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Abstract

In the context of right-censored data, we study the problem of predicting the restricted
time to event based on a set of covariates. Under a quadratic loss, this problem is equivalent
to estimating the conditional Restricted Mean Survival Time (RMST). To that aim, we pro-
pose a flexible and easy-to-use ensemble algorithm that combines pseudo-observations and
super learner. The classical theoretical results of the super learner are extended to right-
censored data, using a new definition of pseudo-observations, the so-called split pseudo-
observations. Simulation studies indicate that the split pseudo-observations and the stan-
dard pseudo-observations are similar even for small sample sizes. The method is applied to
maintenance and colon cancer datasets, showing the interest of the method in practice, as
compared to other prediction methods. We complement the predictions obtained from our
method with our RMST-adapted risk measure, prediction intervals and variable importance
measures developed in a previous work.

Keywords: Right-censoring, RMST, prediction, stacking, pseudo-observations, super
learner.

1 Introduction

Predicting the time to an event of interest based on a set of covariates is a relevant goal in
applications. For example, in medical applications, it could be interesting to predict the time
to onset of cancer, relapse or death of a patient, while in industrial applications, we might be
interested in predicting the time to failure of a mechanical part. Due to tail issues caused by
right-censoring, it is common to focus on the restricted time to event instead of the time to event
itself (see Eaton et al., 2020). In practice, this prediction problem is equivalent to estimating
the Restricted Mean Survival Time (RMST) when a quadratic loss is used. The RMST is a
clinically meaningful quantity that has gained attention over the years for its simplicity and
interpretability. The RMST can be easily retrieved by integrating an estimator of the survival
function, yet new approaches have been developed to directly model it (see Andersen et al., 2004;
Tian et al., 2014; Wang and Schaubel, 2018). Remarkably, these methods avoid strong modeling
assumptions such as the proportional hazard assumption from the Cox model.

In particular, pseudo-observations, introduced by Andersen et al. (2004), have enabled the
application of a large range of RMST estimation models. Pseudo-observations are a transfor-
mation of the incomplete observed times that have the strong following property (see Jacobsen
and Martinussen, 2016): Their conditional expectation is equal, up to a remainder term, to the
conditional RMST. As a result, they can be fed into any prediction model adapted to uncensored
data, from generalized linear models (Andersen et al., 2004) to neural networks (Zhao, 2021).
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In practical applications, the choice of the best learner among all of available machine learning
algorithms for uncensored data is a difficult question, as the prediction performance of the dif-
ferent algorithms may depend on the application. As a result, an attractive alternative is to use
ensemble methods, such as the super learner algorithm (see Van Der Laan et al., 2007). When
dealing with uncensored data, it has been proven that, under mild assumptions, the learner
with the lowest cross-validated risk in a user-defined library of algorithms, the so-called discrete
super learner, performs as well as the best algorithm in the library up to an error term (Van
Der Laan and Dudoit, 2003; Dudoit and Van Der Laan, 2005; Van Der Vaart et al., 2006). This
result can be exploited to construct the best linear combination of all the learners in the library,
the so-called continuous super learner. This stacking method has the theoretical guarantee to
perform asymptotically at least as well as any of the candidate learners. The continuous super
learner is simply termed “super learner” in what follows.

The goal of this work is to adapt the super learner algorithm for RMST estimation with
right-censored data. The super learner for analyzing censored data has already been the sub-
ject of previous research. For instance Golmakani and Polley (2020) proposed a survival super
learner that takes censored data as input and applies a library of survival algorithms. However,
the models used in this super learner must verify the proportional hazard assumption, which is a
strong limitation of the approach. Another example is the super learner with Inverse Probability
Censoring Weight (IPCW) loss (see Van Der Laan and Dudoit, 2003; Keles et al., 2004; Gonza-
lez Ginestet et al., 2021; Devaux et al., 2022), which allows to use any survival model as long
as the conditional independence assumption holds and the censoring distribution is consistently
estimated. Finally, Sachs et al. (2019) and Gonzalez Ginestet et al. (2022) proposed two super
learner methods with a pseudo-observations-based-AUC loss. However, to our knowledge, none of
the pseudo-observations-based super learner methods are provided with theoretical convergence
guarantees.

In this work, we present a novel approach combining the super learner with pseudo-observations
for the estimation of the RMST. In order to derive theoretical results similar to those of Van
Der Laan et al. (2007) in the uncensored case, we first present a new type of pseudo-observations,
namely the split pseudo-observations. Those are introduced, along with the standard pseudo-
observations, in Section 2. In Section 3, we present in details the super learner based on both
standard and split pseudo-observations. Theoretical results for the combination of split pseudo-
observations with the super learner are also derived. The performance of our method is studied
extensively through simulations in Section 4 and on two real datasets in Section 5.

2 Pseudo-observations

In the context of right-censored data, we denote by T ∗ the time to the event, C the censoring
time, T = T ∗∧C the observed time and δ = 1{T ∗ ≤ C} the censoring indicator. An observation
is then represented by the vector O = (T, δ, Z) where Z ∈ Rd is a covariate vector. We note
S(t | Z) = P(T ∗ > t | Z) the survival function of T ∗ conditionally on the covariates Z. Let
τH = inf{t > 0 : P(T > t | Z) = 0 a.s.}. The RMST is defined for a fixed time horizon τ < τH ,
conditionally on the covariates, as

E[T ∗ ∧ τ | Z] =
∫ τ

0

S(t | Z)dt.

Given this definition, the RMST can be estimated for instance by integrating an estimator of
the conditional survival function between 0 and τ , or by regressing the restricted event times
on covariates. In the second case, censoring must be taken into account since the times T ∗ are
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not observed for all individuals. This can be achieved by using pseudo-observations. Consider
censored observations Dn = {Oi = (Ti, δi, Zi), i = 1, . . . , n}, where n is the sample size. Classical
pseudo-observations are computed in the following way: For a given τ < τH and all i = 1, . . . , n,

Γi := n

∫ τ

0

Ŝ(t)dt− (n− 1)

∫ τ

0

Ŝ−i(t)dt, (1)

where Ŝ is the Kaplan-Meier estimator of the survival function computed on all data and Ŝ−i

is the same estimator computed on all data but the i-th observation. The interest of pseudo-
observations for regression purposes lies in the following result by Jacobsen and Martinussen
(2016):

Γi = E[T ∗ ∧ τ ] +
∫ τ

0

ϕ̇(Oi)(t)dt+ ξn,

where ξn = oP(1), ϕ is the first order influence function in the Von Mises expansion of the
Kaplan-Meier estimator, and

E
[∫ τ

0

ϕ̇(Oi)(t)dt
∣∣∣ Zi] = E[T ∗ ∧ τ | Zi]− E[T ∗ ∧ τ ],

so that
E[Γi | Zi] = E[T ∗ ∧ τ | Zi] + E[ξn | Zi]. (2)

This result is valid under the following independent censoring assumption.

Assumption 1 (Independent censoring). The censoring time C and the pair of variables (T ∗, Z)
are independent.

Pseudo-observations are, by construction, correlated with each other, which makes it difficult
to study their theoretical properties. To deal with this issue, we propose a new type of pseudo-
observations, called split pseudo-observations. The idea is to split the data in two subsets Dn1

and Dn2
of size n1 and n2 = n − n1, respectively. The former is used to compute the Kaplan-

Meier estimator and the latter for the pseudo-observations. We then define a new type of
pseudo-observations as follows:

Γi(Dn1
) = ΓOi

(Dn1
) := (n1 + 1)

∫ τ

0

Ŝ+i
Dn1

(t)dt− n1

∫ τ

0

ŜDn1
(t)dt, (3)

where Oi is an observation in Dn2
, ŜDn1

is the Kaplan-Meier estimator of the survival function

computed on the n1 data points in Dn1
and Ŝ+i

Dn1
is the same estimator computed on the n1 +1

data points obtained by adding Oi to the sample Dn1 . The main advantage of this construction
is that the new pseudo-observations constructed for all the observations in Dn2

are independent
conditionally on Dn1

. A result similar to Equation (2) can then be easily derived for those split
pseudo-observations. Under Assumption 1:

E[Γi(Dn1
) | Zi, Dn1

] = E[T ∗
i ∧ τ | Zi] + E[ξn1

| Zi, Dn1
], (4)

where ξn1
= oP(1). From a theoretical standpoint, we establish in Section 3 finite sample and

asymptotic results for the super learner coupled with split pseudo-observations. In Section 4, we
observe on simulated data that split and traditional pseudo-observations are very similar, and the
choice between them has minimal impact on the prediction quality. Therefore, while split pseudo-
observations are easier to study for theoretical results, split and traditional pseudo-observations
can be used interchangeably in applications.
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3 Super Learner

In this section we introduce a super learner algorithm for right-censored data based on pseudo-
observations. Our aim is to predict the restricted time to event with a quadratic loss - the Mean
Squared Error (MSE) - using the super learner. It is well known that, under this loss, the best
prediction model is the conditional expectation of the restricted time. Therefore, our super
learner algorithm can also be seen as an estimator of the RMST. We start by reintroducing the
classical super learner for uncensored observations along with a fundamental theoretical result
from Dudoit and Van Der Laan (2005) and we then derive a new result for our proposed approach.

We can formalize the problem in the following way. Let ψ : M → D(Z) be a parameter
mapping a distribution from a statistical model M to an element in the space D(Z) of real-
valued functions defined on a d-dimensional Euclidean set Z ⊂ Rd. A realization ψ = ψ(P ) of ψ
for a given P ∈ M belongs to the parameter space Ψ := {ψ(P ) : P ∈ M} ⊂ D(Z). Consider a
loss function

L : (ψ,O) 7→ L(ψ,O) ∈ R, for ψ ∈ Ψ, O ∼ P.

The quantity of interest is the risk of the parameter ψ for a distribution P ,

Θ(ψ, P ) =

∫
L(ψ, o)dP (o).

Given this definition, the risk minimizer is defined as

ψ∗ = ψ∗(P ) = argmin
ψ∈Ψ

Θ(ψ, P ) = argmin
ψ∈Ψ

∫
L(ψ, o)dP (o),

and characterizes the optimal risk

θ∗ = Θ(ψ∗, P ) = min
ψ∈Ψ

Θ(ψ, P ) = min
ψ∈Ψ

∫
L(ψ, o)dP (o). (5)

For instance, if L(ψ,O) =
(
T ∗ ∧ τ − ψ(Z)

)2
is the quadratic loss function and if

P (t, z) = P(T ∗ ≤ t, Z ≤ z) is the joint law of (T ∗, Z), then the RMST minimizes this risk,
i.e. ψ∗(Z) = E[T ∗ ∧ τ | Z]. In practice, the risk minimizer is typically unknown and we aim
to approximate it as faithfully as possible. Suppose that a dataset of n i.i.d. observations
{Oi, i = 1, . . . , n}, Oi ∼ P ∈ M, of empirical law Pn, is available to estimate a parameter

ψ(P ). An estimator mapping ψ̂ can be viewed simply as an algorithm one applies to data, i.e.
to empirical distributions Pn. A realization of this mapping applied to a particular empirical
distribution Pn is denoted ψ̂(Pn) and belongs to D(Z).

3.1 Uncensored data

For the sake of simplicity, suppose first that we observe the complete data {O∗
i = (T ∗

i , Zi), i =

1, . . . , n}, and we have access to Kn candidate estimators ψ̂k, k = 1, . . . ,Kn, of ψ
∗. We also

call these estimators candidate learners. We then wish to select the best estimator among all
the candidate learners, that is the one that minimizes the quadratic loss. Van Der Laan and
Dudoit (2003), Dudoit and Van Der Laan (2005) and Van Der Vaart et al. (2006) theoretically
validated the use of cross-validation to select an optimal learner among many candidates and
protect against overfitting. Cross-validation starts with splitting the data into a training set and
a validation set. Candidate estimators are then constructed on the training set and evaluated
on the validation set. Formally, we divide the data according to an independent random vector
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Bn = (Bn(i) : i = 1, . . . , n) ∈ {0, 1}n into a training set {O∗
i : i, Bn(i) = 0} of size n0 = n−⌊npn⌋

and a validation set {O∗
i : i, Bn(i) = 1} of size n1 = ⌊npn⌋ for pn ∈ (0, 1). Several cross-validation

schemes, i.e. distributions for Bn, can be used. In the following, we will focus on V -fold cross-
validation, where data are divided into V subsets, or folds, of approximately same size. One by
one, each fold serves as validation set while the remaining folds constitute the training set. The
associated distribution of Bn assigns a mass of 1/V to each of the resulting V binary vectors.

We suppose that all observations O∗
i are i.i.d. of law P ∗ ∈ M, and we denote P 0

Bn
and P 1

Bn

the empirical distributions of the training and validation sets respectively. The cross-validated
risk estimator for the k-th candidate learner is then defined as

θ̂n(k) = EBn
Θ
(
ψ̂k(P

0
Bn

), P 1
Bn

)
= EBn

∫
L
(
ψ̂k(P

0
Bn

), o
)
dP 1

Bn
(o)

= EBn

1

n1

∑
i:Bn(i)=1

L
(
ψ̂k(P

0
Bn

), O∗
i

)
,

and the cross-validated selector is denoted

k̂ = argmin
k∈{1,...,Kn}

θ̂n(k).

Optimality results are based on the comparison between the cross-validated selector and the selec-
tor which, for each given dataset, makes the best choice, knowing the true full data distribution.
This cross-validated oracle selector minimizes the cross-validated conditional risk

θ̃n(k) = EBn
Θ
(
ψ̂k(P

0
Bn

), P ∗) = EBn

∫
L
(
ψ̂k(P

0
Bn

), o
)
dP ∗(o), (6)

and is denoted
k̃ = argmin

k∈{1,...,Kn}
θ̃n(k). (7)

In Dudoit and Van Der Laan (2005), it is proven that the cross-validation selector performs
asymptotically as well as the oracle cross-validation selector in terms of performance measure
such as the MSE for regression or the AUC for classification tasks. The result for the MSE in
the setting with uncensored data is stated in Theorem 1 below.

Theorem 1. Let O∗
1 , . . . , O

∗
n be a random sample from a data generating distribution P ∗, where

each O∗
i = (T ∗

i , Zi) consists of two components, a univariate outcome T ∗
i ∈ R+ and a d-

dimensional covariate vector Zi ∈ Rd. Let {ψ̂k : k = 1, . . . ,Kn} denote a sequence of Kn

candidate estimators for the RMST, ψ∗(Z) = E[T ∗ ∧ τ | Z], which is the risk minimizer for

the quadratic loss function L(ψ,O∗) =
(
T ∗ ∧ τ − ψ(Z)

)2
. Suppose there exists M such that

τ ≤M <∞ and
sup

Z∈Z,ψ∈Ψ
|ψ(Z)| ≤M almost surely.

Finite sample result. Let M1 = 8M2, M2 = 16M2 and c(M,γ) = 2(1 + γ)2(M1/3 +M2/γ).
For all γ > 0,

0 ≤ E[θ̃n(k̂)− θ∗] ≤ (1 + 2γ)E[θ̃n(k̃)− θ∗] + 2c(M,γ)
1 + log(Kn)

npn
·

Asymptotic results. If
log(Kn)

npnE[θ̃n(k̃)− θ∗]
→ 0 as n→ ∞,
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then
E[θ̃n(k̂)− θ∗]

E[θ̃n(k̃)− θ∗]
→ 1 as n→ ∞.

Similarly, if
log(Kn)

npn(θ̃n(k̃)− θ∗)
→ 0 in probability as n→ ∞,

then
θ̃n(k̂)− θ∗

θ̃n(k̃)− θ∗
→ 1 in probability as n→ ∞.

Theoretical guarantees for the discrete super learner algorithm, which selects the learner
minimizing the cross-validated risk among all candidates, are outlined in Theorem 1. However,
instead of simply selecting one candidate estimator in the library, it is also possible to consider the
continuous super learner algorithm which fits a weighted combination of the candidate learners.
During the V -fold cross-validation process, a new data matrix is created, where each row i
consists in the set of predictions obtained from Zi by every candidate learners, together with
the true outcome T ∗

i ∧ τ . Outcomes are then regressed onto the predictions, using another
algorithm chosen by the user. This puts weights on the candidate learners. Such a continuous
super learner will perform asymptotically at least as well as the best candidate learner. This is
a direct consequence of Theorem 1 by considering any combination of the candidate learners as
a candidate learner itself, see Van Der Laan et al. (2007).

3.2 Right-censored data

3.2.1 Super learner on standard pseudo-observations

Figure 1: Diagram of the super learner based on standard pseudo-observations for right-censored
data, see Equation (1). Pseudo-observations are computed once and for all at the beginning.
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In order to take into account right-censored data, and motivated by the asymptotic result in
Equation (2), we propose a new method that consists in feeding pseudo-observations directly in
the super learner, using the quadratic loss applied to those pseudo-observations. Our algorithm
is therefore identical to the super learner described in Van Der Laan et al. (2007), with an
additional first step for computing pseudo-observations. A diagram illustrating the method is
provided in Figure 1. The corresponding algorithm is detailed in Algorithm 1. It describes both
the discrete and the continuous pseudo-observations-based super learners, which differ from step
5 onwards.

Algorithm 1 Pseudo-observations-based Super Learner

Input: Data Dn = {Oi = (Ti, δi, Zi) : i = 1, . . . , n}, number of folds V ≥ 2, library of candidate

algorithms for estimating the RMST based on pseudo-observations {ψ̂k : k = 1, . . . ,Kn}.
Output: A trained algorithm for the prediction of the restricted time to event.

1. Compute standard pseudo-observations for the whole dataset: {Γi : i = 1, . . . , n} (see
Equation (1)).
2. Split the dataset into V mutually exclusive blocks.
for v ∈ {1, . . . , V } do

3. Divide observations according to the vector Bn verifying, for all i = 1, . . . , n,

Bn(i) =

{
1 if the i-th observation belongs to the v-th fold,
0 else,

such that {(Γi, Zi) : Bn(i) = 0} is the training set, of empirical law P 0
Bn

, and {(Γi, Zi) :

Bn(i) = 1} is the validation set, of empirical law P 1
Bn

. Train all candidate learners {ψ̂k : k =

1, . . . ,Kn} on the training set, resulting in the trained predictors {ψ̂k(P 0
Bn

) : k = 1, . . . ,Kn}.
4. Predict the restricted time to event for the data in the validation set with each trained
candidate learner: {ψ̂k,i = ψ̂k(P

0
Bn

)(Zi) : k = 1, . . . ,Kn, Bn(i) = 1}.
end for
Discrete super learner
5. Identify the discrete super learner that minimizes the cross-validated risk: k̂ =
argmink∈{1,...,Kn}

1
n

∑n
i=1(Γi − ψ̂k,i)

2.

6. Train the discrete super learner ψ̂k̂ on the entire dataset {(Γi, Zi) : i = 1, . . . , n}.
Continuous super learner
5. Regress the pseudo-observations {Γi : i = 1, . . . , n} onto the predictions {ψ̂k,i : k =
1, . . . ,Kn, i = 1, . . . , n} with a parametric regression model in order to assign weights to the
candidate learners.
6. Train all candidate learners {ψ̂k : k = 1, . . . ,Kn} on the entire dataset {(Γi, Zi) : i =
1, . . . , n}.
7. Combine the candidate learners trained on the whole dataset at step 6 with the weights
obtained at step 5 to form the continuous super learner.

3.2.2 Super learner on split pseudo-observations

We also propose a second algorithm based on split pseudo-observations. It requires to use
a subset of the data, that we call the Kaplan-Meier (or KM) set, to compute the pseudo-
observations in the validation set. A diagram illustrating this second method is provided in
Figure 2. The algorithm is detailed in Algorithm 2, for both discrete and continuous super
learners. The interest in this second algorithm lies in the conditional independence structure
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of the split pseudo-observations which allows to derive theoretical results similar to Theorem 1.
Thus, the theoretical results below are provided with regard to the algorithm based on split
pseudo-observations.

Algorithm 2 Split Pseudo-observations-based Super Learner

Input: Data Dn = {Oi = (Ti, δi, Zi) : i = 1, . . . , n}, number of folds V ≥ 3, library of candidate

algorithms for estimating the RMST based on right-censored data {ψ̂k : k = 1, . . . ,Kn}.
Output: A trained algorithm for the prediction of the restricted time to event.

1. Split the dataset into V mutually exclusive blocks.
for v ∈ {1, . . . , V } do

2. Divide observations according to the vector Bn verifying, for all i = 1, . . . , n,

Bn(i) =

 2 if the i-th observation belongs to the v-th fold,
1 if the i-th observation belongs to the (v + 1)-th fold (or first fold if v = V ),
0 else,

such that {Oi : Bn(i) = 0} is the training set, of empirical law P 0
Bn

, {Oi : Bn(i) = 1} is the
KM set, of empirical law P 1

Bn
, and {Oi : Bn(i) = 2} is the validation set, of empirical law

P 2
Bn

. Compute the split pseudo-observations for the data in the validation set, based on the

KM set: {ΓSi = Γi(P
1
Bn

) : Bn(i) = 2} (see Equation (3)).

3. Train all candidate learners {ψ̂k : k = 1, . . . ,Kn} on the training set, resulting in the

trained predictors {ψ̂k(P 0
Bn

) : k = 1, . . . ,Kn}.
4. Predict the time to event for the data in the validation set with each trained candidate
learner: {ψ̂k,i = ψ̂k(P

0
Bn

)(Zi) : k = 1, . . . ,Kn, Bn(i) = 1}.
end for
Discrete super learner
5. Identify the discrete super learner that minimizes the cross-validated risk: k̂ =
argmink∈{1,...,Kn}

1
n

∑n
i=1(Γ

S
i − ψ̂k,i)

2.

6. Train the discrete super learner ψ̂k̂ on the entire dataset {Oi : i = 1, . . . , n}.
Continuous super learner
5. Regress the split pseudo-observations {ΓSi : i = 1, . . . , n} onto the predictions {ψ̂k,i : k =
1, . . . ,Kn, i = 1, . . . , n} with a parametric regression model in order to assign weights to the
candidate learners.
6. Train all candidate learners {ψ̂k : k = 1, . . . ,Kn} on the entire dataset {Oi : i = 1, . . . , n}.
7. Combine the candidate learners trained on the whole dataset at step 6 with the weights
obtained at step 5 to form the continuous super learner.

Formally, consider the censored observations {Oi = (Ti, δi, Zi), i = 1, . . . , n}, i.i.d. of joint
law P ∈ M, with Ti ∈ R+, δi ∈ {0, 1}, Zi ∈ Rd. As previously, Kn candidate estimator mappings

ψ̂k, k = 1, . . . ,Kn are considered, among which we wish to select the best in terms of quadratic
error, using cross-validation. Combining split pseudo-observations with cross-validation imposes
to divide the data in three subsets instead of two. Observations are divided according to an
independent random vector Bn = (Bn(i) : i = 1, . . . , n) ∈ {0, 1, 2}n into a first training set
{Oi : i, Bn(i) = 0} of size n0 = n− ⌊np1,n⌋ − ⌊np2,n⌋ for p1,n, p2,n, p1,n + p2,n ∈ (0, 1), a second
training set {Oi : i, Bn(i) = 1} of size n1 = ⌊np1,n⌋ and a validation set {Oi : i, Bn(i) = 2}
of size n2 = ⌊np2,n⌋. The first training set is used to compute the candidate estimators of the
RMST. The second training set is used to compute the Kaplan-Meier estimator which in turn is
used for the computation of the pseudo-observations. We refer to this set as the Kaplan-Meier
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Figure 2: Diagram of the super learner based on split pseudo-observations for right-censored
data, see Equation (3). Pseudo-observations are computed during the cross-validation step, for
each validation block, based on an additional subset of the data (KM).

(KM) set. Pseudo-observations are computed for the data in the validation set. We denote P 0
Bn

,
P 1
Bn

and P 2
Bn

the empirical distributions of the three subsets. In this context, Equation (4) can
be rewritten as

E[ΓO(P 1
Bn

) | Z,P 1
Bn
, Bn] = E[T ∗ ∧ τ | Z] + E[ξn1

| Z,P 1
Bn
, Bn], (8)

where ΓO(P
1
Bn

) is the split pseudo-observation constructed for the observation O based on the
distribution P 1

Bn
of the KM set. It turns out that E[ξn1

| Z,P 1
Bn
, Bn] = oP(1), so that the pseudo-

observation plays a role of substitute to the true event time in the loss function. Consequently,
the loss function also depends on the KM set used to compute the pseudo-observation,

Lpo : (ψ, P 1
Bn
, O) 7→ L

(
ψ, (ΓO(P

1
Bn

), Z)
)
∈ R, for ψ ∈ Ψ, P 1

Bn
∼ P⊗n1 , O ∼ P.

As above, we can define the risk of the parameter ψ for distributions P and P 1
Bn

,

Θpo(ψ, P 1
Bn
, P ) = EBn

∫
Lpo(ψ, P 1

Bn
, o)dP (o).

The risk minimizer now also depends on the empirical distribution P 1
Bn

,

ψ∗
1 = ψ∗

1(P
1
Bn
, P ) = argmin

ψ∈Ψ
Θpo(ψ, P 1

Bn
, P ) = argmin

ψ∈Ψ
EBn

∫
Lpo(ψ, P 1

Bn
, o)dP (o),

and the corresponding optimal risk can be written as

θ∗1 = Θpo(ψ∗
1 , P

1
Bn
, P ) = min

ψ∈Ψ
Θpo(ψ, P 1

Bn
, P ) = min

ψ∈Ψ
EBn

∫
Lpo(ψ, P 1

Bn
, o)dP (o). (9)
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We can rewrite the cross-validated risk estimator,

θ̂pon (k) = Θpo
(
ψ̂k(P

0
Bn

), P 1
Bn
, P 2

Bn

)
= EBn

∫
Lpo

(
ψ̂k(P

0
Bn

), P 1
Bn
, o
)
dP 2

Bn
(o)

= EBn

1

n2

∑
i:Bn(i)=2

Lpo
(
ψ̂k(P

0
Bn

), P 1
Bn
, Oi
)
,

the cross-validated selector,
k̂po = argmin

k∈{1,...,Kn}
θ̂pon (k), (10)

the cross-validated conditional risk,

θ̃pon (k) = Θpo
(
ψ̂k(P

0
Bn

), P 1
Bn
, P
)
= EBn

∫
Lpo

(
ψ̂k(P

0
Bn

), P 1
Bn
, o
)
dP (o),

and the cross-validated oracle selector

k̃po = argmin
k∈{1,...,Kn}

θ̃pon (k).

We compare the risk differences θ̃pon (k̂po)− θ∗1 and θ̃pon (k̃po)− θ∗1 to demonstrate optimality in a
similar manner as in Theorem 1. This result is stated in Theorem 2 below.

Theorem 2. Let O1, . . . , On be a random sample from a data generating distribution P , where
each Oi = (Ti, δi, Zi) consists of three components, a univariate outcome Ti ∈ R+, a binary
censoring indicator δi ∈ {0, 1} and a d-dimensional covariate vector Zi ∈ Rd. Let τ < τH . Let

{ψ̂k : k = 1, . . . ,Kn} denote a sequence of Kn candidate estimators for the RMST, E[T ∗∧τ | Z],
which is the risk minimizer for the quadratic loss function Lpo(ψ, P 1

Bn
, O) =

(
ΓO(P

1
Bn

)−ψ(Z)
)2
,

up to an asymptotically negligible term (see Equation (8)). Suppose there exists M such that
τ ≤M <∞, and

|ΓO(P 1
Bn

)| ≤M and sup
Z∈Z,ψ∈Ψ

|ψ(Z)| ≤M almost surely. (11)

Suppose that Assumption 1 holds.

Finite sample result. Let M1 = 8M2, M2 = 16M2 and c(M,γ) = 2(1 + γ)2(M1/3 +M2/γ).
For all γ > 0,

0 ≤ E[θ̃pon (k̂po)− θ∗1 ] ≤ (1 + 2γ)E[θ̃pon (k̃po)− θ∗1 ] + 2c(M,γ)
1 + log(Kn)

np2,n
· (12)

Asymptotic results. If
log(Kn)

np2,nE[θ̃pon (k̃po)− θ∗1 ]
→ 0 as n→ ∞,

then
E[θ̃pon (k̂po)− θ∗1 ]

E[θ̃pon (k̃po)− θ∗1 ]
→ 1 as n→ ∞. (13)
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Similarly, if
log(Kn)

np2,n(θ̃
po
n (k̃po)− θ∗1)

→ 0 in probability as n→ ∞,

then
θ̃pon (k̂po)− θ∗1

θ̃pon (k̃po)− θ∗1
→ 1 in probability as n→ ∞. (14)

With the additional result from Jacobsen and Martinussen (2016) in Equation (2), adapted to

split pseudo-observations in Equation (8), we can also compare the risk differences θ̃n(k̂
po) − θ∗

and θ̃n(k̃)− θ∗. In other words, we can compare the cross-validated selector on pseudo-observa-
tions (10) to the oracle selector on true event times (7), in terms of risks on true event times,
see (5) and (6). The asymptotic result is given as a difference in Corollary 2.1 below. The
result in the form of a ratio requires stronger assumptions and is provided in the Supplementary
Material.

Corollary 2.1. Same setup and assumptions as in Theorem 2.

Finite sample result. Let M1 = 8M2, M2 = 16M2 and c(M,γ) = 2(1 + γ)2(M1/3 +M2/γ).
For all k = 1, . . . ,Kn, let

ϕn1
(k) = EBn

[
E
[
E
[
ξn1

| Z,P 1
Bn
, Bn

]2
+ 2
(
ψ∗(Z)− ψ̂k(P

0
Bn

)(Z)
)
E
[
ξn1

| Z,P 1
Bn
, Bn

] ∣∣ PBn
, Bn

]]
.

Then, for all γ > 0,

0 ≤ E[θ̃n(k̂po)− θ∗]

≤ (1 + 2γ)E[θ̃n(k̃po)− θ∗] + E
[
(1 + 2γ)ϕn1

(k̃po)− ϕn1
(k̂po)

]
+ 2c(M,γ)

1 + log(Kn)

np2,n
·

Asymptotic results. If
log(Kn)

np2,n
→ 0 as n→ ∞,

then
E[θ̃n(k̂po)− θ̃n(k̃)] → 0 as n→ ∞, (15)

and
θ̃n(k̂

po)− θ̃n(k̃) → 0 in probability as n→ ∞. (16)

4 Simulations

In this section, we conduct simulation studies to assess the validity of our approach on
finite sample sizes. Our aim is threefold: first, we want to compare the values of the pseudo-
observations constructed from the standard procedure and from our new procedure, the split
pseudo-observations. Second, we want to compare the performance of our two proposed super
learner algorithms, as described in Section 3.2, the one constructed from the standard pseudo-
observations and the one constructed from the split pseudo-observations. Finally, we want to
assess and compare the performances of our super learner algorithm based on standard pseudo-
observations and two competitors: the Cox model and the Random Survival Forests (RSF)
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model (see Ishwaran et al., 2008). The simulations are implemented from two different Cox
based models with increasing complexity. The two models were originally introduced in Cwiling
et al. (2023).

Scheme 1: Event times are simulated according to a Cox model with Weibull baseline hazard
W(ν, κ) and three covariates Z = (Z1, Z2, Z3)⊤, where Zk ∼ U [−a, a] for k = 1, 2, 3. Note
that the survival function can be expressed as

S(t | Z) = exp

[
−
(
t

κ

)ν
exp(β⊤Z)

]
,

with Cox regression parameters β = (β1, β2, β3)
⊤. Parameters are set to κ = 2, ν = 6, a =

5, (β1, β2, β3) = (2, 1, 0). Censoring is simulated independently according to an exponential
law with parameter λ = 0.3, leading to 47% censored data. The time horizon τ is chosen
as the 90th percentile of the observed times T which corresponds to τ = 3.6 in this setting.

Scheme 2: Event times are simulated according to a Cox model with Weibull baseline hazard
W(ν, κ), κ = 2, ν = 6, this time with λ(t | Z) = λ0(t) exp(g(Z)) and

g(Z) = Z3 − 3Z5 + 2Z1Z10 + 4Z2Z7 + 3Z4Z5 − 5Z6Z10

+ 3Z8Z9 + Z1Z4 − 2Z6Z9 − 4Z3Z4 − Z7Z8,

so that the survival function is expressed as

S(t | Z) = exp

[
−
(
t

k

)ν
exp(g(Z))

]
.

Let Z = (Z1, . . . , Z15)⊤. We simulate the covariates Z = (Z1, . . . , Z15)⊤ with Zj ∼ B(0.4)
for j ∈ {2, 4, 6, 9, 11, 12} and Zj ∼ U [0, 1], for j ∈ {1, 3, 5, 7, 8, 10, 13, 14, 15}. As a result,
only the first 10 covariates are associated with the event times. However, the other 5
covariates, that are independent from the event times, will still be included in our regression
models when analyzing those data. The censoring distribution is the same as in scheme 1,
leading to 47% censored data. The time horizon τ is chosen as the 90th percentile of the
observed times which corresponds to τ = 2.8 in this setting.

4.1 Standard versus split pseudo-observations

In this section, we compare the values of the standard pseudo-observations and the split
pseudo-observations constructed as described in Section 2. We construct samples of different
sizes n ∈ {20, 50, 100} according to the simulation scheme 1 and we vary the proportion of the
two samples Dn1

and Dn2
used for the construction of the split pseudo-observations by setting

n2 = ρn with ρ ∈ {0.2, 0.5, 0.8}. The process is repeated 50 times. For each split pseudo-
observation, a corresponding standard pseudo-observation can also be computed and compared.
For clarity, 200 pseudo-observations are randomly drawn for each scenario and their scatter plots
are displayed in Figure 3. Overall, we observe a very close agreement between the values of
the standard and split pseudo-observations. As the sample size increases, the similarity between
the two methods increases even more. A larger discrepancy occurs when n2 is larger. This is a
consequence of the sample size n1 used for the Kaplan-Meier estimator in the construction of the
split pseudo-observations which is smaller when n2 is larger. However, even in the worst scenario
(ρ = 0.8 and n = 20), the discrepancy between the two methods remains moderate.
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Figure 3: Comparison of standard and split pseudo-observations on data simulated with the first
simulation scheme, with varying sample sizes n and n2 = ρn for the split pseudo-observations.

4.2 Super learner implemented with standard versus split pseudo-
observations

In this section, we want to compare the implementation of the two super learner algorithms, as
introduced in Section 3.2: The first one is based on standard pseudo-observations and the second
one is based on the split pseudo-observations. While the two types of pseudo-observations are
very similar (as illustrated in the previous section), the two algorithms are still different in their
implementations. The first one applies candidate learners directly on the pseudo-observations,
treating those observations as uncensored data. On the contrary, in the second approach, the can-
didate learners are applied to the censored observations and require algorithms that can handle
right-censored observations. In order to be able to compare the two approaches, we only con-
sider learning algorithms based on pseudo-observations. More precisely, for the second approach,
pseudo-observations are computed from the training set before applying the learning algorithms.
The algorithms considered for the two methods are: the Linear Model (LM), the Lasso, the
Generalized Additive Model (GAM), the Random Forests (RF) and the Neural Network (NN).
For both methods, once the weights attributed to the candidate learners are computed, the al-
gorithms are trained one last time on the whole dataset and combined using those weights, see
Figure 1 and Figure 2. In our simulation setting, this last step is identical for both methods, i.e.
standard pseudo-observations are computed on the whole dataset and used to train LM, Lasso,
GAM, RF and NN. The only difference between the two approaches results in the computation
of the weights in the construction of the super learner. The performances of the two methods
are further compared with the oracle method that applies the same algorithms directly to the
unoberved true event times. All super learners are trained using 6-fold cross-validation. The
results are displayed in Figure 4, for the three different methods in the two simulation schemes
with increasing sample sizes n ∈ {100, 200, 300, 400, 500}. The MSEs of the super learner algo-
rithms and of every candidate learners are computed on an independent test set of size 1000 and
the whole procedure is repeated 80 times for each sample size. The median and the first and
third quantiles of the MSEs are reported in the figure. Exact values can be found in Table 1 in
the Supplementary Material.
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(a) Simulation scheme 1
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Figure 4: Mean Squared Errors (MSE) for the restricted time prediction with algorithms imple-
mented on the true uncensored observations (first column) and the pseudo-observations (second
column). The considered algorithms are: the linear model (LM), the Lasso, the generalized addi-
tive model (GAM), the random forests (RF), the neural network (NN) and the super learner (SL)
combining all these algorithms. In the second column, standard and split pseudo-observations-
based super learners are implemented (SL and SLsplit). Their curves overlap almost entirely.
The sample size of the training set ranges from n = 100 to n = 500 and two simulation schemes
are considered in the top and bottom rows. The MSEs of all the algorithms are computed on an
independent test set of size 1000 and the whole procedure is repeated 80 times. Values of the
median (cross), first and third quantiles (dashed lines) of the MSEs are reported.
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We first observe that the two pseudo-observations-based super learner algorithms share similar
performances for all sample sizes, regardless of the simulation scheme. This indicates that the two
algorithms are almost identical in practice. Also, their performance is only slightly worse than the
oracle algorithm. For the three algorithms, the super learner outperforms all individual learners.
This is an illustration of Theorem 1 in Van Der Laan et al. (2007) for the oracle algorithm
and of Corollary 2.1 for the split pseudo-observations algorithm. While we were not able to
derive a similar theoretical result for the super learner based on standard pseudo-observations,
the simulations clearly support this conjecture. Finally, the distribution of the weights assigned
to each learner can be found in the Supplementary Material in Figure 1. We observe in the
simulation scheme 1 that the largest weight is assigned to the NN algorithm with an increasing
value of the weight when the sample size increases. For instance, for n = 500, the median weight
allocated to the NN algorithm is equal to 0.906, 0.762 and 0.727 for the oracle algorithm, the
super learner combined with standard pseudo-observations and the super learner combined with
split pseudo-observations, respectively. This is in accordance with the results in Figure 4 where
the NN algorithm outperforms all other individual algorithms and is only slightly less performing
than the super learner. In the simulation scheme 2, the weights are more equally shared among all
learners. The RF tend to have the largest weights with an increasing value when the sample size
increases. For example, when n = 500, the median weights for the RF, LM and NN are equal to
0.525, 0.232, 0.172 respectively for the oracle algorithm, equal to 0.467, 0.345, 0.071 respectively
for the super learner combined with standard pseudo-observations and equal to 0.462, 0.370,
0.014 respectively for the super learner combined with split pseudo-observations.

Since the two implementations of the super learner are almost identical, we only study the
super learner based on standard pseudo-observations in the next section. This algorithm has the
advantage to have a lower computational complexity and to allocate more data to the training
set.

4.3 Prediction performance of the super learner and comparison with
other methods

In this section, we compare our super learner algorithm combined with the standard pseudo-
observations to the standard Cox model (without including interactions) and the Random Sur-
vival Forests (RSF) algorithm (see Ishwaran et al., 2008). For the super learner, we employ the
same candidate learners as in the previous section and still use 6-fold cross-validation. For the
Cox and RSF algorithms, the RMST is obtained by integrating the estimated survival curve
between 0 and τ . We simulated data of increasing size n ∈ {200, 500, 1000, 1500, 2000} in the
two simulation schemes. As previously, the MSEs of all prediction models are computed on an
independent test set of size 1000 and the procedure is repeated 80 times for each sample size.
The median, first and third quantiles of the MSEs are reported in Figure 5.

The first simulation scheme consists in simulating time to events according to a standard Cox
model without interactions between covariates. Hence, it is not surprising that Figure 5a shows
a better performance for the Cox model compared to the other methods. However, the RSF and
our method perform only slightly worse than the Cox model, with an increasing performance as
the sample size increases. For small sample sizes, the super learner is clearly more performing
than the RSF. On the other hand, the second simulation scheme is a Cox model with complex
interactions between the covariates. In the results presented in Figure 5b, our method outper-
forms the Cox model for n ≥ 500 and also exhibits better performances than the RSF for all
sample sizes.
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Figure 5: Mean Squared Errors (MSE) for the restricted time prediction with three different
methods: the Cox model (with no interactions between covariates), the RSF and the super
learner combined with standard pseudo-observations. The algorithms are trained on samples of
size n ∈ {200, 500, 1000, 1500, 2000} and two simulation schemes are considered in the left and
right columns. The MSEs are computed on an independent test set of size 1000 and the whole
procedure is repeated 80 times. Values of the median (cross), first and third quantiles (dashed
lines) of the MSEs are reported.

5 Applications on real data

5.1 The maintenance dataset

We first study a maintenance dataset publicly available in the PySurvival Python package.
It gathers data on 1000 machines, for which the number of weeks in activity has been recorded.
The aim is to study the failure time of the machines. Overall 40% of the collected times are
right-censored, and no failures occurred before 60 weeks of operation. Observed times range
from 1 to 93 weeks, and we set the time horizon to the 90th quantile of the observed times which
corresponds to τ = 88. The dataset contains 5 predictors: three continuous covariates, pressure,
moisture, temperature and two categorical variables, the team using the machine (three levels)
and the manufacturer (four levels).

We first investigate the possible dependence between censoring and covariates. To that aim
we fit a Cox model and a RSF to the data using the censoring time as the outcome. Both
methods indicate no evidence of dependence: the global p-value for the Cox model is equal to
0.604 while the variable importance measure per permutation in the RSF does not exceed 0.005
for any of the variables (see Table 2 in Supplementary Material).

Next, we aim at predicting the time to failure using several models. We were not able to
implement the Cox model from the coxph function because the Newton-Raphson algorithm ran
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Figure 6: Estimation of the MSE on the maintenance dataset using the WRSS based on 10-fold
cross-validation, for the RSF and the super learner based on pseudo-observations.

out of iterations without converging. We use instead the RSF and the super learner based
on pseudo-observations. For the latter, cross-validation is fixed to 6 folds and the library was
composed of LM, Lasso, GAM and RF. Both learning models are compared and analyzed using
the methods developed in Cwiling et al. (2023).

First, the MSE is evaluated with the weighted residual sum of squares (WRSS), an inverse
probability censoring weights (IPCW) estimator derived from the Brier score. Since our previ-
ous analysis supports the independent censoring assumption, we simply use the Kaplan-Meier
estimator to compute the censoring weights. Results obtained on 10-fold cross-validation are
displayed in Figure 6, indicating reasonable prediction errors in both cases considering the time
range, with better performances for our method.

Next, a prediction interval for the true restricted time to failure of level 90% is computed
for each item. These intervals are computed with the IPCW Rank-One-Out Split Conformal
algorithm. This method relies on the distribution of the weighted residuals where, again, the
Kaplan-Meier estimator is used for the censoring weights. The median length of the prediction
intervals equals 7.217 and 6.789 for the RSF and the super learner combined with pseudo-
observations, respectively. An illustration of these intervals, for some machines chosen randomly
in the dataset, is provided in the Supplementary Material in Figure 2.

Finally, a global variable importance test is implemented based on the Leave-One-Covariate-
Out conformal methodology. This test indicates whether removing a variable from the training
set significantly deteriorates the prediction quality. This test is conducted by splitting the data
into a training set (used for the implementation of the RMST estimator) and a validation set
(used for the implementation of the test itself). Since this procedure is sensitive to the split, we
conduct a multi-splitting procedure to stabilize the results along with a method for controlling
the familywise rejection rate (see DiCiccio et al., 2020, for more details on this method). Conse-
quently, the test is implemented at the 10% level on M = 40 different splits of the data and the
M p-values are aggregated by computing twice the median value. This ensures to obtain a 10%
level of the overall test. The results are displayed in Table 1. They show clear evidence of the
influence of the team and provider variables on the failure time, while pressure does not alter the
prediction quality and moisture seems to only have very limited impact in the RSF. However,
both models do not reach the same conclusion for temperature, which seems to have a strong
predictive power in the RSF but not in the super learner.
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Variable P-value RSF P-value P.obs.+SL
Pressure 1 1
Moisture 0.257 1
Temperature 0.003 ** 1
Team 0 *** 0 ***
Provider 0 *** 0 ***

Significance codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Table 1: Variable importance of the maintenance dataset for the RSF and the super learner based
on pseudo-observations using a multi-splitting procedure withM = 40 splits. The global variable
importance test is performed on each split and theM p-values are aggregated by computing twice
the median value in order to obtain a 10% overall test.

5.2 The colon cancer dataset
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Figure 7: Estimation of the MSE on the colon dataset using the WRSS based on 10-fold cross-
validation, for the Cox model, the RSF and the super learner based on pseudo-observations.

We study now a dataset from a clinical trial on the effect of chemotherapy for colon cancer.
The colon data are available in the R survival package. The complete case analysis contains 888
patients whose follow-up times range from 8 days to 3329 days (9.12 years). The goal of the study
is to analyze the progression free survival (PFS) defined as the time elapsed from randomization
to the minimum between recurrence and death. For this endpoint, 46% of the observations are
censored, that is neither recurrence or death is observed. We set the time horizon to the 90th
quantile of the observed times which corresponds to τ = 2672 days. We use as predictors the
type of treatment administrated (three levels), sex (binary), age (in years), obstruction indicator
of the colon by the tumor (binary), whether the colon was perforated or not (binary), whether or
not it adhered to nearby organs (binary), number of lymph nodes with detectable cancer (integer
value that ranges from 0 to 33), level of differentiation of the tumor (three levels), extent of local
spread (four levels), and whether the time from surgery to registration was short or long (binary).

We first investigate the possible dependence between censoring and covariates. As for the
previous dataset, we fit a Cox model and a RSF to the data using the censoring time as the
outcome. Both methods indicate no evidence of dependence: the global p-value for the Cox
model is equal to 0.383 while the variable importance measure per permutation in the RSF does
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not exceed 0.015 for any of the variables (see Table 3 in Supplementary Material).
Next, we predict the time to progression with the Cox model, the RSF and the pseudo-

observations-based super learner. For the latter, 6-fold cross-validation is implemented with the
library composed of LM, Lasso, GAM and RF. As previously, the performances of the learning
models are analyzed using the methods developed in Cwiling et al. (2023) and the censoring
distribution is estimated using the Kaplan-Meier estimator for all the methods involving IPCW.

In terms of MSE, all three models seem to have similar performances (see Figure 7). The
prediction error is particularly large, emphasizing the difficulty for all the learners to provide
accurate individual predictions. This is in accordance with the length of the 90% prediction
intervals, displayed in Figure 3 in Supplementary Material, whose median equals 2961 for the
Cox model, 3098 for the RSF and 3050 for the super learner combined with pseudo-observations.
Finally, the variable importance test is implemented based on the multi-split approach with 40
different splits and overall rejection rate equal to 10%. The results are presented in Table 2. We
observe that the importance of the type of treatment and extent of local spread variables are
highly significant for the Cox and super learner algorithms while moderately significant for the
RSF (p-value equals 0.084 and 0.063, respectively). The importance of all the other variables is
far from significance for all algorithms.

Variable P-value Cox P-value RSF P-value P.obs.+SL
Treatment 0 *** 0.084 . 0.002 **
Sex 0.981 0.724 0.622
Age 1 1 1
Obstruction 1 1 1
Perforation 1 1 1
Adherence 1 1 1
Nodes 1 0.637 0.662
Differentiation 1 1 1
Spread 0 *** 0.063 . 0.002 **
Surgery 1 1 1

Significance codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Table 2: Variable importance of the colon dataset for the Cox model, the RSF and the super
learner based on pseudo-observations using a multi-splitting procedure with M = 40 splits. The
global variable importance test is performed on each split and the M p-values are aggregated by
computing twice the median value in order to obtain a 10% overall test.

6 Conclusion

Predicting the restricted time to event is of great interest in many applications. When
using a quadratic loss function, this problem amounts to estimating the RMST. In this work
we focused on the super learner combined with pseudo-observations to achieve this goal. The
algorithm is simple to implement as it only requires an extra initial step for constructing the
pseudo-observations. From there, the standard super learner is simply applied to the pseudo-
observations and allows to get access to all the prediction algorithms that are classically used
when dealing with uncensored observations. It also enjoys the nice property of the super learner:
It will automatically select the best learner among all the candidates (for the discrete super
learner) or it will provide the best combination of the candidates (for the continuous super
learner). This is an important feature in applications since the best candidate can vary from one
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study to another or when the sample size increases. Those results were proved in our context
of right-censored data, when the split pseudo-observations are used. We also observed this
property on simulated data and we empirically showed that combining the super learner with
split or standard pseudo-observations provides very similar results. This is why we recommend
to combine the super learner with standard pseudo-observations in practice, as it provides a
simpler method and it allows to allocate more data to the training of candidate learners.

Interestingly, the use of split pseudo-observations might go beyond the scope of the super
learner when studying theoretical properties of an estimator based on pseudo-observations. In-
deed, they are almost identical to standard pseudo-observations, yet they do not suffer from
dependency problems which makes them much easier to study in theoretical problems.

Our method relies on the independent censoring assumption inherent to pseudo-observations.
When dealing with categorical covariates it is still possible to use the approach of Andersen and
Pohar Perme (2010) (see Section 2.2) based on a mixture of Kaplan-Meier estimators to relax this
assumption. Finally, our method could easily be extended to other situations such as recurrent
events, competing risks, or left truncation by using a different definition of pseudo-observations
adapted to these types of data (see Binder et al., 2014; Grand et al., 2019; Furberg et al., 2023).
This is left to future research work.

In practice, several methods exist to implement pseudo-observations-based super learners. It
would be of interest to provide some guidelines to practitioners, for instance on the choice between
our approach and the ones based on IPCW or AUC losses. The main novelty of our work, as
compared to previous methods, relies on theoretical results about the pseudo-observations-based
super learner. Empirical studies comparing the different methods are warranted.
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7 Technical Results

Lemma 1. If we consider the quadratic loss function Lpo(ψ, P 1
Bn
, O) =

(
ΓO(P

1
Bn

)−ψ(Z)
)2
, with

O independent from P 1
Bn

and Bn, then the risk minimizer is ψ∗
1(Z) = E

[
ΓO(P

1
Bn

) | Z,P 1
Bn
, Bn

]
.

Proof. We have

E
[
Lpo

(
ψ, P 1

Bn
, O
) ∣∣ P 1

Bn
, Bn

]
= E

[(
ΓO(P

1
Bn

)− ψ(Z)
)2 ∣∣∣ P 1

Bn
, Bn

]
= E

[(
ΓO(P

1
Bn

)− E
[
ΓO(P

1
Bn

) | Z,P 1
Bn
, Bn

]
+ E

[
ΓO(P

1
Bn

) | Z,P 1
Bn
, Bn

]
− ψ(Z)

)2 ∣∣∣ P 1
Bn
, Bn

]
= E

[(
ΓO(P

1
Bn

)− E
[
ΓO(P

1
Bn

) | Z,P 1
Bn
, Bn

])2 ∣∣∣ P 1
Bn
, Bn

]

+ E
[(

E
[
ΓO(P

1
Bn

) | Z,P 1
Bn
, Bn

]
− ψ(Z)

)2 ∣∣∣ P 1
Bn
, Bn

]
+ 2E

[(
ΓO(P

1
Bn

)− E
[
ΓO(P

1
Bn

) | Z,P 1
Bn
, Bn

])(
E
[
ΓO(P

1
Bn

) | Z,Bn
]
− ψ(Z)

) ∣∣∣ P 1
Bn
, Bn

]
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and

E
[(

ΓO(P
1
Bn

)− E
[
ΓO(P

1
Bn

) | Z,P 1
Bn
, Bn

])(
E
[
ΓO(P

1
Bn

) | Z,P 1
Bn
, Bn

]
− ψ(Z)

) ∣∣∣ P 1
Bn
, Bn

]
= E

[
E
[(

ΓO(P
1
Bn

)− E
[
ΓO(P

1
Bn

) | Z,P 1
Bn
, Bn

])
(
E
[
ΓO(P

1
Bn

) | Z,P 1
Bn
, Bn

]
− ψ(Z)

) ∣∣∣ Z,P 1
Bn
, Bn

] ∣∣∣ P 1
Bn
, Bn

]
= E

[(
E
[
ΓO(P

1
Bn

) | Z,P 1
Bn
, Bn

]
− E

[
ΓO(P

1
Bn

) | Z,P 1
Bn
, Bn

])
(
E
[
ΓO(P

1
Bn

) | Z,P 1
Bn
, Bn

]
− ψ(Z)

) ∣∣∣ P 1
Bn
, Bn

]
= 0.

Hence

argmin
ψ∈Ψ

EBn
E
[
Lpo(ψ, P 1

Bn
, O) | P 1

Bn
, Bn

]
= argmin

ψ∈Ψ
EBn

E
[(

E
[
ΓO(P

1
Bn

) | Z,P 1
Bn
, Bn

]
− ψ(Z)

)2 ∣∣∣ P 1
Bn
, Bn

]
.

We prove that Lemma 3 in Dudoit and Van Der Laan (2005) is still valid with the pseudo-
observation quadratic loss function.

Lemma 2. Same setup and assumptions as in Theorem 2. Conditional on the training sets
empirical distributions P 0

Bn
, P 1

Bn
and split vector Bn, define, for any k = 1, . . . ,Kn, the random

variable Xk = Lpo(ψ̂k(P
0
Bn

), P 1
Bn
, O)−Lpo(ψ∗

1 , P
1
Bn
, O), where O is independent from P 0

Bn
, P 1

Bn
,

Bn, and L
po denotes the quadratic loss function Lpo(ψ, P 1

Bn
, O) = (ΓO(P

1
Bn

)− ψ(Z))2. Then

Var
(
Xk | P 0

Bn
, P 1

Bn
, Bn

)
≤M2E

[
Xk | P 0

Bn
, P 1

Bn
, Bn

]
.

Proof. For the quadratic loss function, ψ∗
1(Z) = E

[
ΓO(P

1
Bn

) | Z,P 1
Bn
, Bn

]
from Lemma 1. As

Xk =
(
ψ∗
1(Z)− ψ̂k(P

0
Bn

)(Z)
)(
2ΓO(P

1
Bn

)− ψ̂k(P
0
Bn

)(Z)− ψ∗
1(Z)

)
,

we have

E
[
Xk | P 0

Bn
, P 1

Bn
, Bn

]
= E

[
E
[
Xk | Z,P 0

Bn
, P 1

Bn
, Bn

]
| P 0

Bn
, P 1

Bn
, Bn

]
= E

[(
ψ∗
1(Z)− ψ̂k(P

0
Bn

)(Z)
)

(
2E
[
ΓO(P

1
Bn

) | Z,P 1
Bn
, Bn

]
− ψ̂k(P

0
Bn

)(Z)− ψ∗
1(Z)

) ∣∣∣ P 0
Bn
, P 1

Bn
, Bn

]
= E

[(
ψ∗
1(Z)− ψ̂k(P

0
Bn

)(Z)
)2 ∣∣ P 0

Bn
, P 1

Bn
, Bn

]
.
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As
∣∣2ΓO(P 1

Bn
) − ψ̂k(P

0
Bn

)(Z) − ψ∗
1(Z)

∣∣ ≤ 4M by assumption (11), and with M2 = (4M)2, we
find

Var
(
Xk | P 0

Bn
, P 1

Bn
, Bn

)
≤ E

[
X2
k | P 0

Bn
, P 1

Bn
, Bn

]
≤ (4M)2E

[(
ψ∗
1(Z)− ψ̂k(P

0
Bn

)(Z)
)2 | P 0

Bn
, P 1

Bn
, Bn

]
=M2E

[
Xk | P 0

Bn
, P 1

Bn
, Bn

]
.

7.1 Proof of Theorem 2

We write

0 ≤ θ̃pon (k̂po)− θ∗1

= EBn

∫ (
Lpo

(
ψ̂k̂po(P

0
Bn

), P 1
Bn
, o
)
− Lpo

(
ψ∗
1 , P

1
Bn
, o
))
dP (o)

≤ EBn

∫ (
Lpo

(
ψ̂k̂po(P

0
Bn

), P 1
Bn
, o
)
− Lpo

(
ψ∗
1 , P

1
Bn
, o
))
dP (o)

− (1 + γ)EBn

∫ (
Lpo

(
ψ̂k̂po(P

0
Bn

), P 1
Bn
, o
)
− Lpo

(
ψ∗
1 , P

1
Bn
, o
))
dP 2

Bn
(o)

+ (1 + γ)EBn

∫ (
Lpo

(
ψ̂k̃po(P

0
Bn

), P 1
Bn
, o
)
− Lpo

(
ψ∗
1 , P

1
Bn
, o
))
dP 2

Bn
(o)

− (1 + 2γ)EBn

∫ (
Lpo

(
ψ̂k̃po(P

0
Bn

), P 1
Bn
, o
)
− Lpo

(
ψ∗
1 , P

1
Bn
, o
))
dP (o)

+ (1 + 2γ)EBn

∫ (
Lpo

(
ψ̂k̃po(P

0
Bn

), P 1
Bn
, o
)
− Lpo

(
ψ∗
1 , P

1
Bn
, o
))
dP (o)

where the first inequality follows by definition of the optimal risk θ∗1 (9) and the second by

definition of k̂po (10), which implies θ̂pon (k̂po) ≤ θ̂pon (k̃po). Denote the first two terms in the last
expression by Rk̂po,n and the third and fourth terms by Tk̃po,n; the last term is the benchmark

risk difference
(
1 + 2γ

)(
θ̃pon (k̃po)− θ∗1

)
. Hence,

0 ≤ θ̃pon (k̂po)− θ∗1 ≤
(
1 + 2γ

)(
θ̃pon (k̃po)− θ∗1

)
+Rk̂po,n + Tk̃po,n. (17)

Let

H̃k =

∫ (
Lpo

(
ψ̂k(P

0
Bn

), P 1
Bn
, o
)
− Lpo

(
ψ∗
1 , P

1
Bn
, o
))
dP (o)

Ĥk =

∫ (
Lpo(ψ̂k(P

0
Bn

), P 1
Bn
, o)− Lpo(ψ∗

1 , P
1
Bn
, o)
)
dP 2

Bn
(o)

and

Rk,n(Bn) =
(
1 + γ

)(
H̃k − Ĥk

)
− γH̃k

Tk,n(Bn) =
(
1 + γ

)(
Ĥk − H̃k

)
− γH̃k.

Note that H̃k ≥ 0 by definition of ψ∗
1 as the risk minimizer. With these notations, we set

Rk,n = EBn [Rk,n(Bn)] and Tk,n = EBn [Tk,n(Bn)].
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We have

P
(
Rk̂po,n(Bn) > s | P 0

Bn
, P 1

Bn
, Bn

)
= P

(
H̃k̂po − Ĥk̂po >

1

1 + γ
(s+ γH̃k̂po)

∣∣∣ P 0
Bn
, P 1

Bn
, Bn

)
≤ Kn max

k∈{1,...,Kn}
P
(
H̃k − Ĥk >

1

1 + γ
(s+ γH̃k)

∣∣∣ P 0
Bn
, P 1

Bn
, Bn

)
.

Consider the random variables Xk = Lpo
(
ψ̂k(P

0
Bn

), P 1
Bn
, O
)
− Lpo

(
ψ∗
1 , P

1
Bn
, O
)
, where O is in-

dependent from P 0
Bn

, P 1
Bn

, Bn. Let Xk,i = Lpo
(
ψ̂k(P

0
Bn

), P 1
Bn
, Oi
)
− Lpo

(
ψ∗
1 , P

1
Bn
, Oi
)
, i =

1, . . . , n2. Conditionally on P 0
Bn
, P 1

Bn
, Bn, the Xk,i’s are n2 i.i.d. copies of Xk in the valida-

tion set. Note that Ĥk =
∑n2

i=1Xk,i/n2 and H̃k = E
[
Xk | P 0

Bn
, P 1

Bn
, Bn

]
, so that H̃k − Ĥk =

E
[
Xk | P 0

Bn
, P 1

Bn
, Bn

]
−
∑n2

i=1Xk,i/n2 represents an empirical mean of n2 centered condition-
ally i.i.d. random variables. For the quadratic loss function, |Xk| ≤ 8M2 almost surely, from
Assumption (11). From Lemma 2,

σ2
k := Var

(
Xk | P 0

Bn
, P 1

Bn
, Bn

)
≤M2E

[
Xk | P 0

Bn
, P 1

Bn
, Bn

]
=M2H̃k.

For s > 0, M1 = 8M2, by Bernstein’s inequality (see Lemma 1 in Dudoit and Van Der Laan,
2005), as the Xk,i’s are independent conditionally on P 0

Bn
, P 1

Bn
, Bn,

P
(
Rk,n(Bn) > s | P 0

Bn
, P 1

Bn
, Bn

)
= P

(
H̃k − Ĥk >

1

1 + γ
(s+ γH̃k)

∣∣∣ P 0
Bn
, P 1

Bn
, Bn

)
≤ P

(
H̃k − Ĥk >

1

1 + γ
(s+ γσ2

k/M2)
∣∣∣ P 0

Bn
, P 1

Bn
, Bn

)
≤ exp

(
− n2
2(1 + γ)2

(s+ γσ2
k/M2)

2

σ2
k +

M1

3(1+γ) (s+ γσ2
k/M2)

)
.

Note that

(s+ γσ2
k/M2)

2

σ2
k +

M1

3(1+γ) (s+ γσ2
k/M2)

=
s+ γσ2

k/M2

σ2
k

s+γσ2
k/M2

+ M1

3(1+γ)

≥ s+ γσ2
k/M2

M2

γ + M1

3(1+γ)

≥ s
M2

γ + M1

3(1+γ)

·

Then for s > 0 and c(M,γ) = 2(1 + γ)2
(
M1

3 + M2

γ

)
,

P
(
Rk̂po,n(Bn) > s | P 0

Bn
, P 1

Bn
, Bn

)
≤ Kn exp

(
− n2
c(M,γ)

s

)
.

The same bound applies to the marginal probabilities P(Rk̂po,n(Bn) > s). For all u ≥ 0,

E
[
Rk̂po,n

]
≤ u+

∫ ∞

u

Kn exp

(
− n2
c(M,γ)

s

)
ds.

This function of u achieves a minimum of c(M,γ)(1 + log(Kn))/n2 at u = c(M,γ) log(Kn)/n2.
Thus,

E
[
Rk̂po,n

]
≤ c(M,γ)

1 + log(Kn)

n2
.

The same bound applies to E
[
Tk̃po,n

]
. Taking the expectation in Equation (17) gives the first

asymptotic result stated in Equation (13). This result, combined with Lemma 2 in Dudoit and
Van Der Laan (2005), allows to derive the second asymptotic result given in Equation (14).
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7.2 Proof of Corollary 2.1

In the calculations below, the expectations are written with respect to the variables O∗ =
(T ∗, Z) and O = (T ∗ ∧ C,1{T ∗ ≤ C}, Z), for a triplet (T ∗, C, Z) independent from the data
distribution Bn and from the dataset PBn

= {P 0
Bn
, P 1

Bn
, P 2

Bn
}. The results essentially rely on

Equation (8). On the one hand,

θ̃pon (k̂po)− θ̃n(k̂
po)

= EBn

[
E
[
Lpo

(
ψ̂k̂po(P

0
Bn

), P 1
Bn
, O
) ∣∣ PBn

, Bn

]]
− EBn

[
E
[
L
(
ψ̂k̂po(P

0
Bn

), O∗) ∣∣ PBn
, Bn

]]
= EBn

[
E
[(
ΓO(P

1
Bn

)− ψ̂k̂po(P
0
Bn

)(Z)
)2 − (T ∗ ∧ τ − ψ̂k̂po(P

0
Bn

)(Z)
)2 ∣∣ PBn

, Bn

]]
= EBn

[
E
[
ΓO(P

1
Bn

)2 − (T ∗ ∧ τ)2 − 2ψ̂k̂po(P
0
Bn

)(Z)
(
ΓO(P

1
Bn

)− T ∗ ∧ τ
) ∣∣ PBn

, Bn

]]
= EBn

[
E
[
E
[
ΓO(P

1
Bn

)2 | Z,P 1
Bn
, Bn

]
− E

[
(T ∗ ∧ τ)2 | Z

]
− 2ψ̂k̂po(P

0
Bn

)(Z)
(
E
[
ΓO(P

1
Bn

) | Z,P 1
Bn
, Bn

]
− E

[
T ∗ ∧ τ | Z

]) ∣∣ PBn
, Bn

]]
= EBn

[
E
[
E
[
ΓO(P

1
Bn

)2 | Z,P 1
Bn
, Bn

]
− E

[
(T ∗ ∧ τ)2 | Z

]
− 2ψ̂k̂po(P

0
Bn

)(Z)E[ξn1
| Z,P 1

Bn
, Bn]

∣∣ PBn
, Bn

]]
.

Similarly,

θ̃pon (k̃po)− θ̃n(k̃
po) = EBn

[
E
[
E
[
ΓO(P

1
Bn

)2 | Z,P 1
Bn
, Bn

]
− E

[
(T ∗ ∧ τ)2 | Z

]
− 2ψ̂k̃po(P

0
Bn

)(Z)E[ξn1
| Z,P 1

Bn
, Bn]

∣∣ PBn
, Bn

]]
.

On the other hand,

θ∗1 − θ∗

= EBn

[
E
[
Lpo

(
ψ∗
1 , P

1
Bn
, O
) ∣∣ PBn

, Bn

]]
− E

[
L
(
ψ∗, O∗)]

= EBn

[
E
[(
ΓO(P

1
Bn

)− ψ∗
1(Z)

)2 − (T ∗ ∧ τ − ψ∗(Z)
)2 ∣∣ PBn

, Bn

]]
= EBn

[
E
[
ΓO(P

1
Bn

)2 − (T ∗ ∧ τ)2 + ψ∗
1(Z)

2 − ψ∗(Z)2

− 2ΓO(P
1
Bn

)ψ∗
1(Z) + 2(T ∗ ∧ τ)ψ∗(Z)

∣∣ PBn
, Bn

]]
= EBn

[
E
[
E
[
ΓO(P

1
Bn

)2 | Z,P 1
Bn
, Bn

]
− E

[
(T ∗ ∧ τ)2 | Z

]
−
(
ψ∗
1(Z)

2 − ψ∗(Z)2
) ∣∣ PBn

, Bn

]]
= EBn

[
E
[
E
[
ΓO(P

1
Bn

)2 | Z,P 1
Bn
, Bn

]
− E

[
(T ∗ ∧ τ)2 | Z

]
− E

[
ξn1

| Z,P 1
Bn
, Bn

]2 − 2ψ∗(Z)E
[
ξn1

| Z,P 1
Bn
, Bn

] ∣∣ PBn
, Bn

]]
.

Thus, if we let

ϕn1
(k) = EBn

[
E
[
E
[
ξn1

| Z,P 1
Bn
, Bn

]2
+ 2
(
ψ∗(Z)− ψ̂k(P

0
Bn

)(Z)
)
E
[
ξn1

| Z,P 1
Bn
, Bn

] ∣∣ PBn
, Bn

]]
,
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we have, from Equation (12),

0 ≤ E
[
θ̃pon (k̂po)− θ∗1

]
≤ (1 + 2γ)E

[
θ̃pon (k̃po)− θ∗1

]
+ 2c(M,γ)

1 + log(Kn)

n2

⇐⇒ 0 ≤ E
[
θ̃n(k̂

po)− θ∗ + ϕn1(k̂
po)
]

≤ (1 + 2γ)E
[
θ̃n(k̃

po)− θ∗ + ϕn1
(k̃po)

]
+ 2c(M,γ)

1 + log(Kn)

n2

⇐⇒ 0 ≤ E
[
θ̃n(k̂

po)− θ∗
]

≤ (1 + 2γ)E
[
θ̃n(k̃

po)− θ∗
]
+ E

[
(1 + 2γ)ϕn1

(k̃po)− ϕn1
(k̂po)

]
+ 2c(M,γ)

1 + log(Kn)

n2
.

To obtain the asymptotic results, we rely on Lemma 3 below. It implies that θ̃n(k̃
po) → θ̃n(k̃)

in distribution as n → ∞. In addition, we assumed the pseudo-observations and candidate
learners to be bounded (Assumption (11)). Thus E[θ̃n(k̃po) − θ̃n(k̃)] → 0 as n → ∞. Besides,

ϕn1
(k) = oP(1) and is bounded almost surely for all k, so that we also have E

[
(1+2γ)ϕn1

(k̃po)−
ϕn1

(k̂po)
]
→ 0 as n → ∞. Hence the first asymptotic result (Equation (15)) which, combined

with Lemma 2 in Dudoit and Van Der Laan (2005), allows to derive the second asymptotic result
(Equation (16)).

Lemma 3. θ̃n(k̃
po) → θ̃n(k̃) in probability as n→ ∞.

Proof. Let fk(n) = EBn

[
E
[(
T ∗ ∧ τ − ψ̂k(P

0
Bn

)(Z)
)2 ∣∣ P 0

Bn
, Bn

]]
. We have fk(n) = θ̃n(k), so

that

k̃ = argmin
k∈{1,...,Kn}

fk(n).

On the other hand, using arguments similar to the proof of Lemma 1, we find

k̃po = argmin
k∈{1,...,Kn}

θ̃pon (k)

= argmin
k∈{1,...,Kn}

EBn

[
E
[(
ΓO(P

1
Bn

)− ψ̂k(P
0
Bn

)(Z)
)2 ∣∣ P 0

Bn
, P 1

Bn
, Bn

]]
= argmin
k∈{1,...,Kn}

EBn

[
E
[(

E
[
ΓO(P

1
Bn

) | Z,P 1
Bn
, Bn

]
− ψ̂k(P

0
Bn

)(Z)
)2 ∣∣∣ P 0

Bn
, P 1

Bn
, Bn

]]
.

Using Equation (8), we write

E
[(

E
[
ΓO(P

1
Bn

) | Z,P 1
Bn
, Bn

]
− ψ̂k(P

0
Bn

)(Z)
)2 ∣∣∣ P 0

Bn
, P 1

Bn
, Bn

]
= E

[(
E
[
T ∗ ∧ τ | Z

]
+ E

[
ξn1 | Z,P 1

Bn
, Bn

]
− ψ̂k(P

0
Bn

)(Z)
)2 ∣∣∣ P 0

Bn
, P 1

Bn
, Bn

]
= E

[(
E
[
T ∗ ∧ τ | Z

]
− T ∗ ∧ τ

)2 ∣∣∣ P 0
Bn
, P 1

Bn
, Bn

]
+ E

[(
T ∗ ∧ τ + E

[
ξn1

| Z,P 1
Bn
, Bn

]
− ψ̂k(P

0
Bn

)(Z)
)2 ∣∣∣ P 0

Bn
, P 1

Bn
, Bn

]
+ 2E

[(
E
[
T ∗ ∧ τ | Z

]
− T ∗ ∧ τ

)(
T ∗ ∧ τ + E

[
ξn1 | Z,P 1

Bn
, Bn

]
− ψ̂k(P

0
Bn

)(Z)
) ∣∣∣ P 0

Bn
, P 1

Bn
, Bn

]
.
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The second term can be developed into

E
[(
T ∗ ∧ τ + E

[
ξn1 | Z,P 1

Bn
, Bn

]
− ψ̂k(P

0
Bn

)(Z)
)2 ∣∣∣ P 0

Bn
, P 1

Bn
, Bn

]
= E

[(
T ∗ ∧ τ − ψ̂k(P

0
Bn

)(Z)
)2 ∣∣∣ P 0

Bn
, Bn

]
+ E

[
E
[
ξn1

| Z,P 1
Bn
, Bn

]2 ∣∣∣ P 1
Bn
, Bn

]
+ 2E

[(
T ∗ ∧ τ

)
E
[
ξn1

| Z,P 1
Bn
, Bn

] ∣∣∣ P 1
Bn
, Bn

]
− 2E

[
ψ̂k(P

0
Bn

)(Z)ξn1

∣∣∣ P 0
Bn
, P 1

Bn
, Bn

]
,

while the third term simplifies into

E
[(

E
[
T ∗ ∧ τ | Z

]
− T ∗ ∧ τ

)(
T ∗ ∧ τ + E

[
ξn1

| Z,P 1
Bn
, Bn

]
− ψ̂k(P

0
Bn

)(Z)
) ∣∣∣ P 0

Bn
, P 1

Bn
, Bn

]
= E

[(
E
[
T ∗ ∧ τ | Z

]
− T ∗ ∧ τ

)(
T ∗ ∧ τ

)]
+ E

[(
E
[
T ∗ ∧ τ | Z

]
− T ∗ ∧ τ

)(
E
[
ξn1

| Z,P 1
Bn
, Bn

]
− ψ̂k(P

0
Bn

)(Z)
) ∣∣∣ P 0

Bn
, P 1

Bn
, Bn

]
= E

[(
E
[
T ∗ ∧ τ | Z

]
− T ∗ ∧ τ

)(
T ∗ ∧ τ

)]
.

Removing all terms independent from k, we find

k̃po = argmin
k∈{1,...,Kn}

{
fk(n) + εk(n)

}
where εk(n) = −2EBn

[
E
[
ψ̂k(P

0
Bn

)(Z)ξn1

∣∣ P 0
Bn
, P 1

Bn
, Bn

]]
= oP(1) as the ψ̂k(P

0
Bn

)’s are bounded

by assumption and ξn1
= oP(1).

Let f(1)n(n) < · · · < f(Kn)n(n) denote the order statistics of f1(n), . . . , fKn
(n). The order

statistics depends on n both by the dependence of f1, . . . , fKn
on n and by the number Kn

increasing with n. Asymptotically, either the {fk(n) + εk(n)}’s are ordered in the same way as

the fk(n)’s, i.e. k̃po = k̃, or the inversions are negligible in terms of risk. Let C > 0. First
suppose that there exist k, k′ and n such that |fk(n)− fk′(n)| < C. This is equivalent to

|θ̃n(k)− θ̃n(k
′)| < C.

Now suppose that for all k, k′ and for all n, |fk(n) − fk′(n)| > C. For all k = 1, . . . ,Kn,
εk(n) = oP(1), thus there exists N > 0 such that for all n ≥ N , for all k = 1, . . . ,Kn, |εk(n)| <
C/2 with probability one. Thus, for all n ≥ N , if f(k)n(n) < f(k′)n(n), then

f(k)n(n) + ε(k)n(n) < f(k)n(n) +
C

2
<
f(k′)n(n) + f(k)n(n)

2

f(k′)n(n) + ε(k′)n(n) > f(k)n(n)−
C

2
>
f(k′)n(n) + f(k)n(n)

2
,

i.e. f(k)n(n)+ε(k)n(n) < f(k′)n(n)+ε(k′)n(n). The order is preserved asymptotically, i.e. k̃po = k̃,
with probability one. We conclude by making C tend towards 0.
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