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Abstract. With the new generation of propeller engines, aircrafts become more prone to
whirl flutter, an aeroelastic instability possibly causing irreversible structural failures. The
prediction of the motion induced aerodynamic force on the propeller is essential to catch such
kind of instability. Classical theory uses a quasi-steady aerodynamic model to obtain analytically
the dependence of the forces and moments on the movement. This paper proposes to use an
unsteady aerodynamic theory and to take into account the inflow disturbance, to obtain a
more realistic model. This leads to a complex dependency of the aerodynamic loads on the
vibratory frequency, which is bypassed by the use of a rational matrix approximation (RMA) of
the aerodynamic transfer function to obtain a linearized stability problem. Aeroelastic stability
studies are performed on a classical two degrees of freedom structural model, and on another
one including one more degree of freedom to represent the wing bending. Results demonstrate
a strong dependence of the stability boundaries on the aerodynamic model used, and highlight
the precision and convenience of the method involving a rational matrix approximation of
the aerodynamic transfer function. Wing flexibility is of importance, as some unconventional
stability boundaries are obtained in comparison to the classical 2-dof model.

1. Introduction
Propeller aircraft engines, and more generally engines with a large rotating part (turboprops,
high bypass ratio turbojets, etc.) are widely used in the industry and are subject to numerous
developments in order to reduce their fuel consumption. In this context, unconventional
architectures such as open rotors appear, and it becomes necessary to consider the influence
of these systems on the aircraft stability in flight. Indeed, the tendency to lengthen the blades
but also the wings on which these propulsion devices are fixed increases their flexibility and
promotes the whirl flutter risk [1]. This phenomenon of aeroelastic instability is characterized
by a divergent spiral movement of the axis of rotation which can lead to the destruction of
the engine. During pre-project design, it is highly convenient to assess the stability of various
propulsive configuration without requiring heavy numerical calculations. Therefore, it is of
first interest to develop analytic aeroelastic models that can simulate with a reasonable level of
precision the whirl flutter instability.

A reference model of whirl flutter is based on the work of Houbolt & Reed [2] who proposed
an analytic expression of the motion induced aerodynamic loads on a rigid blade propeller whose



axis orientation is subject to small perturbations. In their work, the aerodynamic forces and
moments are obtained using the thin airfoil theory with a strip method. In the present study, this
model is combined with the Blade Element Momentum Theory [3] to model the acceleration and
rotation of the flow by the propeller. Another more complex aerodynamic model is used based
on Theodorsen’s theory [4] combined here again with the Blade Element Momentum Theory.
Whereas the thin airfoil theory supposes that the flow instantly adapts to the movement of the
blades (quasi-steady theory), Theodorsen’s theory allows to take into account a phase lag by
modeling the wake unsteady vorticity and added mass effects. Due to the complex dependency
of the aerodynamic loads on the vibratory frequency, a rational matrix approximation of the
aerodynamic transfer function is constructed following the methodology in [5] in order to perform
linear stability analysis. This step, which was not necessary in the work of Houbolt & Reed,
leads to the apparition of new state space variables modeling the dynamics of the flow. These
two models of the aerodynamic loads on the propeller are then coupled with firstly, a classical
2-degrees of freedom structural model and secondly, with a more realistic one with 3 degrees of
freedom to take into account a bending wing.

2. Structural models
Two structural models are used in this study to perform aeroelastic stability analysis. The first
one, used by Houbolt & Reed [2], is presented Figure 1. It models a rotor with rigid blades
rotating at speed Ω around a rigid axis connected to the frame by a non-conservative elastic
link with rotational stiffnesses (Kθ, Kψ) and their associated damping coefficients (Cθ, Cψ).
The system has therefore two degrees of freedom, the pitch and yaw angle (θ, ψ), modeling the
movement of a nacelle on a rigid wing. The second one displayed Figure 2 is an improvement
of the previous model, which has been thoroughly studied in the literature, with a vertical
spring/damper system (Kz, Cz) allowing vertical motion. This system models a bending wing
(vertical translation) with a flexibly mounted nacelle (pitch and yaw angle). The structure has
three degrees of freedom which are the vertical translation of the pivot point (uzo), the pitch and
yaw angle (θ, ψ).
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Figure 1: Classical structural model: rigid
wing
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Figure 2: Improved structural model: bending
wing

When there are three blades or more (to avoid periodicity of the rotor’s inertia in the reference
frame), the mass, damping and stiffness matrices are independent of time and are written for



the improved structural model as:

Mstruct =

 m 0 0
0 Iyz +mL2

a 0
0 0 Iyz +mL2

a

 , Cstruct =

 Cz 0 0
0 Cθ −IxΩ
0 IxΩ Cψ

 ,

Kstruct =

 Kz 0 0
0 Kθ 0
0 0 Kψ


where m is the propeller mass, Ix its inertia along its rotation axis, Iyz its transverse inertia and
La the mast length. For the classical structural model, the matrices are obtained by deleting
the first column and first line of the ones listed above.

Taking into account the aerodynamic forces and moments, the motion equation can be written
for both structural models as:

Mstructü+Cstructu̇+Kstructu = laero(ü, u̇,u) (1)

where u is the vector containing the degrees of freedom (u = (θ, ψ)T for the classical
structural model and u = (uzo, θ, ψ)

T for the improved one) and laero is the external
aerodynamic load applied on the propeller which depends on the dynamics of the system.
The next two sections will focus on the process used to obtain a linearized expression of laero
regarding the degrees of freedom of the system.

3. Quasi-steady aerodynamic model
In order to perform linear stability analysis, a linearized expression of the aerodynamic loads
laero of (1) has to be obtained. Considering a propeller with rigid blades, it can be expressed in
a generic way as a function of the propeller center displacement uc and orientation θc (Figure
3).
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Figure 3: Motion of the propeller center
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Figure 4: Lift & drag on blade section profile
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Figure 4 presents a blade profile with the associated in-plane uT and out-of-plane uP relative
velocity of the blade section to the airflow. With a thin airfoil approximation, the aerodynamic
pitching moment about the quarter chord is equal to zero since the profile is considered
symmetric. Therefore, the aerodynamic lift, drag and pitching moment are:

fl =
1

2
ρ a c (u2T + u2P ) (γ − ϕ) (2)

fd =
1

2
ρ cCd (u

2
T + u2P ) (3)

m1/4 = 0 (4)



where ρ is the air density, a the static lift coefficient curve slope at the origin, c the chord of
the profile, γ the pitch angle, ϕ the inflow angle and Cd the drag coefficient. The coefficient a
used here is equal to the ideal lift curve slope (2π) multiplied by a correction factor taken from
[2] to include flow compressibility and finite blade length effects. The thin airfoil theory is a
quasi-steady theory since it supposes that the lift and drag force get instantly their stationary
values, but it will leads here to unsteady aerodynamic forces and moments as the velocities uT
and uP evolve as a function of the propeller center motion. In order to obtain a linear expression
of the loads, the blade section apparent velocities are perturbed around their steady state values
- uT = u0T + u′T and uP = u0P + u′P - and the expression of lift and drag are linearized for small
disturbed velocities. Then, these disturbed velocities u′T and u′P are expressed as a function
of uc and θc which gives the expression of the force on a blade profile in the rotating frame
depending on the propeller center motion. By integrating along blade span and summing for
all blades, the resulting aerodynamic force and moment on the propeller center in the reference
frame can be written:

fc = Mfθ θc +Mfdu u̇c +Mfdθ θ̇c + fstat (5)

mc = Mmθ θc +Mmdu u̇c +Mmdθ θ̇c +mstat (6)

There is no dependency on uc because the flow is supposed translationally invariant. The
vectors fstat and mstat represent the thrust and the aerodynamic moment when the propeller is
fixed in its initial position. The other matrices characterize the dependency of the aerodynamic
force and moment on the propeller motion. All the geometric characteristics of the propeller
(number of blades, evolution of chord and pitch angle with the radius etc.) are taken into
account in these matrices. It is important to note that the steady state values u0T and u0P
include modeling of the disturbed inflow which is created when the propeller generates thrust.
Indeed, in this situation the flow is accelerated and put in rotation to satisfy the conservation of
momentum. This phenomenon is modeled with the Blade Element Momentum Theory [3]: the
current tube passing through the propeller is discretized into rings of different radius on which
balance of linear and angular momentum are performed in order to obtain the induced velocities
“seen” by the blade profiles. It leads to the apparition of two corrective function Va(r) and Vt(r)
in the expression of the steady state velocities u0P = Ωr − Vt(r) and u0T = V∞ + Va(r). The
benefits of expressing the aerodynamic loads in terms of the propeller center degree of freedom
is that it can be used with any structural model, as long as uc and θc can be linked to the
degrees of freedom of the structure.

The reference modeling of Houbolt & Reed [2] considers a ”windmilling” propeller with a
blade pitch angle γ chosen so that no thrust is generated when the propeller is in its reference
position (meaning fstat = 0 and mstat = 0 ). They develop a method for obtaining the
aerodynamic loads on the propeller when no forward translation uxc and roll θxc of the propeller
center are considered, as well as no modeling of the perturbation of the inflow since the propeller
generates no steady thrust. When these assumptions are made, Houbolt & Reed’s expressions
of the aerodynamic loads on the propeller are recovered with the aerodynamic model presented
herein.

To obtain the expression of laero in (1), the aerodynamic loads must be expressed at point O
and as a function of the vector containing the degrees of freedom: u = (θ, ψ)T for the classical
structural model or u = (uzo, θ, ψ)

T for the improved one. For propeller with three blades
or more, time dependent terms compensate each other and the following constant coefficient
equation is obtained:

Mstructü+Cstructu̇+Kstructu = −Caerou̇−Kaerou+ lstat (7)

The matrices Caero and Kaero highlight added damping and added stiffness effects induced
by the aerodynamic forces and moments. We suppose that prestress effects due to the initial



aerodynamic loads are negligible (lstat = 0 ) and the system is transformed in state-space format:

Bẏ = Ay (8)

with y =

(
u
u̇

)
, B =

(
Kstruct +Kaero 0

0 Mstruct +Maero

)

A =

(
0 Kstruct +Kaero

−Kstruct −Kaero −Cstruct −Caero

)
The analysis of stability comes down to the study of the generalized eigenvalue system

Aŷ = λBŷ with y = ŷeλt. The system is stable if all the eigenvalues have a negative real
part and becomes unstable if one of the eigenvalues has a strictly positive real part.

4. Unsteady aerodynamic model
The previous quasi-steady aerodynamic model supposes that the flow, and thus the loads,
instantly adapt to the movement of the blade profile. In reality, a phase shift can appear between
the aerodynamic loads and the profile displacement due to wake memory effects. Theodorsen
developed a theory for harmonic motion to tackle this phenomenon by introducing the lift
deficiency function defined in the complex plane, as well as added mass effects [4]. It leads to the
following expression of lift and pitching moment about the 1

4 chord point in the complex domain
(physical lift and moment are obtained by taking the real part of their complex expressions):

f̃l = π ρ c
c

4

(
−u̇P cos(γ) + u̇T sin(γ) +

c

4
ε̇
)
+

1

2
ρ a cC(k)

[
(u2T + u2P )(γ − ϕ) +

√
u2T + u2P

c

2
ε

]
(9)

m̃1/4 = −π ρ c
( c
4

)2
[
cos(γ)(uT ε− u̇P ) + sin(γ)(uP ε+ u̇T ) +

3c

8
ε̇

]
(10)

where ε is the angular velocity of the blade section in the rotating frame and C(k) the
lift deficiency function which depends on the reduced pulsation k = ωc

2
√
u0P

2
+u0T

2
, ω being the

pulsation of uT , uP and ε. Drag is still given by (3).
These expressions of the aerodynamic loads are much more complex than the one given by

the quasi-steady model. The thin airfoil theory used in the previous section can be seen as an
approximation of the Theodorsen theory when the non-circulatory terms are neglected (terms
independent of C(k)), when the angular velocity ε is taken equal to zero and when the lift
deficiency function is equal to one. It is important to note that Theodorsen’s expression of the
lift deficiency function is used meaning effects of the returning wake (considered in Loewy’s
expression of the lift deficiency function [6]) are supposed negligible. As mentioned in [7], this
hypothesis seems appropriate for the high advance ratio considered in the present study (defined
by the expression V∞

ΩR where R is the radius of the blade). The lift deficiency function causes an
intricate dependency of the loads on the pulsation ω of the blade profile apparent motion in the
rotating frame. Due to this cumbersome dependence two methods are used to solve the stability
problem.



4.1. Non-linear solution of the stability problem: pk-method
The first way consists in solving non-linearly the stability problem with the classical pk-method
[8]. By conducting the same approach as in the previous section (linearization for small disturbed
velocities, integration along blade span and summation over blades), it is possible to obtain the
state space equation. However, as the pulsation ω in the lift deficiency function is linked to
the vibratory pulsation, the state space matrices depend on the imaginary part of the sought
eigenvalue (noted λI) and a non-linear stability problem of the following form appears:

A(λI)ŷ = λB(λI)ŷ (11)

The pk-method solves this problem iteratively. An initial value of λI is chosen, usually the
windless pulsation of the structural mode in consideration, which allows to find the eigenvalue
λ of (11) via a linear analysis. The imaginary part of this newly found λ is then reinjected in
(11) as λI and a new eigenvalue analysis is performed. This iterative procedure stops when no
significant change is observed between the two successive eigenvalues imaginary parts. Although
this method is well-known, it can be expensive in computing time to obtain a full stability graph
(see section 5), especially when many degrees of freedom are considered, and requires a mode-
tracking algorithm during the iteration procedure.

4.2. Linearized solution of the stability problem: Rational Matrix Approximation
To avoid these drawbacks and deal with a linear stability analysis, another method consists
in constructing a rational matrix approximation (RMA) of the transfer function between the
displacement of the propeller center and the aerodynamic loads following the methodology
presented by Morino et al. [5]. This approach is further detailed by Gennaretti & Greco for
rotary-wings [9] and an application to whirl flutter is conducted in [7]. In the aforementioned
paper, multiple whirl flutter stability analysis are conducted on the classical structural model
(Figure 1) using Theodorsen’s theory to obtain the aerodynamic loads on the propeller.
The unsteady aerodynamic model developed herein is similar to the one developed in [7],
but adds a modeling of the inflow with the Blade Element Momentum Theory. First, the
velocities uT and uP are perturbed around their steady state values and the aerodynamic
loads are linearized for small disturbed velocities. The perturbed velocity values are then
expressed regarding the disturbed apparent velocity of the propeller center in the rotating frame
ν = (ν1, ν2, ν3, ω1, ω2, ω3)

T . The expression of force and moment on a blade profile as a
function of ν is obtained which leads, after integration along blade span, to the apparition of
a 6x6 transfer matrix E(s) relating the force and moment in the rotating frame exerted on a
blade to the apparent velocity ν:

l̃naero =

(
f̃n
m̃n

)
= E(s)ν̃ + l̃nstat (12)

where s is the complex pulsation. In the quasi-steady model the matrix E(s) is constant,
whereas it has here a complicated dependence on s because of the lift deficiency function. To
obtain a linear stability problem, the matrix E(s) is approximated under the following form:

E(s) ≈ Ê(s) = sA1 +A0 +C(sI−A)−1B (13)

where A1 and A0 are 6x6 matrices, C is a 6xNa matrix, A a NaxNa matrix and B a
Nax6 matrix, Na being the number of poles introduced in the approximation. Details of this
process are given in Appendix. Casting (12) in time domain leads to the following finite state



formulation:

lnaero = A1ν̇ +A0ν +Cr + lnstat (14)

ṙ = Ar +Bν (15)

The vector r contains the additional ”aerodynamic” state variables included in the
approximation. They can be seen as additional degrees of freedom characterizing the flow’s
own dynamics, expressed through the lift deficiency function. The rotating frame disturbed
apparent velocity of the propeller center ν can be linked to the displacement of the propeller
center in the reference frame through the following relationship:

ν = K1

(
u̇c

θ̇c

)
+K0

(
uc

θc

)
(16)

By means of equations (14)(15)(16) and after summation for all blades, the motion equation
in the reference frame can be obtained:

Mstructü+Cstructu̇+Kstructu = −Maeroü−Caerou̇−Kaerou+Ctrt + lstat (17)

ṙt = Atrt +B1
tu+B2

t u̇ (18)

In opposition to (7), the motion equation is now dependent on the aerodynamic state vector
rt that gathers the fluid state variables of all the blades. Flow added mass effects are taken
into account through the matrix Maero. It is important to note that the Theodorsen theory is
designed only for harmonic motion. Therefore, the motion equation is not valid for damped or
amplified motion but it is not a problem for the calculation of stability boundaries as vibrations
are purely harmonic at the flutter point (neither amplified nor damped). The static aerodynamic
loads are supposed negligible (lstat = 0 ) and the system is transformed into state space format: ü

u̇
ṙt

 =

 −M−1C −M−1K M−1Ct

I 0 0
B2

t B1
t At

 u̇
u
rt

 (19)

with M = Mstruct +Maero, C = Cstruct +Caero and K = Kstruct +Kaero.
The terms B2

t , B
1
t and Ct introduce periodic terms in (19). Instead of the direct eigenvalue

analysis of section 3, a Floquet analysis is performed here to estimate the stability of the
aeroelastic system [10].

5. NUMERICAL RESULTS
Various numerical studies are conducted in order to assess the influence of the different structural
and aerodynamic models. At first, the classical 2-dof structural model of Figure 1 is examined.
In a second part, the behavior of the 3-dof structure of Figure 2 is analyzed.

5.1. 2-dof classical structural model: rigid wing
In this part, the model parameters are taken from [11]. The stability analysis with regards to
the mounting stiffnesses is very common in the study of whirl flutter. Indeed, the flexibility of
the connection between the engine pylon and the wing is a key parameter for the stability of the
system. Figure 5 represents the stability boundary as a function of Kθ and Kψ, obtained with
the quasi-steady aerodynamic model. The blue area corresponds to the whirl flutter instability
(eigenvalue with a positive real part and a non-zero imaginary part), with a backward divergent
precessional motion of the propeller center. The red area is associated to a static divergence
instability (eigenvalue with a positive real part and an imaginary part equal to zero) i.e. a



divergent motion without any oscillations. It can be seen that decreasing the mounting stiffnesses
favors the instability. The case where the two stiffnesses are equal is the most unfavorable since
the stiffnesses required to obtain a stable system are the largest in this configuration. Due to
the flow compressibility and finite blade length correction factors, the graph Figure 5 is slightly
different than the one obtained by Mair et al [11] but if these coefficients are not taken into
account, results become equivalent.

The model developed in this paper allows to take into account propellers that are not in
windmilling configuration, i.e. that generate thrust. Figure 6 presents this effect by considering
propellers with two different pitch angles. The first pitch angle, corresponding to the windmilling
configuration (the one of Figure 5), is chosen so that for each blade section, the incident flow
velocity is aligned with the chord of the profile (when the propeller is in its reference configuration

meaning θc = 0 , θ̇c = 0 , u̇c = 0 ). Therefore the incidence angle γ − ϕ is null and no static
thrust is generated. The second pitch angle generates an incidence angle of 4◦ for all the blade
profiles. Looking at the stability boundaries, it can be seen that thrust has a stabilizing effect
since the unstable area is reduced when the incidence angle of the blades is increased. The
differences between the two configurations concern mainly the whirl flutter instability as the
static divergence boundaries coincides between the two cases.

Figure 5: Stability boundaries (quasi-steady
aerodynamic model)

Figure 6: Influence of thrust on the stability
boundaries (quasi-steady aerodynamic model)

The previous results were obtained with the quasi-steady aerodynamic model. As explained
in Section 4, this theory does not model the wake unsteady vorticity as well as added mass
effects. Theodorsen’s theory, used here in the so called unsteady aerodynamic model, takes into
account these effects and will now be employed to obtain the stability graphs. The main novelty
is that it uses the lift deficiency function which provokes a phase lag between the movement of
the system and the aerodynamic loads. To catch this non-trivial behavior, the rational matrices
approximation of Section 4.2 is used. Before performing any aeroelastic analysis, the precision
of this approximation must be assessed. Figure 7 presents the evolution of the imaginary part of
the coefficient E33 of the exact and approximated transfer matrices (results are obtained with 14
poles in (13)). This coefficient is chosen because it is the one with the most error with respect
to the exact transfer function. Nevertheless, the precision is largely satisfactory which validates
the effectiveness of the RMA. The precision of the approximation on the other ones is better
than it is here, and is not shown for the sake of conciseness.



The quality of the rational matrix approximation being validated, it is now possible to obtain
the stability boundaries of the classical structural model with the unsteady aerodynamic model
using the rational matrix approximation (RMA). Figure 8 compares this stability boundary with
the one obtained with the quasi-steady aerodynamic model. The boundary obtained with the
pk-method is also shown for validation. The stability frontier obtained with the RMA and the
pk-method are really close which validates the methodology using the RMA. The advantage of
this approach is that once the approximation of (13) is performed, the entire stability graph can
be computed with linear eigenvalue analysis. With the pk-method, an iterative algorithm must
be used for each operating point (pair of Kθ and Kψ) and for each mode of the structure in
order to obtain the modal damping. This can be costly in computational time, especially when
convergence problems are encountered or for structures with more degrees of freedom (and
therefore more modes). In comparison to the quasi-steady theory, the unsteady model leads
to a reduced unstable area, and thus to more stable results. The static divergence boundaries
coincides in the two models. The results given by the simplest model (quasi-steady aerodynamic
model) proves here to be conservative. However, the sensibility of the results to the aerodynamic
theory used is significant and clearly justify the need of precise aerodynamic model to properly
study whirl flutter.
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Figure 8: Stability boundaries: quasi-steady vs
unsteady aerodynamic model

5.2. 3-dof structural model: pure bending wing
The improved structural model introduces a vertical spring/damper system representing the
bending of the wing on which the propeller is fixed (Figure 2). As in the previous section,
stability analysis regarding the mounting stiffnesses Kψ and Kθ are carried out. All the model
parameters are still taken from [11], except for Kz and Cz which are chosen here arbitrarily
since the authors used the model of Figure 1. Four values of vertical stiffnesses are retained
- Kz = {1, 2, 5, 1000} N.m−1 - as they allow to have an overview of the system behavior, and
no vertical structural damping is considered (Cz = 0 N.m−1.s). The resulting stability analysis
obtained with the quasi-steady and unsteady aerodynamic model are presented in Figure 9.

Starting from a low Kz value (Figure 9a), it can be seen that unlike the classical structural
model, the system presents here a whirl flutter instability area that has an asymmetric shape. It
is due to the vertical spring that breaks the symmetry of the aerodynamic matrices in (7), (17)



(a) Kz = 1 N.m−1 (b) Kz = 2 N.m−1

(c) Kz = 5 N.m−1 (d) Kz = 1000 N.m−1

Figure 9: Stability frontiers for the improved structural model

and (18). If the same spring was added along the Y⃗ axis, a symmetric graph would be obtained.
As in Figure 5, two unstable areas correspond to a static divergence of the system when one of
the mounting stiffnesses is too low. The effect of the spring along the vertical axis appears to
be double. At first, it seems to be destabilizing for certain low values of Kθ as some areas that
were stable for the rigid wing structural model (Figure 8) are here unstable. However, some
peninsular zones are characterized by a renewed stability. For the quasi-steady aerodynamic
model, the dotted curve represents coalescence between the frequency of the aeroelastic whirl
mode prone to instability and the frequency of the vertical spring structural mode (characterized

by its pulsation ωz =
√

Kz
m ). It can be seen that this curve matches these stable peninsular

areas. Therefore, the authors of [12] consider that the vertical spring acts locally as a tuned mass
damper, concentrating and dissipating energy from the whirl mode leading to instability. When
the vertical stiffness is increased to 2 N.m−1 (Figure 9b), the virtual tuned mass damper extracts
enough energy to create a strip of stability isolating an ”island” of instability. This unfamiliar
comportment attests of the complex behavior that can be introduced when considering more
flexible structures than the classical two-degrees-of-freedom model. Eventually, this island
disappears when the stiffness is increased to 5 N.m−1 (Figure 9c), but the whirl flutter instability



area is still flattened by the tuned mass damper effect. When Kz is taken high enough (Figure
9d), the system has very few vertical displacement and acts as the classical structural model
with a stability graph similar to the one of Figure 8. As for the classical structural model, results
obtained with the unsteady aerodynamic model are found to be more stable than those given
by the quasi-steady model for every choice of Kz values.

6. CONCLUSION
This paper proposed to study whirl flutter with two aerodynamic models. The first one,
widely used in the literature, is based on the thin airfoil theory to model the motion induced
aerodynamic loads on the propeller (quasi-steady model). The second one, more complex, use
the Theodorsen theory which leads to an intricate dependency of the aerodynamic loads on the
vibratory frequency (unsteady model). To avoid dealing with a computationally costly non-
linear stability problem (solved with the pk-method), a rational matrix approximation (RMA)
of the aerodynamic transfer matrix is constructed which introduces novel aerodynamic state
variables that models the flow’s own dynamics. Both models are coupled with the Blade
Element Momentum Theory to take into account disturbed inflow effects. Stability analysis
are performed on two structural models, with respectively two and three degrees of freedom.
In comparison to the quasi-steady model, the unsteady aerodynamic model gives more stable
results. For the unsteady aerodynamic model, results obtained with the RMA show consistency
with the pk-method, and testify of the advantages of this technique which leads to a linear cost-
effective stability problem. The 3-dof structural model presents a complex stability behavior.
Even though only one degree of freedom is added, stability frontiers are much more sophisticated
than the classical structural model and ”islands” of instability are observed for certain stiffnesses
combinations. It highlights the need to take into account the whole structure when whirl flutter
stability analysis are performed.

Results presented in this paper dealt with a rigid blade propeller on structural models with
few degrees of freedom. The use of full finite element models of the nacelle/wing system is
already functional and will be investigated in future works. Blade flexibility will also be taken
into account to see its influence on the stability boundaries. From an aerodynamic perspective,
other unsteady models will be considered since the methodology used in this paper to build
a rational matrix approximation of the aerodynamic transfer function is generic and can be
applied with almost no limitation to any aerodynamic theory.
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Appendix
The approximation process of (13), presented in [5], is carried out in three steps.

Step 1: The exact transfer function E(s) is evaluated numerically on a finite number of
complex pulsations [iω1, ..., iωNf ] and an order M is chosen to solve the linear least-square
problem:

E(s) ≈ Ê(s) = sA1 +A0 + (IsM +
M−1∑
i=0

Dis
i)−1(

M−1∑
i=0

Ris
i) (A.1)

This allow to find the matricesA1, A0, Di andRi that minimizes the error on the approximation
of E(s) with Ê(s). (A.1) is then re-written under the following form:

E(s) ≈ Ê(s) = sA1 +A0 +C(sI−A)−1B (A.2)



with C = (I 0 . . .0), A =


−DM−1 I 0

...
. . .

−D1 0 I
−D0 0 0

 and B =

 RM−1
...

R0

.

Step 2: The previous step leads to a good fit of the approximated transfer matrix Ê with
the exact transfer matrix E. However, the least-square process can lead to the apparition of
spurious unstable poles in the transfer function. These poles are purely numerical and do not
have physical meaning since the fluid-only system is always stable and the aerodynamic loads
on the propeller cannot diverge for small velocities of the propeller hub. If taken into account,
it would lead to fallacious stability analysis on the complete aeroelastic system. To avoid this
problem, the unstable poles are truncated (eigenvalues of A with a positive real part) and the
matrices C, A and B are reduced according to this truncation.

Step 3: With the truncation of the unstable poles, the precision of the approximation is
inevitably degraded. The fit can be further improved by solving successive linear least-square
problems to find the new matrices A1, A0, C and B while keeping the matrix A constant to
guaranty a stable system. In the end, the approximation of (13) is obtained, which contains
only stable poles and has an appropriate level of fidelity with the exact transfer function.
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