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Abstract—Thanks to technological advancements, critical
infrastructures integrate many smart technologies and become
highly connected to the cyber world. This is especially true
for Cyber-Physical Systems (CPSs), which combine hardware
and software components. Despite the advantages of smart
infrastructures, e.g., sustainable energy usage, security, safety
enhancement, and predictive algorithms using machine learn-
ing, they remain vulnerable to cyber threats and adversarial
events such as cyber-attacks. This work focuses on the cyber
resilience of CPSs. We propose a methodology leveraging
knowledge graph modeling to increase the remediation potential
of CPSs and to avoid critical failures that can occur due
to cascading effects in complex architectures. We propose an
approach based on multi-layered modeling applied to complex
systems to achieve this objective. Indeed, a complex system can
be considered an overlay of several layers. We use knowledge
graphs to model a Secure Water Treatment System (SWaT) test
bed subsystem. We conduct a resilience assessment analysis
of several designs with a quantitative metric. This resilience
analysis, applied to each layer of our models, is also used to
highlight critical points, e.g., the key functions or components
that are significant for completing a mission.

Index Terms—Attack Path, Attack Propagation, Cascading
Effect, Complex System, Cyber-Physical System, Cyber Re-
silience, Cyber Threat, Knowledge Graph, Remediation Path,
Resilience Enhancement, Resilience Quantification, Semantic
Network

I. INTRODUCTION

During the past years, many adversarial attacks such
as StuxNet in 2010 [1], CryptoLocker in 2013 [2], and
WannaCry in 2017 [3] have highlighted the vulnerabilities of
Critical Infrastructures facing cyber adversaries. These cyber
attacks impact every strategic sector, e.g., health, transport,
and maritime. Statistics produced by governmental entities
show an increase each year of perpetrated attacks and costs
resulting from such attacks [4]. Protecting critical infrastruc-
tures is of paramount importance, especially in our era where
cyber adversaries can perpetrate powerful attacks that can
disrupt and put a system in an unstable state. The resilience
concept has gained interest in the research community, and
industrial entities have gradually understood the importance
of increasing the resilience potential of a system. Resilience
refers to the ability of a system to continue to operate and
complete a mission, even if an adversarial event (natural
of intentional) occurs. A definition provided by Kott and
Linkov describes resilience as the system’s ability to recover
or regenerate its performance after an unexpected impact
produces a degradation of its performance [5]. The resilience
notion was initially applied in ecology by Holling [6] to
quantify a population’s ability to recover from changes. Re-
silience is used in many other fields [7] such as psychology,
economy, engineering, computer sciences, and cyber security.

As mentioned by Linkov and Kott: to improve the cyber
resilience of a system, you have to measure it [8]. Measuring
the resilience of a Cyber-Physical System (CPS) implies the
use of metrics based on certain properties of the system. We
need to use architecture models to apply these metrics to
an architecture, e.g., mathematical modeling or simulation
models. However, in our digitization era, CPSs and espe-
cially critical infrastructures increasingly connect and include
many components. Their architectures become increasingly
complex (e.g., architecture design, human workflows, and
operating environment). Due to this complexity, building
accurate models of such systems is not easy. Inevitably, the
lower the model accuracy, the lower the assessment accuracy
resulting from a metric’s evaluation.

Motivation. The underlying challenge of making complex
systems and CPSs more resilient boils down to building
barriers that make attacking difficult for adversaries. From
a resilience point of view, we consider that risk zero does
not exist. Thus, we seek appropriate countermeasures that
increase the resilience potential of an architecture. Ideally,
metrics must be available to quantify the resilience of a CPS.
Knowledge graph modeling is well suited to representing
various links and elements in a system architecture.

Contribution. The contribution of this work is threefold:
(i) We model several designs of the Secure Water Treatment
System (SWaT) pumping stage as knowledge graphs; (ii) We
conduct a resilience assessment analysis of these designs
modeled as multi-layered systems by using an eigenvector
centrality metric. We also identify the critical points of each
layer; (iii) We compare the obtained results with two other
metrics presented in our previous works: the (k, ℓ)-resilience
property [9], [10] and spectral radius [11].

Section II presents works related to the knowledge graph
concept. Section III presents our approach to assessing multi-
layered systems’ resilience. Section IV conducts a resilience
assessment of a SWaT subsystem. We discuss about our
results in Section V. Section VI concludes and provides some
future research axes.

II. RELATED WORK

This section presents several works related to graph tech-
niques and graph analysis in cyber security.

A. Graph Techniques in Cyber Security

1) Graph Analytics: Graph analytics is a data analysis
used to understand complex relationships between data enti-
ties represented in a graph. It consists in evaluating pieces of
information and their connections to understand how pieces
of information relate to each other or how they could be
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related. Noel reviews graph-based methods for assessing
and improving operational computer network security, main-
taining situational awareness, and ensuring organizational
missions [12].

2) Graph Mining: Securing the cyber space and the
exchange of sensitive data become of paramount importance
for organizations, governments and industrial firms. Graph
Mining is a set of techniques used for different purposes:
(i) conduct analysis about the properties of real-world graphs;
(ii) understand and establish predictions about how a graph
can affect some application, and (iii) build models to generate
realistic graphs matching real-world graph patterns. Building
on graph mining techniques created by the scientific commu-
nity, researchers are trying to capture correlations between
cyber entities. The work by Yan et al. [13] presents a review
of graph mining techniques used for cyber security.

B. Attack Graphs for Resilience Purposes

In their work, Al Ghazo and Kumar proposed a methodol-
ogy to identify the critical attacks that could compromise
a system behavior and, when blocked, to guarantee the
system security [14]. Zonouz et al. work on a different axis.
Indeed, their work is based on contingency analysis, which
provides guidelines to achieve resilience goals and enable a
system to continue to operate even if a failure occurs. In
addition to this methodology, they propose using a cyber-
physical security evaluation technique that plans remediation
measures for accidental and intentional adversarial events
[15]. Such a methodology can be used to help operators to
choose prevention solutions in case of proactive intrusions.
However, such a technique works before an adversarial event
occurs and does not increase a system’s resilience potential
because a human operator’s action is required. Furthermore,
the system cannot return to a stable state when an adversary
can bypass these measures.

III. GRAPH ANALYTICS

This section presents the necessary material for establish-
ing our multi-layered approach based on knowledge graph
modeling. We also present a metric for quantifying the
resilience of a system modeled by such graphs.

A. Knowledge Graph

Ehrlinger and Woess [16] review several definitions of
knowledge graph found in the literature. One of the defi-
nitions highlights that knowledge graphs use ontologies to
acquire information and then apply reasoning mechanisms
to derive new knowledge about this information. Google
introduced a general definition of a knowledge graph in
2012. Other definitions go further and differ across fields. For
developers, knowledge graphs are similar to a database with
which we interact by the bias of Application Programming
Interfaces (APIs). For data scientists, it corresponds to an
augmented feature store for connected data, where we can
compute and access structural features for Machine Learning
(ML). For data engineers, it is similar to a data store where
we can integrate data from different sources. It is a database
linked to a front-end interface for other fields, with which
we can communicate with [17].

In the cyber resilience field, we consider knowledge graphs
for their ability to model the knowledge acquired by an
adversary to perpetrate high-impact attacks. Defenders can

also use knowledge graphs to anticipate cascading effects
from attacks perpetrated on critical points. We must high-
light that knowledge graphs are also interested in building
remediation graphs to provide specific actions for avoiding
cascading effects and major losses.

B. Eigenvector Centrality

Modeling complex systems with knowledge graphs implies
representing Information Technology (IT)/Operational Tech-
nology (OT) components by the bias of nodes. These nodes
interact with each other via a set of links, representing phys-
ical, wireless, and logical relationships. These knowledge
graph models allow us to find critical points, i.e., components
or functions that can have a major impact on the performance
of systems in case of a failure or when an attack occurs. An
adversary attempting to target a critical point can generate
major damage to a system. Thus, identifying and protecting
these critical points is of paramount importance for ensuring
the resilience of CPSs.

Eigenvector centrality is a measure of neighbors’ influence
on a node [18], [19]. Neighbors with high eigenvector
centrality carry more weight in the measure than neighbors
with low-value neighbors. A node with high eigenvector
centrality is in relationships with several neighbors having
high eigenvector centrality.

For a given graph G = (V,E) with |V | vertices, let A =
(av,t) be the adjacency matrix, i.e., we have av,t = 1 if the
vertex v is linked to the vertex t, and av,t = 0 otherwise.
The eigenvector centrality score of v is:

xv =
1

λ

∑
t∈M(v)

xt =
1

λ

∑
t∈G

av,txt

with M(v) the set of neighbors of v and λ a constant.
Such a metric is interesting for catching the influence of

neighbor nodes, which is related to the notion of critical
point. A critical point or node in a graph model is an
important function, component, or subsystem for completing
a mission. On the other hand, a critical point could also
generate cascading effects when an adversary attempts to
attack it. This notion of critical point is important in multi-
layered models. A layer’s overall resilience is insufficient to
ensure a good resilience potential. We must ensure that an
adversary cannot target critical points to generate cascading
effects.

C. Multi-layered Approaches

Modeling systems as multi-layered architectures is not a
new topic in the literature. In 1977, Gardner [20] introduced
two multi-level approaches for modeling systems with the
SARA design, considering relatively abstract submodels.
Before this work, in 1968, Zurcher [21] highlighted the im-
portance of considering the levels of abstraction in modeling
strategies. The work by Zurcher introduces a technique for
modeling hardware and software components of a multi-
processing system. More recently, Carreras et al. have pre-
sented an approach to consider the key features of CPSs
by the bias of a multi-layered representation for safety and
security analysis purposes [22].

Multi-layered representations are also pyramidal repre-
sentations to model a system’s architectural, logical, or
regulation-related levels.



D. Multi-layered Architectures for Resilience Purposes

Multi-layered strategies allow one to consider the dif-
ferent levels of a system independently and analyze each
of these layers. Our objective is to conduct a resilience
analysis on each layer of a multi-layered model to ensure
that the resilience potential of all these layers is consistent
with the others. Critical infrastructures are complex systems.
Conducting a resilience analysis on such an architecture is a
difficult task. In our previous work, we have presented a way
to quantify the resilience potential of a system with the (k, ℓ)-
resilience property (giving an estimation of the controllability
degree k and the monitorability degree ℓ of a CPS) [9], [10].
Indeed, increasing a system’s resilience implies monitoring
it (by the bias of sensors) and controlling it (by the bias of
actuators) to bring it back to its original state in case of an
attack. We have also presented an approach using the spectral
radius metric to quantify the resilience of a system modeled
by the bias of a graph [11].

However, how can we ensure that a resilience counter-
measure that is proven effective does not negatively impact
the resilience of another layer? We must remember that
increasing a system’s resilience potential can also increase
the attack surface [10]. A fine balance between increasing
the resilience potential and mitigating the security risk must
be found.

The objective of our approach is twofold: (i) A first step to
achieving this goal is to ensure that the resilience potential of
each layer of a given architecture is consistent, i.e., ensuring
that a layer is not resilient at the expense of the other ones.
(ii) The second step consists in protecting critical points.
A critical point is an architecture’s component, function,
or subsystem. It is called critical because an adversary
attempting to attack a critical point can cause cascading
effects that could generate important losses. According to
Leveson [23], a loss can be related to life or injury to peo-
ple, damage to the material, mission completion, regulation
conformity, reputation, or finances. We consider the multi-
layered representation shown in Fig. 1 to achieve this goal.

Physical
Sensor
Actuator
Cyber
Mission

Layers

Fig. 1. Multi-layered model of a CPS.

The first level is the physical layer. This layer includes
the physical components not playing a role in a system’s
steerability or monitorability potential, e.g., a tank or a pipe.
The second layer is the sensor one. Indeed, the monitora-
bility potential is the first pillar of resilience. To assess the
resilience of a system, we must be able to measure it [8]. The
third layer is the actuator one, referring to the steerability
potential (the second pillar of resilience), including pumps
and valves. Then, the cyber layer includes all the visible
components an adversary could spy on from cyberspace. It
includes all the components sending data through a network.
The mission layer corresponds to the components used to

complete a system mission. We must highlight that the links
connecting the nodes differ in the five identified layers. For
example, a sensor link can be: Flowrate sensor sends data to
the controller. A mission link can be: Controller must check
the water level in the tank according to the readings made
by the level sensor.

IV. SWAT PUMPING STAGE RESILIENCE ASSESSMENT

Our approach is based on knowledge graph modeling.
In such models, nodes represent the components of an
architecture. The links are used to model the relationships
between each component. The relationships differ across the
layers. We apply the eigenvector centrality metric presented
in Section III-B to the knowledge graphs to get a measure
for each node. Then, following our multi-layered strategy, we
map the components according to the layers they belong. We
compute a mean eigenvector centrality value for each layer
of the model. These values are used to analyze the resilience
potential of an architecture. We also conduct a critical point
analysis by considering each layer’s components with the
maximum eigenvector centrality. We consider three designs
of the SWaT pumping stage to conduct our resilience assess-
ment. SWaT is a test bed built by the Singapore University
of Technology and Design (SUTD). This system mimics the
real behavior of the water treatment station in Singapore.
SWaT is divided into six stages: Pumping, Chemical Dosing,
Ultrafiltration (UF), Dechlorination, Reverse Osmosis (RO),
Final stage and Backwash of the UF membrane [24]. As a
use-case, we consider the first stage of SWaT, which pumps
the water to clean through the system.

Fig. 2(a) illustrates the original design of the SWaT first
stage, which is a sub-system of the overall water treatment
station. This subsystem is in charge of pumping the water
to be purified. The water is pumped in a tank and sent to
the chemical dosing station in stage 2 by two redundant
pumps. Fig. 2(b) presents the same design as in Fig. 2(a),
with additional sensors, i.e., the weight of the tank and
temperature and rotation speed of the two pumps. These
additional sensors increase the system’s monitorability poten-
tial. Fig. 2(c) presents an architecture comprising an auxiliary
controller and two pumps. These extra components increase
the steerability potential of the system. This architecture
consists of the same diversified family of sensors as in
Fig. 2(b). Our objective is to conduct a resilience analysis
on each layer in order be sure that all layers are mutually
resilient. We compare these three designs of the pumping
stage of SWaT to achieve this goal.

Knowledge graphs model the three architectures. Each
node represents a component, and different families of links
model the interactions between these components. These
interactions are related to the layers of the model presented
in Fig. 1. Indeed, each layer we consider is a subgraph
that includes the related relationships between the nodes.
For example, we have a physical connection between the
water tank and its level sensor in the physical layer. We use
the Neo4j browser and Bloom tools to build the knowledge
graphs of the three architectures of the SWaT pumping stage.
Via Neo4j Bloom, we apply the eigenvector centrality metric
to the graph of the three considered designs. We obtain an
eigenvector centrality measure of each node. The obtained
results are available in the Excel file of our repository [25].
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(c) Design with an auxiliary controller and pumps, plus additional sensors.

Fig. 2. Designs of the SWaT pumping stage.

We map each component of the graph according to the layer
it belongs, and we compute a mean eigenvector centrality
value for each layer of the three designs.

Figs. 3(a) to 3(e) present the resilience assessment of the
physical, sensor, actuator, cyber, and mission layers of the
three designs of the SWaT pumping stage. In addition to the
eigenvector centrality evolving according to the resilience
degrees of each design, the Standard Deviation (STD) is
depicted with yellow areas. Red points indicate the critical
points having the highest eigenvector centrality for each
layer.

V. DISCUSSION

We must highlight that the eigenvector centrality compu-
tation methods differ across the layers (see Table I). This
choice reflects that each component in the architectures can
be related to one of these three layers (physical, sensor, actua-
tor). Thus, we consider all the links and compute each layer’s
mean eigenvector centrality measures on a subset of nodes
to obtain independent results related to each layer. However,
the cyber and mission layers cover all the components of the
graphs. Thus, to catch independent results across these two
last layers, the granularity resulting from applying the metric

lies in selecting specific links when using the eigenvector
centrality metric.

TABLE I
METRIC APPLICATION AND COMPUTATION ACROSS THE LAYERS.

Layer Metric application Metric computation

Physical Full graph with Mean eigenvector centrality for
all relationships physical component nodes

Sensor Full graph with Mean eigenvector centrality
all relationships for sensor nodes

Actuator Full graph with Mean eigenvector centrality
all relationships for actuators nodes

Cyber Full graph with Mean eigenvector centrality
cyber relationships for all the nodes

Mission Full graph with Mean eigenvector centrality
mission relationships for all the nodes

Two important observations can be made by inspecting
the results presented in Fig. 3. Firstly, each layer’s mean
eigenvector centrality decreases as the system’s resilience
potential increases. This could be explained by the fact
that the eigenvector centrality measures a node’s impact
according to the importance of its neighbors in the graph.
Thus, making a system more resilient by adding steerability
and monitorability components makes a graph more complex,
decreasing each node’s individual importance. This explains
why the eigenvector centrality decreases in the architectures
A0, A1, and A2. Thus, a decrease in the eigenvector centrality
measurements corresponds to an increase in a system’s
resilience potential.

Secondly, we must consider the critical points in red
in each figure. We aim to have the critical points in the
yellow areas. Indeed, the yellow areas can be considered safe
zones where an adversary cannot distinguish critical points
in an architecture. These results show that A0 has the best
placement of critical points, while A1 has the worst. We also
learn that each architecture’s cyber and mission layers have
their critical points misplaced outside the yellow areas.

Table II presents a comparative analysis of the results
obtained with the (k, ℓ)-resilience [9], [10] and spectral
radius [11]. These results are consistent with an increase in
the resilience potential in A0, A1, and A2. However, our
multi-layered analysis shows the importance of considering
critical points in architectures that appear to be resilient.

TABLE II
(k, ℓ)-RESILIENCE AND SPECTRAL RADIUS EVALUATION.

Architecture (A) (k,ℓ)-resilience Spectral radius (ρ(A))
A0 (2, 4) 4.64
A1 (2, 8) 7.75
A2 (4, 8) 10.27

VI. CONCLUSION

This work presents a multi-layered approach to modeling
complex systems using five layers: physical, sensor, actuator,
cyber, and mission. We have conducted a resilience assess-
ment of each layer of the SWaT pumping stage. We have also
built several designs with different degrees of resilience to
compare our results. The eigenvector centrality metric shows
a decrease in its value when the resilience capabilities of
the system are increasing. We have compared our results
with the (k, ℓ)-resilience and spectral radius metrics. The
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(a) Physical layer of SWaT pumping stage designs.
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(b) Sensor layer of SWaT pumping stage designs.
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(c) Actuator layer of SWaT pumping stage designs.
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(d) Cyber layer of SWaT pumping stage designs.
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(e) Mission layer of SWaT pumping stage designs.

Fig. 3. Resilience assessment of SWaT pumping stage designs modeled with a multi-layered approach.

results are consistent with an increase in the resilience
potential. However, the architecture with the best critical
point placement is not necessarily the most resilient one.

We foresee the following research axes for considering
cyber resilience applied to complex systems modeled by
multi-layered representations. Firstly, there is a need to
be able to build remediation graphs. The objective is to
ensure that specific countermeasures can absorb the impact
of an attack. Secondly, we must ensure the adversary never
acquires perfect knowledge about the system to perpetrate

an attack with high-impact cascading effects. To achieve this
goal, the cyber layer of a system can use decoy mechanisms
to fool the adversary and avoid the attack on critical points,
this leading to moving-target defense strategies.
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