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Abstract

In this paper, we will introduce two main conjectures. The first one may be seen
as a general conjecture that encompasses the Collatz one and may be stated as
following. For any positive integer p ≥ 0, let dp = 2p + 1, αp = 2p + 2 and
βp = 2p. Starting with any positive integer n ≥ 1: If n is divided by dp then
divide it by dp, else multiply it by αp and add βp times the remainder of n by
dp. Repeating the process iteratively, it always reaches 2p after finite number of
iterations. Except for p = 1, 3, 4, the process for p = 1 may reaches 21 or also
14, for p = 3, the process may reaches 23 or also 280 and for p = 4, the process
may reaches 24 or also 1264. The classical Collatz conjecture may be seen as a
special case of our conjecture for p = 0 corresponding to d0 = 2, α0 = 3 and
β0 = 1. The second one, may be stated in its special case as following. Starting
with a positive integer: If it is a multiple of 10 then remove all the zeros on the
right, otherwise, multiply it by 6, add 4 times its last digit and divide the result
by 5. Repeat the process infinitely. Regardless the starting number, the process
eventually reaches 4 after a finite number of iterations. We will discuss the two
conjectures more precisely, we will specify the trivial cycles and we will also give
a general formulation of the second conjecture. We will discuss verification of
both conjectures and give some graphs by specifying the corresponding backward
mapping.

Keywords: Collatz conjecture, Syracuse Conjecture, 3n + 1-problem, discrete
mathematics

1 Introduction

The Collatz conjecture is one of the famous unsolved problem in mathematics. This
conjecture is also well known as the 3n + 1 problem and is formulated as following:
Starting with any initial integer ≥ 1, if the number is even divide it by 2 else multiply
it by 3 and add 1. The Collatz conjecture asserts that repeating the process iteratively,
it always reaches 1. More precisely, consider the operator C̃ : N :−→ N given by

C̃(n) =

{
n/2 if n ≡ 0 (mod 2)
3n+ 1 if n 6≡ 0 (mod 2).

(1)

The Collatz conjecture may be reformulated as following: For any n ∈ N = {1, 2, 3, . . .},
there is a positive integer k ∈ N0 := N∪{0} such that C̃(k)(n) = 1, where the notation

C̃(k) stands for the k-th iterate of the mapping C̃. It is also conjectured that the
trivial cycle (1→ 4→ 2→ 1) is the unique cycle of the Collatz operator C̃. A survey
and extensive of literature on this subject has been given in [1, 2]. We may speed the

1



convergence to the cycle by dividing in the odd case by 2 which leads to the modified
Collatz operator C : N :−→ N given by

C(n) =

{
n/2 if n ≡ 0 (mod 2)
(3n+ 1)/2 if n 6≡ 0 (mod 2).

(2)

The trivial unique cycle is now (1→ 2→ 1). The Collatz conjecture has been verified
experimentally with computer by many authors. For instance, in [3], the author claims
that he verified in 2009 the classical Collatz conjecture up to 262.3 ' 5.67× 1018 and
in [4], the author claims that he verified in 2020 the same conjecture up to 268 '
2.95× 1020.

We have discussed, in [5], a general extension to the classical Collatz conjecture
by considering the following operator T : N :−→ N given by

T (n) =

{
n/d if n ≡ 0 (mod d)

(αn+ β[κ0n]d)/d if n 6≡ 0 (mod d),
(3)

where α > d ≥ 2 are two positive integers, β is another integer which may be negative
and κ0 = ±1. The integers d, α and β are such that: α 6≡ 0 (mod d) and β 6≡ 0 (mod d).
The notation [n]d denotes the remainder of n in the Euclidean division of n by d with
the standard condition 0 ≤ [n]d < d. The triplet (d, α, β) associated to T will be
denoted by (d, α, β)+++ and (d, α, β)−−− for κ0 = +1 and for κ0 = −1, respectively and it
will be called an admissible triplet if it satisfies the following condition

α = λ1d
ν1 − κ1δ > d and β = κ0(λ0d

ν0 − α), (4)

where the integers d ≥ 2, λ0 ≥ 1, λ1 ≥ 1, ν0 ≥ 1, ν1 ≥ 1, 1 ≤ δ and κ0, κ1 = ±1
such that λ0 6≡ 0 (mod d) and λ1 6≡ 0 (mod d). The condition (4) is a necessary and
sufficient condition that the operator T : N :−→ N is well defined from N into N.

Given n ∈ N, the trajectory of n is the set Γ(n) = {n, T (n), T (2)(n), . . .} of iterates
starting by n. A cycle (if it exists), having k elements (or vertices), associated to the
mapping T is a finite set Ω for which T (k)(x) = x for all x ∈ Ω. We will denote by
Ω(ω) = {ω, T (ω), T (2)(ω), . . . , T (k−1)(ω)} the cycle (if it exists) associated to T (or to
the triplet (d, α, β)± ) of length k where ω is the smallest element in the cycle. We
will also use this abusive following notation

(ω → T (ω)→ T (2)(ω)→ . . .→ T (k−1)(ω)→ ω),

to denote the cycle Ω(ω). The order of an admissible triplet (d, α, β) is the number of
its cycles. It may be zero, finite integer or infinite. We have the following definition.
Definition 1. Let (d, α, β)±±± be an admissible triplet with its associated mapping T
given by (3). We will say that:

• The admissible triplet (d, α, β)±±± is a weak admissible triplet if and only if it has at
least one cycle and at most a finite number of cycles.

• The admissible triplet (d, α, β)±±± is a strong admissible triplet if and only if (d, α, β)±±±
is a weak admissible triplet and the set G∞(d, α, β) is empty. Namely, the triplet
has a finite number of cycles without any divergent trajectory.

The classical Collatz conjecture may be now reformulated as following:
Conjecture 1 (of Collatz). The triplet (2, 3, 1)+ is a finite strong triplet of order one.
Its unique cycle is the trivial one Ω(1) = (1→ 2→ 1) of length 2.

Many theoretical results and interesting properties on the classical Collatz sequence
were given by many others, among them we cite [2, 6–10], the list is not exhaustive.

The remainder of this paper is organized as following: In Section 2, we will for-
mulate a general conjecture that encompasses the classical Collatz one. In Section 3,
we introduce a new general conjecture that behaves as the Collatz one. Written the
Collatz conjecture in the binary base, the new proposed conjecture may be seen as
the equivalent of the Collatz one in the decimal base. The short Section 4 is devoted
to the verification of the conjectures. Section 5, is devoted to the algorithm given the
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backward operator and which allows us the construction of graphs illustrating the
conjecture.

2 The (2p + 2)n + 2p conjecture modulo 2p + 1 as a
general Collatz conjecture

In this section, we are interested to the specific case, where d ≥ 2, λ1 = ν0 = ν1 =
δ = 1, λ0 = 2, κ0 = 1 and κ1 = −1 which leads, according to (4), to the triplet (d, d+
1, d − 1)+. We will formulate and discuss a general conjecture related to the triplet
(d, d+1, d−1)+ that encompasses the classical Collatz conjecture. For more details on

this extension, we refer to [5]. The operator T̃ corresponding to the admissible triplet
(d, d+ 1, d− 1)+ is given by

T̃ (n) =

{
n/d if n ≡ 0 (mod d)
(d+ 1)n+ (d− 1)[n]d if n 6≡ 0 (mod d),

(5)

We have the following result
Theorem 1. For d ≥ 2, the triplet (d, α, β)+ := (d, d + 1, d − 1)+ associated to the

operator T̃ given by (16) is at least a weak triplet. It has at least the following trivial
cycle of length 2d− 1:

Ω(β) =
(
β → 2βd→ 2β → 3βd→ 3β → 4βd→ 4β → . . .

. . .→ kβ → (k + 1)βd→ (k + 1)β → . . .→ (d− 1)β → dβd→ dβ → β
)
. (6)

Proof. We have obviously, for k ∈ {1, 2, . . . , d− 1}, T̃ (kβ) = (d+ 1)kβ + (d− 1)[kβ]d.

But [kβ]d = [−k]d = d−k, it follows that T̃ (kβ) = (d+1)kβ+(d−1)(d−k) = (k+1)βd.

So, for k ∈ {1, 2, . . . , d−1}, we have T̃ (2k−1)(β) = (k+ 1)βd , T̃ (2k)(β) = (k+ 1)β and

T̃ (2d−1)(β) = β, which shows that the Ω(β) given by (8) is a cycle of length 2d−1.

To speed up the convergence to the cycle, we consider the following modified
operator T : N :−→ N given by

T (n) =

{
n/d if n ≡ 0 (mod d)
(d+ 1)n+ (d− 1)[n]d

d
if n 6≡ 0 (mod d),

(7)

Then, we have the corollary
Corollary 1. For d ≥ 2, the triplet (d, α, β)+ = (d, d + 1, d − 1)+ associated to the
operator T given by (7) is at least a weak triplet. It has at least the following trivial
cycle of length d:

Ω(β) =
(
β → 2β → 3β → . . .→ kβ → (k + 1)β → . . .→ (d− 1)β → dβ → β

)
. (8)

In the rest of this paper, we are interested to the particular case where d = 2p + 1
with p ≥ 0 is a positive integer. Then,

d = dp := 2p + 1, α = αp := dp + 1 = 2p + 2, β = βp := dp − 1 = 2p. (9)

The corresponding mapping, for p ≥ 0, is given by

Tp(n) =

 n/(2p + 1) if n ≡ 0 (mod (2p + 1))
(2p + 2)n+ 2p[n]p

2p + 1
if n 6≡ 0 (mod (2p + 1)),

(10)

here [n]p := [n]dp stands for the rest in the Euclidean division of n by dp = 2p + 1.
We observe that the case p = 0 corresponds to the classical Collatz case (2). We now
ready to formulate our main conjecture which may be seen as a generalization of the
classical Collatz conjecture .
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Conjecture 2. For all integer p ≥ 0 the triplet (2p + 1, 2p + 2, 2p)+ is a strong
admissible triplet.

1. For all integer p ≥ 0 with p 6∈ {1, 3, 4}, the strong admissible triplet (2p + 1, 2p +
2, 2p)+ is of order one and its unique cycle is the trivial cycle of length 2p + 1:

Ω(2p) =
(

1 · 2p → 2 · 2p → 3 · 2p → . . .→ (2p + 1) · 2p → 2p
)
.

For all integer n ≥ 1, there exists an integer k ≥ 0 such that T
(k)
p (n) = 2p.

2. For p ∈ {1, 3, 4}, the strong admissible triplet (2p + 1, 2p + 2, 2p)+ is of order two.
Its first trivial cycle of length 2p + 1 is:

Ω(2p) =
(

1 · 2p → 2 · 2p → 3 · 2p → . . .→ (2p + 1) · 2p → 2p
)
.

Its second trivial cycle in each case, is the cycle Ω(ωp) of length 9, 21, 49, respectively
and starting with ω1 = 14, ω3 = 280 and ω4 = 1264, respectively. The second cycle
is given in each case as:

Ω(ω1) =
(
14→ 20→ 28→ 38→ 52→ 70→ 94→ 126→ 42→ 14

)
,

Ω(ω3) =
(
280→ 312→ 352→ 392→ 440→ 496→ 552→ 616→ 688→ 768→

856→ 952→ 1064→ 1184→ 1320→ 1472→ 1640→ 1824→ 2032→
2264→ 2520→ 280).

Ω(ω4) =
(
1264→ 1344→ 1424→ 1520→ 1616→ 1712→ 1824→ 1936→ 2064→

2192→ 2336→ 2480→ 2640→ 2800→ 2976→ 3152→ 3344→ 3552→
3776→ 4000→ 4240→ 4496→ 4768→ 5056→ 5360→ 5680→ 6016→
6384→ 6768→ 7168→ 7600→ 8048→ 8528→ 9040→ 9584→ 10160→
10768→ 11408→ 12080→ 12800→ 13568→ 14368→ 15216→ 16112→
17072→ 18080→ 19152→ 20288→ 21488→ 1264

)
.

For p ∈ {1, 3, 4} and for all integer n ≥ 1, there exists an integer k ≥ 0 such that

T
(k)
p (n) ∈ {2p, ωp}.

Example 1. The classical Collatz conjecture is a special case of the conjecture 2 ,
corresponding to p = 0 with the triplet (d0, α0, β0)+ = (1, 2, 3)+. For all n ∈ N, ∃k ≥ 0

such that T
(k)
0 (n) = 20 = 1. Its unique cycle is the trivial cycle (1→ 2→ 1) of length

2p + 1 = 2.
Example 2. For p = 2, we get the triplet (d2, α2, β2)+ = (5, 6, 4)+. The corresponding
mapping is T2 : N −→ N given by

T2(n) =

{
n/5 if n ≡ 0 (mod 5)(

6n+ 4[n]d

)
/5 if n 6≡ 0 (mod 5).

(11)

If the previous conjecture is true, then (5, 6, 4)+ is an admissible strong triplet. Its
unique trivial cycle is Ω(4) = (4→ 8→ 12→ 16→ 20→ 4), of length d2 = 22+1 = 5.

For all n ∈ N, ∃k ≥ 0 such that T
(k)
2 (n) = 22 = 4.

Let us examine some trajectories for this triplet. Starting from the integer n = 95
the trajectory is

95→ 19→ 26→ 32→ 40→ 8→ 12→ 16→ 20→ 4.
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But, tarting from the integer n = 83 the trajectory is:

83→ 102→ 124→ 152→ 184→ 224→ 272→ 328→ 396→ 476→ 572→ 688→
828→ 996→ 1196→ 1436→ 1724→ 2072→ 2488→ 2988→ 3588→ 4308→ 5172→
6208→ 7452→ 8944→ 10736→ 12884→ 15464→ 18560→ 3712→ 4456→ 5348→
6420→ 1284→ 1544→ 1856→ 2228→ 2676→ 3212→ 3856→ 4628→ 5556→
6668→ 8004→ 9608→ 11532→ 13840→ 2768→ 3324→ 3992→ 4792→ 5752→
6904→ 8288→ 9948→ 11940→ 2388→ 2868→ 3444→ 4136→ 4964→ 5960→ 1192→
1432→ 1720→ 344→ 416→ 500→ 100→ 20→ 4.

Figure1 presents the trajectories starting from 95 and from 83, respectively.

Fig. 1 Graphs of the trajectories stating from n = 95 (left) and from n = 83 (right).

Example 3. For p = 25, we get the triplet
(
33445533, 33445534, 33445532

)
+

. The
corresponding mapping T25 : N −→ N is given by

T25(n) =

{
n/33554433 if n ≡ 0 (mod 33554433)(

33554434n+ 33554432[n]d

)
/33554433 if n 6≡ 0 (mod 33554433).

(12)

If the previous conjecture is true, then
(
33445533, 33445534, 33445532

)
+

is an admis-
sible strong triplet. Its unique cycle is the following trivial cycle of length 33554433:
Ω(33554432) = (33554432→ 67108864→ 100663296→ 134217728→ 167772160→
201326592→ 234881024→ 268435456→ 301989888→ 335544320→ 369098752→
402653184→ . . . . . . . . . . . . . . . . . . . . .→ 1125899571298304→ 1125899604852736→
1125899638407168→ 1125899671961600→ 1125899705516032→ 1125899739070464
→ 1125899772624896→ 1125899806179328→ 1125899839733760→
1125899873288192→ 1125899906842624→ 1125899940397056→ 33554432).

and for all n ∈ N there exists k ≥ 0 such that T
(k)
25 (n) = 225 = 33554432. We note

that the maximum element of the trivial cycle Ω(33554432) is 1125899940397056.

3 Another nice conjecture and its generalization

In this section, we introduce a new conjecture, which behaves like the Collatz one.
This conjecture may be stated as following.
Conjecture 3. Starting with any positive integer n ≥ 1:

• If n is a multiple of 10 then remove all the zeros on the right.
• Otherwise, multiply it by 12, add 8 times its last digit.
• Repeat the process infinitely.

Then, regardless the starting number, the process eventually reaches 4 after a finite
number of iterations.

It is clear that the last conjecture is related to the following operator T̃ : N :−→ N
given by

T̃ (n) =

{
n/10 if n ≡ 0 (mod 10)

12n+ 8[n]10 if n 6≡ 0 (mod 10).
(13)
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The remainder [n]10 in the Euclidian division of n by 10 is exactly equal to the last
digit of the number n in the decimal base. We observe that the conjecture 3 looks like
the classical Collatz conjecture written in the binary base which may be reformulated
as following:
Conjecture 4. In the binary base, starting with any positive integer n ≥ 1:

• If n is a multiple of 10 then remove all the zeros on the right.
• Otherwise, multiply it by 11, add 1.
• Repeat the process infinitely.

Then, regardless the starting number, the process eventually reaches 1 after a finite
number of iterations.

To speed convergence we replace the operator given in (13) by the following one

T (n) =

{
n/10 if n ≡ 0 (mod 10)

12n+ 8[n]10
10

if n 6≡ 0 (mod 10),
or T (n) =

{
n/10 if n ≡ 0 (mod 10)

6n+ 4[n]10
5

if n 6≡ 0 (mod 10).

(14)
The conjecture 3 may be reformulated as following.
Conjecture 5. The triplet (10, 12, 8)+, associated to the operator T given by (14), is
a strong admissible triplet with order one. Its unique trivial cycle is:(

4→ 8→ 16→ 24→ 32→ 40→ 4
)
, (15)

and for all integer n ≥ 1, there exists an integer k ≥ 0 such that T (k)(n) = 4.
For instance, starting with n = 1 gives the following trajectory 1 → 2 → 4 and

starting with n = 20 gives the following trajectory 20→ 2→ 4. Another example by
starting with n = 75, gives the trajectory

75→ 94→ 116→ 144→ 176→ 216→ 264→ 320→ 32→ 40→ 4.

Of course, the length of the trajectory is not always short. For example, for n = 135,
we get the following trajectory

135→ 166→ 204→ 248→ 304→ 368→ 448→ 544→ 656→ 792→ 952→ 1144
→ 1376→ 1656→ 1992→ 2392→ 2872→ 3448→ 4144→ 4976→ 5976→ 7176
→ 8616→ 10344→ 12416→ 14904→ 17888→ 21472→ 25768→ 30928→ 37120
→ 3712→ 4456→ 5352→ 6424→ 7712→ 9256→ 11112→ 13336→ 16008→ 19216
→ 23064→ 27680→ 2768→ 3328→ 4000→ 400→ 40→ 4.

The maximun number reached in this trajectory is 37120. In Figure 2, the graphs
represent the the trajectories starting from 75 and from 135, respectively.

Fig. 2 Graphs of the trajectories stating from n = 75 (left) and from n = 135 (right).

We now give a general formulation of the conjecture 5 for other details, see [5]. Let
d = 2d′ ≥ 4 be an even integer and choose λ1 = ν0 = ν1 = κ0 = 1, δ = λ0 = 2 and
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κ1 = −1 which leads, according to (4), to the triplet (d, d+ 2, d− 2)+. The mapping
corresponding to this triplet is given by

T (n) =

{
n/d if n ≡ 0 (mod d),
(d+ 2)n+ (d− 2)[n]d

d
if n 6≡ 0 (mod d),

(16)

which may be simplified as

T (n) =

{
n/d if n ≡ 0 (mod d)
(d′ + 1)n+ (d′ − 1)[n]d

d′
if n 6≡ 0 (mod d),

(17)

Theorem 2. For d = 2d′ ≥ 4 with d even integer, the admissible triplet (d, α, β)+++ =

(d, d+ 2, d− 2)+++ has at least the following trivial cycle of length
1

2
d+ 1:

Ω(
1

2
β) =

(1

2
β → β → 2β → 3β → . . .→ d′β → 1

2
β
)
. (18)

Proof. As d = 2d′, then α = 2(d′+ 1) and β = 2(d′− 1). We have obviously, T ( 1
2β) =

1
2β

α+ β

d
= β. For 1 ≤ k ≤ d′ − 1, we have T (kβ) =

(d+ 2)kβ + (d− 2)[kβ]d
d

.

But kβ = k(d − 2), then [kβ]d = [−2k]d = d − 2k. It follows that T (kβ) =
(d+ 2)kβ + (d− 2)(d− 2k)

d
= (k + 1)β. Which gives T (d′−1)(β) = d′β. But d′β =

2d′(d′ − 1) = 1
2βd. It follows that T (d′+1)( 1

2β) = 1
2β. which gives rise to the trivial

cycle (18).

Example 4. For instance the admissible triplet (12, 14, 10)+ has the trivial cycle
Ω(5) = (5 → 10 → 20 → 30 → 40 → 50 → 60 → 5) of length 7. But it has
also two other cycles which are Ω(4) = 4 → 8 → 16 → 22 → 4) of length 6 and
Ω(1305) = (1305→ 1530→ 1790→ 2090→ 2440→ 2850→ 3330→ 3890→ 4540→
5300 → 6190 → 7230 → 8440 → 9850 → 11500 → 13420 → 15660 →→ 1305) of
length 17. It seems that the admissible triplet(12, 14, 10)+ has only the three cycles.

More interesting particular case is the one where d = 2p+2 with p ≥ 1 is a positive
integer. Then,

d = dp := 2p + 2, α = αp := dp + 2 = 2p + 4 β = βp := dp − 2 = 2p. (19)

Thus the corresponding mapping T := Tp, for p ≥ 1, is given by

Tp(n) =


n/(2p + 2) if n ≡ 0 (mod (2p + 2))
(2p−1 + 2)n+ 2p−1[n]p

(2p−1 + 1)
if n 6≡ 0 (mod (2p + 2)),

(20)

here [ ]p = [ ]dp stands for the remainder in the Euclidean division by dp = 2p + 2.
We observe that the case p = 3 corresponds to the case d3 = 10, α3 = 12 and βp = 8
which is exactly the case of our conjecture 5. We now formulate the following general
main conjecture also obtained according to our computational experiences and tests
supported by computer. We believe that the following general conjecture is true.
Conjecture 6. 1. For all integer p ≥ 1 with p 6= 2, the triplet (2p + 2, 2p + 4, 2p)+++

is an admissible strong triplet of order one, its unique cycle is the trivial cycle of
length 2p−1 + 2:

Ω(2p−1) =
(

2p−1 → 2p → 2 · 2p → 3 · 2p → . . .→ (2p−1 + 1) · 2p → 2p−1
)
.

Then, for all integer n ≥ 1, there exists an integer k ≥ 0 such that T
(k)
p (n) = 2p−1.

7



2. If p = 2, the triplet (6, 8, 4)+++ is an admissible strong triplet of order two. Its first
trivial cycle is Ω(2) of length 4 given as:

Ω(2) =
(

2→ 4→ 8→ 12→ 2
)
,

Its second trivial cycle is the cycle Ω(74) of length 7 given as:

Ω(74) =
(
74→ 100→ 136→ 184→ 248→ 332→ 444→ 74

)
.

Then, for all integer n ≥ 1, there exists an integer k ≥ 0 such that T
(k)
2 (n) ∈ {2, 74}.

The last Conjecture 6 encompass our conjecture 5 obtained for p = 3 and associ-
ated to the operator given in (20). But, it does not encompass the classical Collatz
conjecture. However, we can derive a modified version of the classical Collaz conjecture
for p = 1, we get (d, α, β)+ = (4, 6, 2)+, which gives the map T1 as following:

T1(n) =

{
n/4 if n ≡ 0 (mod 4)
3n+ [n]4

2
if n 6≡ 0 (mod 4),

or T1(n) =



n/4 if n ≡ 0 (mod 4)
3n+ 1

2
if n ≡ 1 (mod 4),

3n+ 2

2
if n ≡ 2 (mod 4),

3n+ 3

2
if n ≡ 3 (mod 4),

(21)
In this case where the previous conjecture is true, then the triplet (4, 6, 2)+ is a strong
admissible triplet of order one. Its unique trivial cycle is (1→ 2→ 4→ 1) and for all

n ≥ 1, there exists an integer k ≥ 0 such that T
(k)
1 (n) = 2p−1 = 1.

Let p ≥ 1 be a positive integer and consider the following operator Tp : N :−→ N
given by

Tp(n) =


n

2p + 2
if n ≡ 0 (mod dp)

(2p + 4)n+ 2p[n]dp
2p + 2

if n 6≡ 0 (mod dp).
(22)

The map map Tp may be written in the following form

Tp(n) =


n

2p + 2
if n ≡ 0 (mod dp)

(2p−1 + 2)n+ 2p−1[n]dp
2p−1 + 1

if n 6≡ 0 (mod dp).
(23)

4 Verification and tests

In this section, we discuss verification concerning the main given conjecture 2. The
verification of the conjecture 1 consists of performing an algorithm that looks like the
algorithm 1. Clearly, if the conjecture 2 is not true for an integer p ≤ pmax, then the
while-loop in the Algorithm 1 never terminates for an integer n such that 1 ≤ n ≤ nmax
where pmax and nmax are a great integers test. We have tested the Algorithm 1
with Matlab, Python, SageMaths and Mathematica by using 3 laptop computers. It
was possible to work in parallel. With Matlab, we used Parallel Computing with 8
cores workers. Now, we may state that this conjecture is true from p = 0 up to
p = pmax = 25 and starting by any integer n from n = 1 up to n = nmax := 106. For
the fixed value p = 2, we took the tests further by changing the strategy. Instead of
checking whether a trajectory reaches the terminal value 4, we checked whether for
any starting integer n in an interval (N1, N2) there exists a number k of iterations such

that T
(k)
2 (n) < n which led to Algorithm 2. This was faster than checking whether the

trajectory reaches the cycle. In our test we took N1 = 106 + 1 and we have reached
N2 = 240 = 1099511627776. The speed was about 1.5 × 105 numbers per second and
the elapsed time was about 7.33× 106 seconds which is about 85 days. We may assert
that our conjecture is true for p = 2 and for all n from 1 to N2 = 240 = 1099511627776.
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Algorithm 1 Algorithm for testing conjecture 2.

1: Choose pmax and nmax
2: for p = 0, . . . , pmax do
3: d = 2p + 1; α = d+ 1 = 2p + 2; β = d− 1 = 2p;
4: S = {β}
5: if p == 1 then
6: S = {β, 14}
7: else
8: if p == 3 then
9: S = {β, 28}

10: else
11: if p == 4 then
12: S = {β, 1264}
13: end if
14: end if
15: end if
16: for n = 1, . . . , nmax do
17: m = n
18: while m 6∈ S do
19: if m ≡ 0 (mod d) then
20: m =m/d
21: else
22: m = (αm+ β[m]d)/d
23: end if
24: end while
25: end for
26: end for

Algorithm 2 Algorithm for testing conjecture 2 for p = 2 we have (dα, β) = (5, 6, 4).

1: Choose N1 and N2, with N1 < N2

2: d = 5; α = d+ 1 = 6; β = d− 1 = 4;
3: for n = N1, . . . , N2 do
4: m = n
5: while m ≥ n do
6: if m ≡ 0 (mod 5) then
7: m =m/5
8: else
9: m = (6m+ 4[m]5)/5

10: end if
11: end while
12: end for

5 Backward mapping and graphs

In this section we will give parts of the graphs representing the map Tp given by (10)
for p = 0, 1, 2. For p = 0 the graph of the map T0 is well known. To get the graph of
the map Tp, it is crucial to give the backward mapping T−1p . The expression of T−1p

for p = 0, 1, 2 may be obtained in each case as following:

T−10 (n) =

{
{2n} if n ≡ 0 or 1 (mod 3),

{2n, (2n− 1)/3} if n ≡ 2 (mod 3),
(24)

T−11 (n) =

 {3n, (3n− 4)/4} if n ≡ 0 (mod 4),
{3n} if n ≡ 1 or 3 (mod 4),

{3n, (3n− 2)/4} if n ≡ 2 (mod 4),
(25)
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and

T−12 (n) =


{5n, (5n− 12)/6} if n ≡ 0 (mod 6),

{5n} if n ≡ 1 or 3 or 5 (mod 6),
{5n, (5n− 4)/6, (5n− 16)/6} if n ≡ 2 (mod 6),

{5n, (5n− 8)/6} if n ≡ 4 (mod 6).

(26)

Fig. 3 Graph of a parts of the tree with its unique cycle corresponding to the triplet (2, 3, 1)+ (left)
and to triplet (5, 6, 4)+.

Fig. 4 Graph of parts of the tree corresponding to the triplet (3, 4, 2)+, with its first cycle (right)
and with its second cycle (right).

6 Conclusion

In this paper, we have introduced two general conjectures which behave like the
classical Collatz conjecture. We have analyzed such conjectures and presented some
examples. We have discussed the verification and we have presented some graphs. The
main idea behind this paper is the introduction of such new and interesting conjectures.
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