

Thin Details Meet Large-Scale 3D-Reconstruction: Photometric Stereo for Cultural Heritage

Jean Mélou, Yvain Quéau, Antoine Laurent, Marjorie Redon, Jean-Denis Durou, Abderrahim Elmoataz

▶ To cite this version:

Jean Mélou, Yvain Quéau, Antoine Laurent, Marjorie Redon, Jean-Denis Durou, et al.. Thin Details Meet Large-Scale 3D-Reconstruction: Photometric Stereo for Cultural Heritage. 1st international conference on artificIAl Intelligence and applied MAthematics for History and Archaeology (IAMAHA 2023), CEPAM; INRIA Côte d'Azur; I3S, Nov 2023, Nice, France. pp.Session 3: AI-AM FOR MATERIALS OF THE PAST. hal-04559503

HAL Id: hal-04559503

https://hal.science/hal-04559503

Submitted on 25 Apr 2024

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

THIN DETAILS MEET LARGE-SCALE 3D-RECONSTRUCTION

Photometric Stereo for Cultural Heritage

Jean Mélou

Antoine LAURENT
Jean-Denis DUROU

IRIT, Toulouse, France

jean.melou@toulouse-inp.fr

Labcom ALICIA-Vision

Yvain QuÉAU

Marjorie REDON
Abderrahim ELMOATAZ

CNRS, GREYC, Caen, FRANCE

yvain.queau@ensicaen.fr

ANR IMG

Digitizing two cultural heritage masterpieces

The Bayeux tapestry XIth century, 70 m long

The Chauvet cave 36,000 years ago, 500 m long

Aim of the project

Develop AI tools for helping the 3D-digitization of these fragile, large-scale artifacts

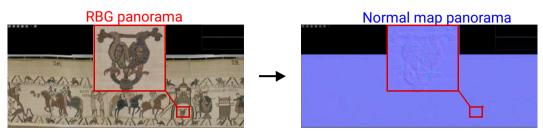
When thin details meet large-scale

The artworks are large-scale, yet exhibit extremely thin details:

- Wool strings on a linen canvas
- Engravings on limestone

Challenge: digitize both the low and high geometric frequencies, while not deteriorating the artifacts

Outline



1. Case of the Bayeux tapestry

2. Case of the Chauvet cave

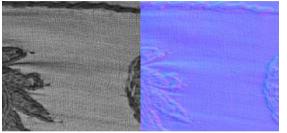
3D-digitization of the Bayeux tapestry

Goal: construct a 2.5D panorama of this 70 m-long medieval wool and linen *embrodery*, telling the conquest of England by William, Duke of Normandy, in 1066

- ► An RGB panorama is already available: https://www.bayeuxmuseum.com/en/the-bayeux-tapestry/discover-the-bayeux-tapestry/explore-online/
- Can we convert it to 3D?

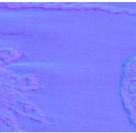
Redon et al., 3D surface Approximation of the Entire Bayeux Tapestry for Improved Pedagogical Access, Proc. ICCV 2023 workshop on e-heritage

From an RGB panorama to a 2.5D one


High-resolution ($480,000\times6,000~px$) RGB panorama, created from 86 images acquired in 2017 by La Fabrique de patrimoines en Normandie

Proposed strategy for 3D-digitization

- 1. Store the RGB spatial registration parameters
- 2. Turn each RGB image to 2.5D using deep learning
- 3. Apply the same spatial registration to the 2.5D images


Deep image-to-geometry learning

Input Ground truth image normal map

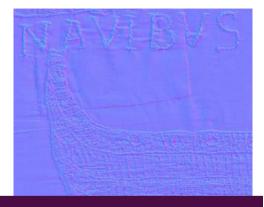
Estimated normal map

Proposed strategy for 3D-digitization

- 1. Store the RGB spatial registration parameters
- 2. Turn each RGB image to 2.5D using deep learning
- 3. Apply the same spatial registration to the 2.5D images

Ground truth geometry acquisition campaign

3D-reconstruction of 12 scenes, based on photometric stereo:

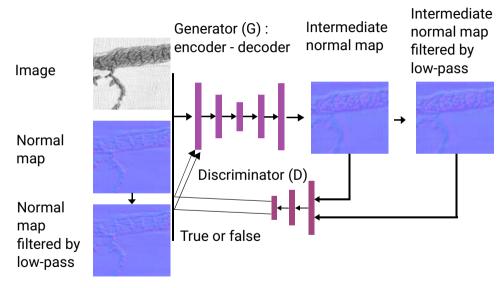

Left: three input images, taken from the same viewing angle but varying lighting Right: output high-resolution mesh (5M triangles)

Ground truth geometry acquisition campaign

We have \approx 30 couples (RGB,normals) of size $3000 \, \text{px}^2$

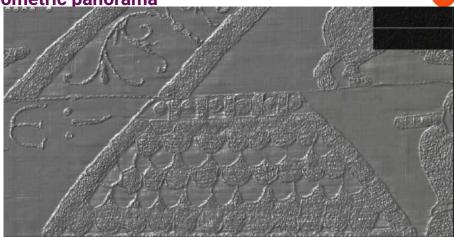
ightarrow Thousands of $128\,\mathrm{px^2}$ patches for learning the mapping RGB \mapsto geometry

Ground truth geometry acquisition campaign



We have \approx 30 couples (RGB,normals) of size $3000 \, \text{px}^2$

 \rightarrow Thousands of 128 px² patches for learning the mapping RGB \mapsto geometry


Deep image-to-geometry learning

Geometric panorama

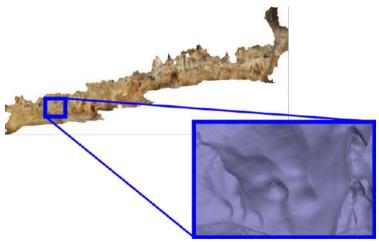
https://redonmarjorie.github.io/projects/BayeuxPanorama.html

Outline

1. Case of the Bayeux tapestry

2. Case of the Chauvet cave

Case of the Chauvet-Pont-d'Arc cave



"Panneau des chevaux" (Chauvet-Pont-d'Arc cave, Ardèche, France)

Photogrammetry in Chauvet

3D model of the Chauvet cave. Thin details are not reconstructed

Needs for photometric stereo

Zoom on the "Panneau des chevaux"

Needs

- Precision: capturing digitized tracings, fine engravings, etc.
- Separate the relief from the color: analysis of the antero-posteriority

Photometric methods

- Have a pixel-size precision
- Separate light, geometry and color

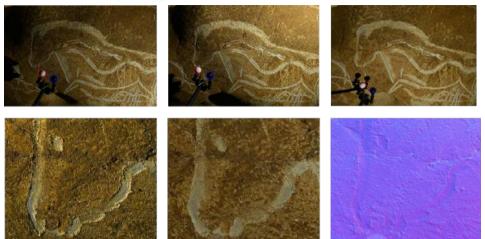
Classic photometric stereo case

Lighting calibration with a sphere

- ► Matte or glossy sphere placed in the scene
- ► Algorithm adapted to each type of sphere
- ► Sphere can be manually defined

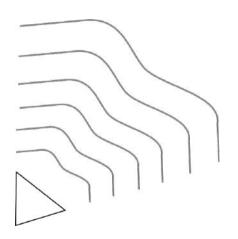
PS on the "Panneau des mammouths raclés". From left to right: one of the 13 pictures, zoom on three pictures and results of PS (albedo and normal map)

Accessibility constraints in the Chauvet cave



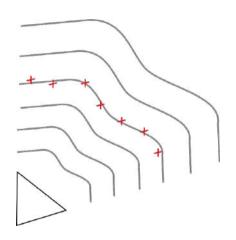
- ► Spheres are positioned at the end of a pole
- Position of the sphere in the image differs from one image to another
- Automatic detection with DETR network

Automatic neural lighting calibration



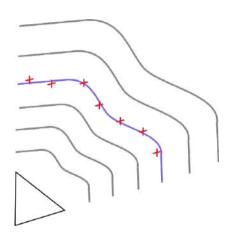
Top: three pictures (out of 16) with calibration spheres on a pole Bottom: zoom on a picture, albedo and normal map

Combining photogrammetry and photometric stereo 🚥 😘


Ongoing work

Depth deduced from normals, up to a scale factor

Combining photogrammetry and photometric stereo (1977)


Ongoing work

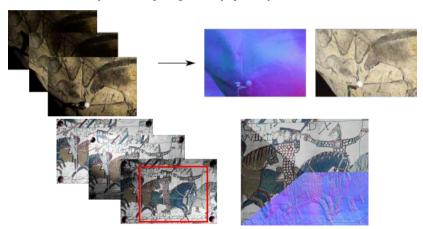
- Depth deduced from normals, up to a scale factor
- Idea: use the photogrammetric cloud to determine the right scale

Combining photogrammetry and photometric stereo (1977)

Ongoing work

- Depth deduced from normals, up to a scale factor
- Idea: use the photogrammetric cloud to determine the right scale

Thank you



jean.melou@toulouse-inp.fr

yvain.queau@ensicaen.fr

https://alicevision.org/labcom-alicia/ https://redonmarjorie.github.io/projects/BayeuxPanorama.html

