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Abstract. With the new generation of propeller engines, aircrafts become more prone to
whirl flutter, an aeroelastic instability possibly causing irreversible structural failures. The
prediction of the motion induced aerodynamic loads on the propeller is essential to catch such
kind of instability. Classical theory uses a quasi-steady aerodynamic model to obtain analytically
the dependence of the forces and moments on the movement. This paper proposes to use an
unsteady aerodynamic theory and to take into account the inflow disturbance, to obtain a
more realistic model. This leads to a complex dependency of the aerodynamic loads on the
vibratory frequency, which is bypassed by the use of a rational matrix approximation (RMA) of
the aerodynamic transfer function to obtain a linearized stability problem. Aeroelastic stability
studies are performed on a classical two degrees of freedom (dof) structural model, and on
another one including one more degree of freedom to represent the wing bending. Results
demonstrate a strong dependence of the stability boundaries on the aerodynamic model used,
and highlight the precision and convenience of the method involving a RMA of the aerodynamic
transfer function. Wing flexibility is of importance, as some unconventional stability boundaries
are obtained in comparison to the classical 2-dof model.

1. Introduction
Propeller aircraft engines, and more generally engines with a large rotating part (turboprops,
high bypass ratio turbojets, etc.) are widely used in the industry and are subject to numerous
developments in order to reduce their fuel consumption. In this context, unconventional
architectures such as open rotors appear, and it becomes necessary to consider the influence
of these systems on the aircraft stability in flight. Indeed, the tendency to lengthen the blades
but also the wings on which these propulsion devices are fixed increases their flexibility and
promotes the whirl flutter risk [1]. This phenomenon of aeroelastic instability is characterized
by a divergent spiral movement of the axis of rotation which can lead to the destruction of
the engine. During pre-project design, it is highly convenient to assess the stability of various
propulsive configurations without requiring heavy numerical calculations. Therefore, it is of
first interest to develop analytic aeroelastic models that can simulate with a reasonable level of
precision the whirl flutter instability.

A reference model of whirl flutter is based on the work of Houbolt & Reed [2] who proposed
an analytic expression of the motion induced aerodynamic loads on a rigid blade propeller whose



axis orientation is subject to small perturbations. In their work, the aerodynamic forces and
moments are obtained using the thin airfoil theory with a strip method. In the present study,
this model is combined with the Blade Element Momentum Theory [3] to take into account
the acceleration and rotation of the flow by the propeller. Another more complex aerodynamic
model is used based on Greenberg’s theory [4] combined here again with the Blade Element
Momentum Theory. Whereas the thin airfoil theory supposes that the flow instantly adapts
to the movement of the blades (quasi-steady theory), Greenberg’s theory allows to take into
account a phase lag by modeling the wake unsteady vorticity and non-circulatory effects. Due
to the complex dependency of the aerodynamic loads on the vibratory frequency, a rational
matrix approximation (RMA) of the aerodynamic transfer function is constructed following the
methodology in [5] in order to perform linear stability analyses. This step, which was not
necessary in the work of Houbolt & Reed, leads to the apparition of new state space variables
modeling the dynamics of the flow. These two models of the aerodynamic loads on the propeller
are then coupled with firstly, a classical 2-degrees of freedom (dof) structural model and secondly,
with a more realistic one with 3 dof to take into account a bending wing.

2. Structural models
Two structural models are used in this study to perform aeroelastic stability analyses. The first
one, used by Houbolt & Reed [2], is presented Figure 1. It models a rotor with rigid blades
rotating at speed Ω around a rigid axis connected to the frame by a non-conservative elastic
link with rotational stiffnesses (Kθ, Kψ) and their associated damping coefficients (Cθ, Cψ).
The system has therefore two degrees of freedom, the pitch and yaw angle (θ, ψ), modeling the
movement of a nacelle on a rigid wing. The second one displayed Figure 2 is an improvement
of the previous model, which has been thoroughly studied in the literature, with a vertical
spring/damper system (Kz, Cz) allowing vertical motion. This system models a bending wing
(vertical translation) with a flexibly mounted nacelle (pitch and yaw angle). The structure has
three degrees of freedom which are the vertical translation of the pivot point (uzo), the pitch and
yaw angle (θ, ψ).
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Figure 1: Classical structural model: rigid
wing
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Figure 2: Improved structural model: bending
wing

When there are three blades or more (to avoid periodicity of the rotor’s inertia in the reference
frame), the mass, damping and stiffness matrices are independent of time and are written for
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the improved structural model as:

Mstruct =

 m mLa 0
mLa Iyz +mL2

a 0
0 0 Iyz +mL2

a

 , Cstruct =

 Cz 0 0
0 Cθ −IxΩ
0 IxΩ Cψ

 ,

Kstruct =

 Kz 0 0
0 Kθ 0
0 0 Kψ


where m is the propeller mass, Ix its inertia along its rotation axis, Iyz its transverse inertia and
La the mast length (assumed to be massless). For the classical structural model, the matrices
are obtained by deleting the first column and first line of the ones listed above.

Taking into account the aerodynamic forces and moments, the motion equation can be written
for both structural models as:

Mstructü+Cstructu̇+Kstructu = laero(ü, u̇,u) (1)

where u is the vector containing the degrees of freedom (u = (θ, ψ)T for the classical structural
model and u = (uzo, θ, ψ)

T for the improved one) and laero are the generalized aerodynamic
loads which depends on the dynamics of the system. The next two sections will focus on the
process used to obtain a linearized expression of laero regarding the degrees of freedom of the
system.

3. Quasi-steady aerodynamic model
In order to perform linear stability analyses, a linearized expression of the aerodynamic loads
laero of (1) has to be obtained. Considering a propeller with rigid blades, it can be expressed in
a generic way as a function of the propeller center displacement uc and orientation θc (Figure
3).
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Figure 3: Motion of the propeller center
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Figure 4: Lift & drag on blade section profile
and associated velocities at the 1

4 chord point

Figure 4 presents a blade profile with the associated in-plane uT and out-of-plane uP relative
velocity of the blade section to the airflow. The profile is supposed to be symmetric and with a
thin airfoil approximation the aerodynamic lift, drag and pitching moment are:

fl =
1

2
ρ a c (u2T + u2P ) (γ − ϕ) (2)

fd =
1

2
ρ cCd (u

2
T + u2P ) (3)

m1/4 = 0 (4)
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where ρ is the air density, a the static lift coefficient curve slope at the origin, c the chord of
the profile, γ the pitch angle, ϕ the inflow angle and Cd the drag coefficient. The coefficient a
used here is equal to the ideal lift coefficient curve slope (2π) multiplied by a correction factor
taken from [2] to include flow compressibility and finite blade length effects. Even though the
thin airfoil theory is designed for steady flow, it will lead here to unsteady aerodynamic forces
and moments as the velocities uT and uP evolve as a function of the propeller center motion.
It is the reason behind the name ”quasi-steady aerodynamic model”. In order to obtain a
linear expression of the loads, the blade section apparent velocities are perturbed around their
steady state values - uT = u0T + u′T and uP = u0P + u′P - and the expression of lift and drag
are linearized for small disturbed velocities. Then, these disturbed velocities u′T and u′P are
expressed as a function of uc and θc which gives the expression of the force on a blade profile
in the rotating frame depending on the propeller center motion. The benefits of expressing
the aerodynamic loads in terms of the propeller center degree of freedom is that it can be
used with any structural model, as long as uc and θc can be linked to the degrees of freedom
of the structure. By integrating along blade span and summing for all blades, the resulting
aerodynamic force and moment on the propeller center in the reference frame can be written:

fc = Mfθ θc +Mfdu u̇c +Mfdθ θ̇c + fstat (5)

mc = Mmθ θc +Mmdu u̇c +Mmdθ θ̇c +mstat (6)

There is no dependency on uc because the flow is supposed translationally invariant. The
vectors fstat and mstat represent the thrust and the aerodynamic moment when the propeller is
fixed in its initial position. The other matrices characterize the dependency of the aerodynamic
force and moment on the propeller motion. All the geometric characteristics of the propeller
(number of blades, evolution of chord and blade pitch angle with the radius etc.) are taken
into account in these matrices. It is important to note that the steady state values u0T and u0P
include modeling of the disturbed inflow which is created when the propeller generates thrust.
Indeed, in this situation the flow is accelerated and put in rotation to satisfy the conservation of
momentum. This phenomenon is modeled with the Blade Element Momentum Theory [3]: the
current tube passing through the propeller is discretized into rings of different radius on which
balance of linear and angular momentum are performed in order to obtain the induced velocities
“seen” by the blade profiles. It leads to the apparition of two corrective functions Va(r) and
Vt(r) in the expression of the steady state velocities u0T = Ωr − Vt(r) and u

0
P = V∞ + Va(r).

The reference modeling of Houbolt & Reed [2] considers a ”windmilling” propeller with a
blade pitch angle γ chosen so that no thrust is generated when the propeller is in its reference
position (meaning fstat = 0 and mstat = 0 ). They develop a method for obtaining the
aerodynamic loads on the propeller when no drag and no forward translation uxc and roll θxc
of the propeller center are considered, as well as no modeling of the inflow perturbation since
the propeller generates no steady thrust. When these assumptions are made, Houbolt & Reed’s
expressions of the aerodynamic loads on the propeller are recovered with the aerodynamic model
presented herein.

To obtain the expression of laero in (1), the virtual work of the aerodynamic loads is calculated
as a function of the vector containing the degrees of freedom: u = (θ, ψ)T for the classical
structural model or u = (uzo, θ, ψ)

T for the improved one. For propeller with three blades
or more, time dependent terms compensate each other and the following constant coefficient
equation is obtained:

Mstructü+Cstructu̇+Kstructu = −Caerou̇−Kaerou (7)

The matrices Caero and Kaero highlight added damping and added stiffness effects induced
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by the aerodynamic forces and moments. The system can be transformed in state-space format:

Bẏ = Ay (8)

with y =

(
u
u̇

)
, B =

(
Kstruct +Kaero 0

0 Mstruct +Maero

)

A =

(
0 Kstruct +Kaero

−Kstruct −Kaero −Cstruct −Caero

)
The analysis of stability comes down to the study of the generalized eigenvalue system

Aŷ = λBŷ with y = ŷeλt. The system is stable if all the eigenvalues have a negative real
part and becomes unstable if one of the eigenvalues has a strictly positive real part.

4. Unsteady aerodynamic model
The previous quasi-steady aerodynamic model supposes that the flow, and thus the loads,
instantly adapt to the movement of the blade profile. In reality, a phase shift can appear between
the aerodynamic loads and the profile displacement due to wake memory effects. Theodorsen
developed a theory for harmonic motion to take into account this phenomenon, as well as non-
circulatory effects, by introducing the lift deficiency function defined in the complex plane [6].
Using its extension by Greenberg to tackle the time dependency of the incoming velocity and
the constant part of the incidence angle [4], the following expression of lift and pitching moment
about the 1

4 chord point are obtained:

fl = π ρ
c2

4

(
−u̇P cos(γ) + u̇T sin(γ) +

c

4
ε̇
)
+

1

2
ρ a c uℜ

{
(γ − ϕ0)u0 + C(k)

[
[(γ − ϕ)u]′˜ +

c

2
ε̃
]}
(9)

m1/4 = −π ρ c
( c
4

)2
[
cos(γ)(uT ε− u̇P ) + sin(γ)(uP ε+ u̇T ) +

3c

8
ε̇

]
(10)

where ∼ denotes the complex harmonic expression (the physical value of a function is obtained
by taking the real part ℜ{} of its complex expression), ε is the angular velocity of the blade
section in the rotating frame and C(k) the lift deficiency function which depends on the reduced
frequency k = ωc

2
√
u0P

2
+u0T

2
, ω being the pulsation of uT , uP and ε. This function is defined by

C(k) =
H

(2)
1 (k)

H
(2)
1 (k)+iH

(2)
0 (k)

where H
(2)
n is the nth order Hankel function of the second kind. Drag is

still given by (3).
These expressions of the aerodynamic loads are much more complex than the ones given

by the quasi-steady model. The thin airfoil theory used in the previous section can be seen
as an approximation of Greenberg’s theory when the angular velocity ε is taken equal to zero,
when the lift deficiency function is equal to one and when the added mass terms are neglected.
When the full expression of the force and moment is considered, a non-linear dependency on
the pulsation ω of the blade profile apparent motion in the rotating frame appears due to the
lift deficiency function. Because of this cumbersome dependence two methods are used to solve
the stability problem.
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4.1. Non-linear solution of the stability problem: pk-method
The first way consists in solving non-linearly the stability problem with the classical pk-method
[7]. By conducting the same approach as in the previous section (linearization for small disturbed
velocities, integration along blade span and summation over blades), it is possible to obtain the
state space equation. However, as the pulsation ω in the lift deficiency function is linked to
the vibratory pulsation, the state space matrices depend on the imaginary part of the sought
eigenvalues (noted λI) and a non-linear stability problem of the following form appears:

A(λI)ŷ = λB(λI)ŷ (11)

The pk-method solves this problem iteratively. An initial value of λI is chosen, usually the
windless pulsation of the structural mode in consideration, which allows to find the eigenvalue
λ of (11) via a linear analysis. The imaginary part of this newly found λ is then reinjected in
(11) as λI and a new eigenvalue analysis is performed. This iterative procedure stops when no
significant change is observed between the two successive eigenvalues imaginary parts. Although
this method is well-known, convergence problems can occur and it can be expensive in computing
time to obtain a full stability graph (see section 5), especially when many degrees of freedom
are considered. Moreover, it requires a mode-tracking algorithm during the iteration procedure
to consider the correct mode during the iteration process.

4.2. Linearized solution of the stability problem: Rational Matrix Approximation
To avoid these drawbacks and deal with a linear stability analysis, another method consists
in constructing a rational matrix approximation (RMA) of the transfer function between the
displacement of the propeller center and the aerodynamic loads following the methodology
presented by Morino et al. [5]. This approach is further detailed by Gennaretti & Greco for
rotary-wings [8] and an application to whirl flutter is conducted in [9]. In the aforementioned
paper, multiple whirl flutter stability analyses are conducted on the classical structural model
(Figure 1) using Greenberg’s theory to obtain the aerodynamic loads on the propeller. The
unsteady aerodynamic model developed herein is similar to the one developed in [9], but adds
a modeling of the inflow with the Blade Element Momentum Theory. First, the velocities
uT and uP are perturbed around their steady state values and the aerodynamic loads are
linearized for small disturbed velocities. The perturbed velocity values are then expressed
regarding the disturbed apparent velocity of the propeller center in the rotating frame ν =
(ν1, ν2, ν3, ω1, ω2, ω3)

T . The expression of the force and moment on a blade profile as a function
of ν is obtained which leads, after integration along blade span, to the apparition in the complex
domain of a 6x6 transfer matrix E(s) relating the force and moment in the rotating frame exerted
on a blade to the apparent velocity ν:

l̃naero =

(
f̃n
m̃n

)
= E(s)ν̃ + l̃nstat (12)

where s = iω is the complex pulsation. In the quasi-steady model the matrix E(s) is constant,
whereas it has here a non-linear dependence on s because of the lift deficiency function. To
obtain a linear stability problem, the matrix E(s) is approximated under the following form:

E(s) ≈ Ê(s) = sA1 +A0 +C(sI−A)−1B (13)

whereA1 andA0 are 6x6 matrices, C is a 6xNa matrix,A aNaxNa matrix andB aNax6 matrix,
Na being the number of poles introduced in the approximation. Details of this process are given
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in Appendix. Casting (12) in time domain leads to the following finite state formulation:

lnaero = A1ν̇ +A0ν +Cr + lnstat (14)

ṙ = Ar +Bν (15)

The vector r contains the additional ”aerodynamic” state variables included in the
approximation. They can be seen as additional degrees of freedom characterizing the flow’s
own dynamics, expressed through the lift deficiency function. The rotating frame disturbed
apparent velocity of the propeller center ν can be linked to the displacement of the propeller
center in the reference frame through the following relationship:

ν = K1

(
u̇c

θ̇c

)
+K0

(
uc

θc

)
(16)

By means of equations (14)(15)(16) and after summation for all blades, the virtual work
of the aerodynamic loads is calculated and the motion equation in the reference frame can be
obtained:

Mstructü+Cstructu̇+Kstructu = −Maeroü−Caerou̇−Kaerou+Ctrt (17)

ṙt = Atrt +Btu+Dtu̇ (18)

In opposition to (7), the motion equation is now dependent on the aerodynamic state vector
rt that gathers the fluid state variables of all the blades. Flow added mass effects are taken into
account through the matrix Maero. It is important to note that Greenberg’s theory is designed
only for harmonic motion. Therefore, the motion equation is not valid for damped or amplified
motion but it is not a problem for the calculation of stability boundaries as vibrations are purely
harmonic at the flutter point (neither amplified nor damped). The system is then transformed
into state space format: ü

u̇
ṙt

 =

 −M−1C −M−1K M−1Ct

I 0 0
Dt Bt At

 u̇
u
rt

 (19)

with M = Mstruct +Maero, C = Cstruct +Caero and K = Kstruct +Kaero.
The terms Dt, Bt and Ct introduce periodic terms in (19). Instead of the direct eigenvalue

analysis of section 3, a Floquet analysis is performed here to estimate the stability of the
aeroelastic system [10].

5. Numerical results
Various numerical studies are conducted in order to assess the influence of the different structural
and aerodynamic models. At first, the classical 2-dof structural model of Figure 1 is examined.
In a second part, the behavior of the 3-dof structure of Figure 2 is analyzed.

5.1. 2-dof classical structural model: rigid wing
In this part, the model parameters are taken from [11]. Stability analyses with regards to the
mounting stiffnesses are very common in the study of whirl flutter. Indeed, the flexibility of the
connection between the engine pylon and the wing is a key parameter for the stability of the
system. Figure 5 represents the stability boundary as a function of Kθ and Kψ, obtained with
the quasi-steady aerodynamic model. The blue area corresponds to the whirl flutter instability
(eigenvalue with a positive real part and a non-zero imaginary part), with a backward divergent
precessional motion of the propeller center. The red area is associated to a static divergence
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instability (eigenvalue with a positive real part and an imaginary part equal to zero) i.e. a
divergent motion without any oscillations. It can be seen that decreasing the mounting stiffnesses
favors the instability. The case where the two stiffnesses are equal is the most unfavorable since
the stiffnesses required to obtain a stable system are the largest in this configuration. Due to
the flow compressibility and finite blade length correction factors, the graph Figure 5 is slightly
different than the one obtained by Mair et al [11] but if these coefficients are not taken into
account, results become equivalent.

Figure 5: Stability boundaries (quasi-steady
aerodynamic model)
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The previous results were obtained with the quasi-steady aerodynamic model. As explained
in Section 4, this theory does not model the wake unsteady vorticity as well as non-circulatory
effects. Greenberg’s theory, used here in the so called unsteady aerodynamic model, takes into
account these effects and will now be employed to obtain the stability graphs. The main novelty
is that it uses the lift deficiency function which provokes a phase lag between the movement
of the system and the aerodynamic loads. Figure 6 shows the magnitude and phase of this
function depending on the reduced frequency k. The value of the lift deficiency function in
the quasi-steady model is also shown (C(k) = 1), as it introduces no phase lag and no drop
in the magnitude of the aerodynamic force. In the unsteady aerodynamic model, variations
of the reduced frequency are taken into account and the magnitude and phase of the function
change which leads to a complex frequency behavior of the aerodynamic load. To catch this
non-trivial behavior, the rational matrix approximation of Section 4.2 is used. Before performing
any aeroelastic analyses, the precision of this approximation must be assessed. Figure 7 presents
the evolution of the imaginary part of the coefficient E33 of the exact and approximated transfer
matrices (results are obtained with 14 poles in (13)). This coefficient is chosen because it is
the one with the most error with respect to the exact transfer function. Nevertheless, the
precision is largely satisfactory which validates the effectiveness of the RMA. The precision of
the approximation on the other ones is better than it is here, and is not shown for the sake of
conciseness.

The quality of the rational matrix approximation being validated, it is now possible to
obtain the stability boundaries of the classical structural model with the unsteady aerodynamic
model. Figure 8 compares this stability boundary with the one obtained with the quasi-steady
aerodynamic model. The boundary obtained with the pk-method is also shown for validation.
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The stability frontier obtained with the RMA and the pk-method are really close which validates
the methodology using the RMA. The advantage of this approach is that once the approximation
of (13) is performed, the entire stability graph can be computed with linear eigenvalue analyses.
With the pk-method, an iterative algorithm must be used for each operating point (pair of
Kθ and Kψ) and for each mode of the structure in order to obtain the modal damping. This
can be costly in computational time, especially when convergence problems are encountered
or for structures with more degrees of freedom (and therefore more modes). In comparison to
the quasi-steady theory, the unsteady model leads to a reduced unstable area, and thus to more
stable results. The static divergence boundaries coincide in the two models. The results given by
the simplest model (quasi-steady aerodynamic model) proves here to be conservative. However,
the sensibility of the results to the aerodynamic theory used is significant and clearly justify the
need of precise aerodynamic models to properly study whirl flutter.
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Figure 8: Stability boundaries: quasi-steady vs
unsteady aerodynamic model

5.2. 3-dof structural model: pure bending wing
The improved structural model introduces a vertical spring/damper system representing the
bending of the wing on which the propeller is fixed (Figure 2). As in the previous section,
stability analyses regarding the mounting stiffnesses Kψ and Kθ are carried out. All the model
parameters are still taken from [11], except for Kz and Cz which are chosen here arbitrarily
since the authors used the model of Figure 1. Four values of vertical stiffnesses are retained -
Kz = {0.2, 0.4, 5, 1000} N.m−1 - as they allow to have an overview of the system behavior, and
no vertical structural damping is considered (Cz = 0 N.m−1.s). The resulting stability analyses
obtained with the quasi-steady and unsteady aerodynamic model are presented in Figure 9.

Starting from a low Kz value (Figure 9a), it can be seen that unlike the classical structural
model, the system presents here a whirl flutter instability area that has an asymmetric shape.
It is due to the vertical spring that introduces an additional degree of freedom which breaks
the symmetry of the aerodynamic matrices in (7), (17) and (18). If the same spring was added

along the Y⃗ axis, a symmetric graph would be obtained. As in Figure 5, two unstable areas
correspond to a static divergence of the system when one of the mounting stiffnesses is too
low. The effect of the spring along the vertical axis leads to the apparition of two peninsular
zones characterized by a renewed stability. For the quasi-steady aerodynamic model, the black
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(a) Kz = 0.2 N.m−1 (b) Kz = 0.4 N.m−1

(c) Kz = 5 N.m−1 (d) Kz = 1000 N.m−1

Figure 9: Stability frontiers for the improved structural model

points on the stability boundary represent coalescence between the frequency of the unstable
aeroelastic whirl mode and the frequency of the vertical spring structural mode (characterized

by its uncoupled pulsation ωz =
√

Kz
m ). It can be seen that these two points are located near the

constricted part of the unstable area. Therefore, the authors of [12] consider that the vertical
spring acts locally as a tuned mass damper, concentrating and dissipating energy from the whirl
mode leading to instability. When the vertical stiffness is increased to 0.4 N.m−1 (Figure 9b),
the virtual tuned mass damper extracts enough energy to create a strip of stability isolating an
”island” of instability. This unfamiliar comportment attests of the complex behavior that can be
introduced when considering more flexible structures than the classical two-degrees-of-freedom
model. Eventually, this island disappears when the stiffness is increased to 5 N.m−1 (Figure 9c),
but the whirl flutter instability area is still flattened by the tuned mass damper effect. When Kz

is taken high enough (Figure 9d), the system has very few vertical displacement and acts as the
classical 2-dof structural model with a stability graph similar to the one of Figure 8. Overall,
the influence of the vertical spring is stabilizing as the unstable area is reduced for every choice
of Kz values with respect to the 2-dof structural model (Figure 8). Also, results obtained with
the unsteady aerodynamic model are globally more stable than those given by the quasi-steady
model.
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6. Conclusion
This paper proposed to study whirl flutter with two aerodynamic models. The first one,
widely used in the literature, is based on the thin airfoil theory to model the motion induced
aerodynamic loads on the propeller (quasi-steady model). The second one, more complex, uses
Greenberg’s theory which leads to an intricate dependency of the aerodynamic loads on the
vibratory frequency (unsteady model). To avoid dealing with a computationally costly non-
linear stability problem (solved with the pk-method), a rational matrix approximation (RMA)
of the aerodynamic transfer matrix is constructed which introduces novel aerodynamic state
variables that models the flow’s own dynamics. Both models are coupled with the Blade
Element Momentum Theory to take into account disturbed inflow effects. Stability analyses
are performed on two structural models, with respectively two and three degrees of freedom.
In comparison to the quasi-steady model, the unsteady aerodynamic model gives more stable
results. For the unsteady aerodynamic model, results obtained with the RMA show consistency
with the pk-method, and testify of the advantages of this technique which leads to a linear cost-
effective stability problem. The 3-dof structural model presents a complex stability behavior.
Even though only one degree of freedom is added, stability frontiers are much more sophisticated
than the classical structural model and ”islands” of instability are observed for certain stiffnesses
combinations. It highlights the need to take into account the whole structure when whirl flutter
stability analyses are performed.

Results presented in this paper dealt with a rigid blade propeller on structural models with
few degrees of freedom. The use of full finite element models of the nacelle/wing system is
already functional and will be investigated in future works. Blade flexibility will also be taken
into account to see its influence on the stability boundaries. From an aerodynamic perspective,
other unsteady models will be considered since the methodology used in this paper to build
a rational matrix approximation of the aerodynamic transfer function is generic and can be
applied with almost no limitation to any aerodynamic theory.
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Appendix
The approximation process of (13), presented in [5], is carried out in three steps.

Step 1: The exact transfer function E(s) is evaluated numerically on a finite number of
complex pulsations [iω1, ..., iωNf ] and an order M is chosen to solve the linear least-square
problem:

E(s) ≈ Ê(s) = sA1 +A0 + (IsM +
M−1∑
i=0

Dis
i)−1(

M−1∑
i=0

Ris
i) (A.1)

This allow to find the matricesA1, A0, Di andRi that minimizes the error on the approximation
of E(s) with Ê(s). (A.1) is then re-written under the following form:

E(s) ≈ Ê(s) = sA1 +A0 +C(sI−A)−1B (A.2)

with C = (I 0 . . .0), A =


−DM−1 I 0

...
. . .

−D1 0 I
−D0 0 0

 and B =

 RM−1
...

R0

.

Step 2: The previous step leads to a good fit of the approximated transfer matrix Ê with
the exact transfer matrix E. However, the least-square process can lead to the apparition of

11



spurious unstable poles in the transfer function. These poles are purely numerical and do not
have physical meaning since the fluid-only system is always stable and the aerodynamic loads
on the propeller cannot diverge for small velocities of the propeller hub. If taken into account,
it would lead to fallacious stability analyses on the complete aeroelastic system. To avoid this
problem, the unstable poles are truncated (eigenvalues of A with a positive real part) and the
matrices C, A and B are reduced according to this truncation.

Step 3: With the truncation of the unstable poles, the precision of the approximation is
inevitably degraded. The fit can be further improved by solving successive linear least-square
problems to find the new matrices A1, A0, C and B while keeping the matrix A constant to
guaranty a stable system. In the end, the approximation of (13) is obtained, which contains
only stable poles and has an appropriate level of fidelity with the exact transfer function.
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