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Abstract—Thanks to technological advancements, critical
infrastructures integrate many smart technologies and become
highly connected to the cyber world. This is especially true
for Cyber-Physical Systems (CPSs), which combine hardware
and software components. Despite the advantages of smart
infrastructures, e.g., sustainable energy usage, security, safety
enhancement, and predictive algorithms using machine learn-
ing, they remain vulnerable to cyber threats and adversarial
events such as cyber-attacks. This work focuses on the cyber
resilience of CPSs. We propose a methodology leveraging
knowledge graph modeling to increase the remediation potential
of CPSs and to avoid critical failures that can occur due
to cascading effects in complex architectures. We propose an
approach based on multi-layered modeling applied to complex
systems to achieve this objective. Indeed, a complex system can
be considered an overlay of several layers. We use knowledge
graphs to model a Secure Water Treatment System (SWaT) test
bed subsystem. We conduct a resilience assessment analysis
of several designs with a quantitative metric. This resilience
analysis, applied to each layer of our models, is also used to
highlight critical points, e.g., the key functions or components
that are significant for completing a mission.

Index Terms—Attack Path, Attack Propagation, Cascading
Effect, Complex System, Cyber-Physical System, Cyber Re-
silience, Cyber Threat, Knowledge Graph, Remediation Path,
Resilience Enhancement, Resilience Quantification, Semantic
Network

I. INTRODUCTION

During the past years, many adversarial attacks such
as StuxNet in 2010 [1], CryptoLocker in 2013 [2], and
WannaCry in 2017 [3] have highlighted the vulnerabilities
of Critical Infrastructures facing cyber adversaries. These
cyber attacks impact every strategic sector, e.g., health,
transport, and maritime. Statistics produced by governmental
entities show an increase each year of perpetrated attacks
and costs resulting from such attacks [4]. Protecting critical
infrastructures is paramount, especially in our era where
cyber adversaries can perpetrate powerful attacks that can
disrupt and put a system in an unstable state. The resilience
concept has gained interest in the research community, and
industrial entities have gradually understood the importance
of increasing the resilience potential of a system. Resilience
refers to the ability of a system to continue to operate and
complete a mission, even if an adversarial event (natural
of intentional) occurs. A definition provided by Kott and
Linkov describes resilience as the system’s ability to recover
or regenerate its performance after an unexpected impact
produces a degradation of its performance [5]. The resilience
notion was initially applied in ecology by Holling [6] to
quantify a population’s ability to recover from changes. Re-
silience is used in many other fields [7] such as psychology,
economy, engineering, computer sciences, and cyber security.

As mentioned by Kott and Linkov: to improve the cyber
resilience of a system, you have to measure it [8]. Measuring
the resilience of a Cyber-Physical System (CPS) implies
using metrics based on certain system properties, such as
performance indicators. We must use architecture models to
apply these metrics to an architecture, e.g., mathematical
modeling or simulation models. However, in our digitization
era, CPSs and especially critical infrastructures increasingly
connect and include many components. Their architectures
become increasingly complex (e.g., architecture design, hu-
man workflows, and operating environment). Due to this
complexity, building accurate models of such systems is not
easy. Inevitably, the lower the model accuracy, the lower the
assessment accuracy resulting from a metric’s evaluation.

Motivation. The underlying challenge of making complex
systems and CPSs more resilient boils down to building
barriers that make attacking difficult for adversaries. From
a resilience point of view, we consider that risk zero does
not exist. Thus, we seek appropriate countermeasures that
increase the resilience potential of an architecture. Ideally,
metrics must be available to quantify the resilience of a CPS.
Knowledge graph modeling is well suited to representing
various links and elements in a system architecture.

Contribution. The contribution of this work is threefold:
(i) We model several designs of the Secure Water Treatment
System (SWaT) pumping stage as knowledge graphs; (ii) We
conduct a resilience assessment analysis of these designs
modeled as multi-layered systems by using an eigenvector
centrality metric. We also identify the critical points of each
layer; (iii) We compare the obtained results with two other
metrics presented in our previous works: the (k, £)-resilience
property [9], [10] and spectral radius [11].

Section II presents works related to the knowledge graph
concept. Section III presents our approach to assessing multi-
layered systems’ resilience. Section IV conducts a resilience
assessment of a SWaT subsystem. We discuss our results in
Section V. Section VI concludes and provides some future
research axes.

II. RELATED WORK

This section presents several works related to graph tech-
niques and graph analysis in cyber security.

A. Graph Techniques in Cyber Security

1) Graph Analytics: Graph analytics is a data analysis
used to understand complex relationships between data en-
tities represented in a graph. It consists of evaluating pieces
of information and their connections to know how pieces of
information relate to each other or how they could be related.
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Noel reviews graph-based methods for assessing and im-
proving operational computer network security, maintaining
situational awareness, and ensuring organizational missions
[12].

2) Graph Mining: Securing cyberspace and exchanging
sensitive data become paramount for organizations, gov-
ernments, and industrial firms. Graph Mining is a set of
techniques used for different purposes: (i) conduct analysis
about the properties of real-world graphs; (ii) understand
and establish predictions about how a graph can affect
some application, and (iii) build models to generate real-
istic graphs matching real-world graph patterns. Building on
graph mining techniques created by the scientific community,
researchers are trying to capture correlations between cyber
entities. The work by Yan er al. [13] presents a review of
graph mining techniques used for cyber security.

B. Attack Graphs for Resilience Purposes

In their work, Al Ghazo and Kumar proposed a methodol-
ogy to identify the critical attacks that could compromise
a system’s behavior and, when blocked, to guarantee the
system security [14]. Zonouz et al. work on a different axis.
Indeed, their work is based on contingency analysis, which
provides guidelines to achieve resilience goals and enable a
system to continue to operate even if a failure occurs. In
addition to this methodology, they propose using a cyber-
physical security evaluation technique that plans remediation
measures for accidental and intentional adversarial events
[15]. Such a methodology can be used to help operators to
choose prevention solutions in case of proactive intrusions.
However, such a technique works before an adversarial event
occurs and does not increase a system’s resilience potential
because a human operator’s action is required. Furthermore,
when an adversary can bypass these measures, the system
cannot return to a stable state.

III. GRAPH ANALYTICS

This section presents the necessary material for establish-
ing our multi-layered approach based on knowledge graph
modeling. We also present a metric for quantifying the
resilience of a system modeled by such graphs.

A. Knowledge Graph

Ehrlinger and Woess [16] review several definitions of
knowledge graph found in the literature. One of the defi-
nitions highlights that knowledge graphs use ontologies to
acquire information and then apply reasoning mechanisms
to derive new knowledge about this information. Google
introduced a general definition of a knowledge graph in
2012. Other definitions go further and differ across fields. For
developers, knowledge graphs are similar to a database with
which we interact by the bias of Application Programming
Interfaces (APIs). For data scientists, it corresponds to an
augmented feature store for connected data, where we can
compute and access structural features for Machine Learning
(ML). For data engineers, it is similar to a data store where
we can integrate data from different sources. It is a database
linked to a front-end interface for other fields, with which
we can communicate with [17].

In the cyber resilience field, we consider knowledge graphs
for their ability to model various entities and relationships
between them. Knowledge graphs can be used to model

the knowledge acquired by an adversary to perpetrate high-
impact attacks. Defenders can also use knowledge graphs
to anticipate cascading effects from attacks perpetrated on
critical points. We must highlight that knowledge graphs are
also interesting for building remediation graphs to provide
specific actions for avoiding cascading effects and major
losses.

B. Eigenvector Centrality

Modeling complex systems with knowledge graphs implies
representing Information Technology (IT)/Operational Tech-
nology (OT) components by the bias of nodes. These nodes
interact with each other via a set of links, representing phys-
ical, wireless, and logical relationships. These knowledge
graph models allow us to find critical points, i.e., components
or functions that can have a major impact on the performance
of systems in case of a failure or when an attack occurs. An
adversary attempting to target a critical point can damage a
system significantly. Thus, identifying and protecting these
critical points is paramount for ensuring the resilience of
CPSs.

Eigenvector centrality measures neighbors’ influence on a
node [18], [19]. Neighbors with high eigenvector centrality
carry more weight in the measure than neighbors with low-
value neighbors. A node with high eigenvector centrality is in
relationships with several neighbors having high eigenvector
centrality.

For a given graph G = (V, E) with |V| vertices, let A =
(av,t) be the adjacency matrix, i.e., we have a,, = 1 if the
vertex v is linked to the vertex ¢, and a,, = 0 otherwise.
The eigenvector centrality score of v is:

Ty = % Z Ty = %Zav,txt (D

teM(v) teG

with M (v) the set of neighbors of v and A a constant.
Following the Newman reasoning [18], Eq. (1) can be
rewritten as follows:

AX = \X 2)

X is an eigenvector of the adjacency matrix A with
the eigenvalue A. A must be the largest eigenvalue of the
adjacency matrix A. According to the Perron-Frobenius
theorem, this choice guarantees that if A is irreducible, i.e.,
if the considered graph is (strongly) connected, then the
eigenvector solution X is unique and positive. Such a metric
is interesting for catching the influence of neighbor nodes,
which is related to the notion of critical point. A critical
point or node in a graph model is an important function,
component, or subsystem for completing a mission. On the
other hand, a critical point could also generate cascading
effects when an adversary attempts to attack it. This notion of
critical point is important in multi-layered models. A layer’s
overall resilience is insufficient to ensure a good resilience
potential. We must ensure that an adversary cannot target
critical points to generate cascading effects.

C. Multi-layered Approaches

Modeling systems as multi-layered architectures is not a
new topic in the literature. In 1977, Gardner [20] introduced
two multi-level approaches for modeling systems with the
SARA design, considering relatively abstract submodels.



Before this work, in 1968, Zurcher [21] highlighted the
importance of considering the levels of abstraction in mod-
eling strategies. Zurcher’s work introduces a technique for
modeling a multi-processing system’s hardware and software
components. More recently, Carreras et al. have presented an
approach to consider the key features of CPSs by the bias of
a multi-layered representation for safety and security analysis
purposes [22].

Multi-layered representations are also pyramidal repre-
sentations to model a system’s architectural, logical, or
regulation-related levels.

There are frameworks, i.e., the Industrial Internet Refer-
ence Architecture (IIRA) [23] and Reference Architectural
Model Industrie 4.0 (RAMI 4.0) [24] suitable for modeling
Industry 4.0 architectures as multi-layered systems. RAMI
4.0 uses a 3-D model by representing an architecture with
the following layers: asset, integration, communication, infor-
mation, functional and business. In our previous work [25],
we have applied the RAMI 4.0 model to a water treatment
architecture.

D. Multi-layered Architectures for Resilience Purposes

Multi-layered strategies allow one to consider the dif-
ferent levels of a system independently and analyze each
of these layers. Our objective is to conduct a resilience
analysis on each layer of a multi-layered model to ensure
that the resilience potential of all these layers is consistent
with the others. Critical infrastructures are complex systems.
Conducting a resilience analysis on such an architecture is a
difficult task. In our previous work, we have presented a way
to quantify the resilience potential of a system with the (k, ¢)-
resilience property (giving an estimation of the controllability
degree k and the monitorability degree ¢ of a CPS) [9], [10].
Indeed, increasing a system’s resilience implies monitoring
it (by the bias of sensors) and controlling it (by the bias of
actuators) to bring it back to its original state in case of an
attack. We have also presented an approach using the spectral
radius metric to quantify the resilience of a system modeled
by the bias of a graph [11]. We must highlight that we
consider Networked-Control Systems (NCSs). In other fields,
such as biology, self-healing systems can restore themselves.
Resilience of CPS is similar from the point of view of the
recoverability aspect.

However, how can we ensure that a resilience counter-
measure that is proven effective does not negatively impact
the resilience of another layer? We must remember that in-
creasing a system’s resilience potential can also increase the
attack surface. Indeed, in previous work [10], we have shown
that increasing the monitorability and steerability of a CPS
increases its resilience. This implies diverse architecture with
monitorability, i.e., sensors, and steerability components, i.e.,
pumps and valves for water treatment purposes. However, our
analysis also shows that having more components connected
to cyberspace can increase the attack surface. Thus, a fine
balance must be achieved between increasing the resilience
potential and mitigating the security risk. Resilience analysis
and risk analysis must be conducted in concert.

The objective of our approach is twofold: (i) A first step to
achieving this goal is to ensure that the resilience potential of
each layer of a given architecture is consistent, i.e., ensuring
that a layer is not resilient at the expense of the other ones.

(i) The second step consists in protecting critical points.
A critical point is an architecture’s component, function,
or subsystem. It is called critical because an adversary
attempting to attack a critical point can cause cascading
effects that could generate important losses. According to
Leveson [26], a loss can be related to life or injury to peo-
ple, damage to the material, mission completion, regulation
conformity, reputation, or finances. We consider the multi-
layered representation shown in Fig. 1 to achieve this goal.

Layers

---- Mission
--- Cyber
--- Actuator
--- Sensor
--- Physical

Fig. 1. Multi-layered model of a CPS.

The first level is the physical layer. This layer includes
the physical components not playing a role in a system’s
steerability or monitorability potential, e.g., a tank or a pipe.
The second layer is the sensor one. Indeed, the monitora-
bility potential is the first pillar of resilience. To assess the
resilience of a system, we must be able to measure it [8]. The
third layer is the actuator one, referring to the steerability
potential (the second pillar of resilience), including pumps
and valves. Then, the cyber layer includes the components
connected to cyberspace, i.e., sensors sending readings to a
controller through a network. These connected components
are visible to an adversary spying on them from cyberspace.
It includes all the components sending data through a net-
work. The mission layer corresponds to the components used
to complete a system mission. We must highlight that the
links connecting the nodes differ in the five identified layers.
For example, a sensor link can be: Flowrate sensor sends
data to the controller. A mission link can be: Controller must
check the water level in the tank according to the readings
made by the level sensor.

This layered model is based on the fact that we mapped
components according to the resilience potential they can
bring to an architecture. The two last layers (cyber and mis-
sion) are transversal layers covering the whole architecture.

IV. SWAT PUMPING STAGE RESILIENCE ASSESSMENT

Our approach is based on knowledge graph modeling.
In such models, nodes represent the components of an
architecture. The links are used to model the relationships
between each component. The relationships differ across the
layers. We apply the eigenvector centrality metric presented
in Section III-B to the knowledge graphs to get a measure
for each node. Then, following our multi-layered strategy, we
map the components according to the layers to which they be-
long. Each node representing a component has an eigenvector
centrality value. We compute a mean eigenvector centrality
value for each layer with the eigenvector centrality of the
nodes in these layers. These values estimate the resilience po-
tential of each layer. We also conduct a critical point analysis
by considering each layer’s components with the maximum
eigenvector centrality. We consider three designs of the SWaT



pumping stage to conduct our resilience assessment. SWaT
is a test bed built by the Singapore University of Technology
and Design (SUTD). This system mimics the real behavior
of the Singapore water treatment facility. SWaT is divided
into six stages: Pumping, Chemical Dosing, Ultrafiltration
(UF), Dechlorination, Reverse Osmosis (RO), Final stage
and Backwash of the UF membrane [27]. As a use-case, we
consider the first stage of SWaT, in which raw water must
be cleaned and pumped into the system.

Controller

status pumps 1 and 2 c
act on pumps 1 and 2 flowrate

f) To stage 2
|.|_ chemical
| dosing
Tank . Pipe T
Pumps 1 and 2
(a) Ap: Original design.
level, weight > Controller

status, temperature, rotation
of pumps 1 and 2 |

lact on pumps 1 and 2
flowrate
I.]_ i To stage 2
—> [~ chemical
Tank I.]_ Pipe dosing
Pumps 1 and 2
(b) Aj: Design with additional sensors.
level, weight
status, temperature, rotation Controller
of pumps 1 and 2 |
¢act on pumps 1 and 2
flowrate
—>|.]_ i To stage 2
il chemical
Pipe dosing
Tank Pumps land2 | | = oo
act on pumps aux 3 and 4
status, temperature,
rotation of]|
pumps aux 3 and 4
flowrate \
level, Pumps 3 and 4 (aux) >
weight p Controller aux

-

(c) Aa: Design with an auxiliary controller and pumps, plus additional
Sensors.

Fig. 2. Designs of the SWaT pumping stage.

Fig. 2(a) illustrates the original design of the SWaT first
stage, which is a sub-system of the overall water treatment
station. This subsystem is in charge of pumping the water
to be purified. The water is pumped in a tank and sent to
the chemical dosing station in stage 2 by two redundant
pumps. Fig. 2(b) presents the same design as in Fig. 2(a),
with additional sensors, i.e., the weight of the tank and
temperature and rotation speed of the two pumps. These
additional sensors increase the system’s monitorability poten-
tial. Fig. 2(c) presents an architecture comprising an auxiliary
controller and two pumps. These extra components increase
the steerability potential of the system. This architecture con-
sists of the same diversified family of sensors as in Fig. 2(b).
Our objective is to conduct a resilience analysis on each

layer in order be sure that all layers are mutually resilient.
To achieve this goal, we compare these three designs of the
pumping stage of SWaT.

Knowledge graphs model the three architectures. Each
node represents a component, and different families of links
model the interactions between these components. These
interactions are related to the layers of the model presented
in Fig. 1. Indeed, each layer we consider is a subgraph
that includes the related relationships between the nodes.
For example, we have a physical connection between the
water tank and its level sensor in the physical layer. We use
the Neo4j browser and Bloom tools to build the knowledge
graphs of the three architectures of the SWaT pumping stage.
Via Neo4j Bloom, we apply the eigenvector centrality metric
to the graph of the three considered designs. We obtain an
eigenvector centrality measure of each node. The obtained
results are available in the Excel file of our repository [28].
We map each component of the graph according to the layer
it belongs, and we compute a mean eigenvector centrality
value for each layer of the three designs.

Figs. 3(a) to 3(e) present the resilience assessment of the
physical, sensor, actuator, cyber, and mission layers of the
three designs of the SWaT pumping stage. The blue squares
present the mean eigenvector centrality computed for each
layer of the architectures Ay, Ay, and As. In addition to the
eigenvector centrality evolving according to the resilience
degrees of each design, the Standard Deviation (STD) is
depicted with yellow areas. As the eigenvector centrality
value of the blue square is a mean, we compute the STD
of each layer of the considered designs. Red points indicate
the critical points having the highest eigenvector centrality
for each layer.

V. DISCUSSION

We must highlight that the eigenvector centrality compu-
tation methods differ across the layers (see Table I). This
choice reflects that each component in the architectures can
be related to one of these three layers (physical, sensor, actua-
tor). Thus, we consider all the links and compute each layer’s
mean eigenvector centrality measures on a subset of nodes
to obtain independent results related to each layer. However,
the cyber and mission layers cover all the components of the
graphs. Thus, to catch independent results across these two
last layers, the granularity resulting from applying the metric
lies in selecting specific links when using the eigenvector
centrality metric.

TABLE I
METRIC APPLICATION AND COMPUTATION ACROSS THE LAYERS.

Layer Metric application Metric computation
. Full graph with Mean eigenvector centrality for
Physical . . .
all relationships physical component nodes
Full graph with Mean eigenvector centrality
Sensor . .
all relationships for sensor nodes
Actuator Full gra.ph W.lth Mean eigenvector centrality
all relationships for actuators nodes
Cyber Full graph with Mean eigenvector centrality
¥ cyber relationships for all the nodes
. Full graph with Mean eigenvector centrality
Mission L . .
mission relationships for all the nodes

Two important observations can be made by inspecting
the results presented in Fig. 3. Firstly, each layer’s mean
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(e) Mission layer of SWaT pumping stage designs.

Fig. 3. Resilience assessment of SWaT pumping stage designs modeled with a multi-layered approach.

eigenvector centrality decreases as the system’s resilience
potential increases. This could be explained by the fact
that the eigenvector centrality measures a node’s impact
according to the importance of its neighbors in the graph.
Thus, making a system more resilient by adding steerability
and monitorability components makes a graph more complex,
decreasing each node’s individual importance. In addition,
the more complex a graph modeling an architecture, the

more paths there are to recover in case of an attack or in
case of a malfunction of a component. This explains why
the eigenvector centrality decreases in the architectures Ay,
Aj, and As. Thus, a decrease in the eigenvector centrality
measurements corresponds to an increase in a system’s
resilience potential.

Secondly, we must consider the critical points in red
in each figure. We aim to have the critical points in the
yellow areas. Indeed, the yellow areas can be considered safe



zones where an adversary cannot distinguish critical points
in an architecture. These results show that Ay has the best
placement of critical points, while A; has the worst. We also
learn that each architecture’s cyber and mission layers have
their critical points misplaced outside the yellow areas.
Table II presents a comparative analysis of the results
obtained with the (k,¢)-resilience [9], [10] and spectral
radius [11]. These results are consistent with an increase in
the resilience potential in Ay, A;, and A. However, our
multi-layered analysis shows the importance of considering
critical points in architectures that appear to be resilient.

TABLE II
(K, £)-RESILIENCE AND SPECTRAL RADIUS EVALUATION.

Architecture (A) | (k,0)-resilience | Spectral radius (p(A))
Ao @4 1.64
Aq (2,8) 7.75
A, (4,3) 10.27

VI. CONCLUSION

This work presents a multi-layered approach to modeling
complex systems using five layers: physical, sensor, actuator,
cyber, and mission. We have conducted a resilience assess-
ment of each layer of the SWaT pumping stage. We have also
built several designs with different degrees of resilience to
compare our results. The eigenvector centrality metric shows
a decrease in its value when the resilience capabilities of the
system are increasing. We have compared our results with the
(k, £)-resilience and spectral radius metrics. The results are
consistent with an increase in the resilience potential. How-
ever, the architecture with the best critical point placement
is not necessarily the most resilient one. The critical nodes,
i.e., those with higher eigenvector centrality values, must be
protected. To achieve this goal, each critical node of each
layer must be brought into the yellow areas, considered safe
zones. To achieve this goal, designing architectures where the
amount of data transmitted through critical nodes is lower
is possible. Indeed, a high eigenvector centrality measure
means that a node plays an important role in transmitting
information across the graph according to the importance of
its neighbors. Decentralizing information that flows through
critical nodes can be a solution to bring them into safe zones.

We foresee the following research axes for considering
cyber resilience applied to complex systems modeled by
multi-layered representations. Firstly, there is a need to
be able to build remediation graphs. The objective is to
ensure that specific countermeasures can absorb the impact
of an attack. Secondly, we must ensure the adversary never
acquires perfect knowledge about the system to perpetrate
an attack with high-impact cascading effects. To achieve this
goal, the cyber layer of a system can use decoy mechanisms
to fool the adversary and avoid the attack on critical points,
leading to moving-target defense strategies.
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