Figure 4: Optical properties used in the Monte Carlo simulation: (A) absorption coefficient μa 

of β-carotene, (B) scattering coefficient μs and(C) anisotropy factor g of Intralipid. 

Figure 5: Typical simulated EEMs in different optical environments. (A) clear medium (data 

set 1), (B) purely scattering medium (data set 2) and (D) absorbing and scattering medium (data 

set 3). The EEMs (B) and (D) were obtained from the EEM (A) and the TFs (C) and (E) 

respectively according to Eq.8.  

Figure 6: (A) Excitation spectra and (B) emission spectra recovered with three-component 

PARAFAC (○) and MCR-ALS (□) models fitted to data set 1 together with the pure excitation 

and emission spectra (*). The 1st, 2nd and the 3rd components are assigned to VitA, VitB6 and 

NADH respectively. (C) PARAFAC scores plotted versus the true concentrations. 

Figure 7: (A) Excitation spectra and (B) emission spectra recovered with three-component 

PARAFAC (○) and MCR-ALS (□) models fitted to data set 2 together with the pure excitation 

and emission spectra (*). (C) PARAFAC scores plotted versus the true concentrations. See Fig 

6 for the 1st, 2nd and the 3rd components assignment.  
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Figure 8: (A) Excitation spectra and (B) emission spectra recovered with three-component 

PARAFAC (solid lines) and MCR-ALS (dotted lines) models fitted to data set 3 together with 

the pure excitation and emission spectra (dashed lines). (C) PARAFAC scores plotted versus 

the true concentrations. See Fig 6 for the 1st, 2nd and the 3rd components assignment.  

Figure 9: (A) Excitation spectra and (B) emission spectra recovered with four-component 

PARAFAC model (solid lines) fitted to data set 2 together with the pure excitation and emission 

spectra (dashed lines). (C) PARAFAC scores plotted versus the true concentrations. See Fig 6 

for the 1st, 2nd and the 3rd components assignment.  

Figure 10: (A) Excitation spectra and (B) emission spectra recovered with five-component 

PARAFAC model (solid lines) fitted to data set 2 together with the pure excitation and emission 

spectra (dashed lines). (C) PARAFAC scores plotted versus the true concentrations. See Fig 6 

for the 1st, 2nd and the 3rd components assignment.  

Table 1: Explained variance and CORCONDIA vs the number of components for  PARAFAC 

models of the simulated fluorescence data sets with 1-7 components. 

Table 2: The mean relative error (MRE %) of concentration prediction based on the linear fit. 
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Figure 8 
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Figure 9 
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Figure 10 
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Table 1 

 

 

Components 1 2 3 4 5 6 7 

Data set 1        

Explained variance (%) 95.49 99.75 100.00 100.00 100.00 100.00 95.49 

CORCONDIA (%) 100.00 99.97 100.00 32.26 14.74 6.55 3.08 

Data set 2 
       

Explained variance (%) 95.49 99.76 100.00 100.00 100.00 100.00 100.00 

CORCONDIA (%) 100.00 99.97 100.00 31.70 16.75 7.03 4.21 

Dataset 3 
       

Explained variance (%) 94.67 99.43 99.87 99.98 99.99 99.99 100.00 

CORCONDIA (%) 100.00 99.99 89.76 87.43 19.65 0.41 0.15 
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Table 2 

 

 

Components 1st 2nd 3rd 

Data set 2 
   

MRE (%) 3.30 3.11 2.21 

Dataset 3 
   

RE (%) 29.58 38.04 233.86 

 

 

 

 

 

 


