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A B S T R A C T   

Many pharmaceutical compounds end up in the environment due to incomplete removal by wastewater treat-
ment plants (WWTPs). Some compounds are sometimes present in significant concentrations and therefore 
represent a risk to the aquatic environment. Furosemide is one of the most widely used drugs in the world. 
Considered as an essential drug by the World Health Organization, this powerful loop diuretic is used extensively 
to treat hypertension, heart and kidney failure and many other purposes. However, this important consumption 
also results in a significant release of furosemide in wastewater and in the receiving environment where con-
centrations of a few hundred ng/L to several thousand have been found in the literature, making furosemide a 
compound of great concern. Also, during its transport in wastewater systems and WWTPs, furosemide can be 
degraded by various processes resulting in the production of more than 74 by-products. Furosemide may 
therefore present a significant risk to ecosystem health due not only to its direct cytotoxic, genotoxic and hep-
atotoxic effects in animals, but also indirectly through its transformation products, which are poorly charac-
terized. Many articles classify furosemide as a priority pollutant according to its occurrence in the environment, 
its persistence, its elimination by WWTPs, its toxicity and ecotoxicity. Here, we present a state-of-the-art review 
of this emerging pollutant of interest, tracking it, from its consumption to its fate in the aquatic environment. 
Discussion points include the occurrence of furosemide in various matrices, the efficiency of many processes for 
the degradation of furosemide, the subsequent production of degradation products following these treatments, as 
well as their toxicity.   

1. Introduction 

The presence of pharmaceutical compounds in water has been 
investigated since the 1970s (Hignite and Azarnoff, 1977; Aherne and 
Briggs, 1989; Ternes, 1998; Stumpf et al., 1999). Since the discovery of 
clofibric acid, a drug metabolite, in wastewater treatment plants 
(WWTPs), the presence of pharmaceutical residues in the aquatic envi-
ronment has become a significant issue in the field of environmental 
sciences and is becoming increasingly important due to the growing 
consumption of drugs (Corvaisier, 2000). These substances cover a very 
wide range of human and veterinary uses, therefore, there are hundreds 
of active substances that can be found in different environments (Hal-
ling-Sørensen et al., 1998; Heberer, 2002; Kümmerer, 2001; Godoy 
et al., 2015). Pharmaceutical compounds are created to be biologically 
active, although they were created for human or domestic animals, their 

action also extend to non-targeted populations which is why their 
occurrence and their persistence in the environment poses a risk to or-
ganisms and ecosystems (Kümmerer, 2001; Richardson and Bowron, 
2011; Aherne et al., 1990; Isidori et al., 2005). 

Pharmaceutical residues may be released into the aquatic environ-
ment after their use due to inadequate removal by WWTPs (Boxall et al., 
2014) but also during their manufacture by pharmaceutical companies 
(Kleywegt et al., 2016; Wolf et al., 2012). Moreover, despite some 
guidelines such as controls on the marketing of pharmaceutical products 
by institutions as the European CHemical Agency (ECHA) or the US Food 
and Drug Administration, there are no global regulations limiting their 
concentrations in effluents (Küster and Adler, 2014). There is no 
monitoring of the fate of these molecules and the presence of degrada-
tion products is not taken into account either. Some of those molecules, 
sometimes hardly metabolized by humans and excreted in unchanged 
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form, are introduced into the environment through wastewater systems 
(Verlicchi et al., 2016; Daughton and Ruhoy, 2009). Part of these 
compounds is degraded and is therefore not (or barely) found in the 
environment, but their degradation products can be identified there and 
their effects on ecosystems are very poorly documented (Grandcoin 
et al., 2017; Maculewicz et al., 2022). These compounds are sometimes 
more toxic than their parent molecules (Świacka et al., 2021). Studying 
all these compounds seems to be an overly large task, therefore, there is 
a need to prioritize them. Some well-known medicines are frequently 
found in prioritization lists such as Ibuprofen, Diclofenac or Paracetamol 
(Zuccato, 2004a; Riva et al., 2015). Of all these frequently occurring 
pollutants, furosemide, which is considerably less documented in 
aquatic media, will be the subject of this review. 

Furosemide (4-chloro-N-furfuryl-5-sulphamoylanthranillic acid), 
has been marketed since 1964 (Stokes and Nunn, 1964) under several 
brand names, of which the most common are Lasilix, Lasix, Frusemide, 
Edemid and Furix (DrugBank). Its physico-chemical properties are pre-
sented in Table S1.This drug is a powerful diuretic derived from sul-
phonamides, acting on the kidneys by inhibiting the reabsorption of 
electrolytes to ultimately increase water loss from the body (DrugBank; 
RxList. Lasix, 2020; HMDB, 2006; Abbott and Kovacic, 2008). Furose-
mide is used in humans in cases of cardiac, hepatic or renal insufficiency, 
high blood pressure and oedema (Abbott and Kovacic, 2008; Chahwa-
kilian and Ferrier-Battner, 2012; Rodriguez-Cillero et al., 2017; van 
Kraaij et al., 1997; Cheng and Nayar, 2009) and it is also used in chil-
dren, for diuretic and anti-inflammatory properties (Prandota, 2001). It 
has anti-epileptic (Haglund and Hochman, 2005) and antioxidant (Lahet 
et al., 2003) properties but is not used primarily for this purpose. In 
addition, it is used in the veterinary field to limit the consequences of 
volume overload in renal and cardiac diseases in dogs, horses and ponies 
(Abbott and Kovacic, 2008; Hinchcliff and Muir, 1991; Chetboul et al., 
2017). Furosemide has also been reported in diverted uses, for example 
it has been found undeclared in food supplements and also used in sport 
to help athletes lose weight quickly (Ivanova and Ivanov, 2019). It is also 
used to mask doping products diluting drug concentrations by 
increasing the volume of water in the urine but also by lowering the pH, 
thus modifying the excretion of other doping agents making them less 
detectable (Hinchcliff and Muir, 1991; Espinosa Bosch et al., 2008; Luiz 
et al., 2013; Cadwallader et al., 2010; Ventura and Segura, 1996). It is 
classified, as well as other diuretics, as a masking agent on the WADA 
Prohibited List (WADA, 2009). Furosemide is the 2nd most frequently 
detected diuretic in drug screenings (23%) (Cadwallader et al., 2010). It 
could be used to mix recreational drugs such as MDMA to counteract the 
secretion of antidiuretic hormones (Schröder et al., 2010a). Furosemide 
has many applications and is widely distributed across the world. 
Therefore, it quickly became a pollutant of interest in many countries 
(Zuccato, 2004a; RxList. Lasix, 2020; Li et al., 2019; Chinnaiyan et al., 
2018; Besse and Garric, 2008; Kostich et al., 2014; Christensen et al., 
2009a). Therefore, many studies classify it as a priority pollutant based 
on several parameters. The most common criteria are production or 
consumption sales data (Riva et al., 2015; Chinnaiyan et al., 2018; de 
Voogt et al., 2009; Dong et al., 2013; Guo et al., 2015; Mansour et al., 
2016; Machado et al., 2017; Ahmed, 2020; Khan et al., 2020). These are 
easily accessible data which provide direct information on the extent of 
use of the compound. This information can be used to assess Predicted 
Environmental Concentrations (PEC) (Besse and Garric, 2008; Kostich 
et al., 2014). The persistence or stability of the compound is also 
frequently mentioned (Zuccato, 2004a; de Voogt et al., 2009; Khan 
et al., 2020; Zuccato et al., 2005; Roos et al., 2012; Daouk et al., 2015; 
Muñoz et al., 2008). Indeed, a stable compound will not be degraded in 
the wastewater treatment plants or in the environment and will there-
fore tend to accumulate in the receiving environment and then deter-
mine its occurrence which is the second most listed criteria (Zuccato, 
2004a; Chinnaiyan et al., 2018; Kostich et al., 2014; de Voogt et al., 
2009; Khan et al., 2020; Roos et al., 2012; Daouk et al., 2015; Gillard 
et al., 2014). Furosemide is effectively found in many countries and a 

large number of studies around Europe, Asia or North America in WWTP 
effluents, surface water and even in sludge or sediments (see the 
“occurrence in the environment” section). Some studies consider furo-
semide as a priority based on its elimination by WWTPs or by its input in 
wastewater (Kleywegt et al., 2016; Riva et al., 2015; Chinnaiyan et al., 
2018; Mansour et al., 2016; Gillard et al., 2014). This ubiquity of furo-
semide leads many researchers to question its toxicity (de Voogt et al., 
2009; Dong et al., 2013; Mansour et al., 2016; Khan et al., 2020; Daouk 
et al., 2015; Muñoz et al., 2008) and its ecotoxicity (Chinnaiyan et al., 
2018; Christensen et al., 2009a; Dong et al., 2013; Guo et al., 2015; 
Mansour et al., 2016; Roos et al., 2012; Daouk et al., 2015; Muñoz et al., 
2008; Gillard et al., 2014), which is the second most cited priority cri-
terion. It is sometimes even classified as preoccupying according to its 
excretion rate (Riva et al., 2015; Machado et al., 2017). In order to assess 
the toxicity of furosemide, several studies use tools or indicators 
combining several parameters. Methods such as the Occurrence, 
Persistence, Bioaccumulation, Toxicity (OPBT) approach, based on 
several relevant indicators for the evaluation of the environmental 
impact, allows to prioritize the molecules (Daouk et al., 2015). The 
Measured or Predicted Environmental Concentration/Predicted no Ef-
fect Concentration (MEC/PNEC or PEC/PNEC) ratio is the most 
commonly used in ecotoxicology to determine a risk because it is based 
both on the concentration of a pollutant in the environment and also the 
sensitivity of the species studied (Chinnaiyan et al., 2018; Besse and 
Garric, 2008; Roos et al., 2012). The EC5/MC95 (EC5 ¼ 5th percentile 
effect concentration; MC95 ¼ 95th percentile measured concentration) 
(Christensen et al., 2009a), is a probabilistic approach quite similar to 
PEC/PNEC ratio. 

Finally, many pharmacological studies have been carried out on 
furosemide (Abbott and Kovacic, 2008; Ahmed, 2020; Huang et al., 
2016), but quite few on its presence, degradation and impact on the 
environment. Here, we present a state-of-the-art review of this emerging 
pollutant of interest, tracking it, from its consumption to its fate in the 
aquatic environment. 

2. Consumption of furosemide 

Diuretic compounds are commonly used to treat cardiovascular 
problems which are one of the main causes of hospitalization in the 
world (Roger et al., 2011). More than 80% of patients receive a loop 
diuretic for heart failure but it is also used for oedema disorders or high 
blood pressure (Buttard, 2016). The incidence of heart failure is growing 
(Savarese and Lund, 2017) and makes diuretics a highly represented 
class of drugs in many countries (Table S2). The most commonly pre-
scribed categories for hypertension are thiazide diuretics and loop di-
uretics (Rimoy et al., 2009; Shalavadi et al., 2018) whereas loop 
diuretics prevail over the other categories for the treatment of cardiac 
congestion (Cheng and Nayar, 2009; Buttard, 2016; Boulestreau et al., 
2018). Diuretics are extensively used in elderly people (Arrubla et al., 
2016) and some studies even mention their overuse (Rodriguez-Cillero 
et al., 2017; van Kraaij et al., 1997). In France, Buttard (2016) mentions 
that more than one third of people over 75 years of age are administered 
diuretics and 70% of the prescriptions are considered inappropriate by 
this author both in terms of indications and dose administered. 

Furosemide is then one of the most widely prescribed diuretics 
(Ahmed, 2020; Murray et al., 1997; Thapa and Singh, 2019; Osunma-
kinde and South Africa; Water Research Commission, 2013; ClinCalc 
DrugStats Database, 2018; Papageorgiou et al., 2016a; Agence nationnal 
de securité du médicament, 2013) and it is also used in the formulation 
of several products such as co-amilofruse or co-amilozide (Treadgold, 
2012) even if it is not necessarily the best choice over bumetanide and 
torsemide based on price, bioavailability and hospitalization rates of 
patients treated (Wargo and Banta, 2009; Di Nicolantonio, 2012). Wargo 
& Banta (Wargo and Banta, 2009) hypothesized that furosemide is the 
most widely used because it was the first loop diuretic approved by the 
US Food and Drug Administration in 1966, and the least toxic for human 
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(Prandota and Witkowska, 1976). Since 1977, it is considered as an 
essential medicine by the World Health Organization based on its effi-
ciency, safety and public health importance. The mass of furosemide 
prescribed or consumed after the 2000s is noteworthy in many European 
countries (Table S3) and seems to be more significant in more recent 
years. As furosemide is used for cardiovascular diseases and especially 
by elderly people, the growing consumption of furosemide is likely 
linked to the aging of the German, Polish and Italian populations 
(Vancea and Solé-Casals, 2016) as it is the case for other drugs such as 
antidepressants (Fratiglioni et al., 1999). Indeed, studies focusing on 
hospitals, households or care homes have shown that furosemide is 
among the 20 most consumed drugs in terms of mass in the 
United-Kingdom and that care homes contribute 67.5% of total mass 
(Treadgold, 2012). In France, furosemide is significantly consumed 
(595–1779 mg/day) in several nursing homes for elderly people 
(Lacorte et al., 2018a). In addition, consumption of furosemide in Ger-
many is much higher by the general public than in hospitals mostly 
because patients purchase their medication at the pharmacy and 
consume it in their private residence (Fernandez, 2018a). 

3. Occurrence in the environment 

In the aquatic environment, furosemide is very widely found and 
often at high concentrations in wastewater (influents and urban efflu-
ents from WWTPs, hospitals, industries …), in surface waters (rivers, 
lakes, seas, oceans, estuaries, and deltas) at concentrations ranging from 
the ng/L level to a few hundred of ng/L and sometimes in groundwater 
and drinking water (wells, catchments, tap water). It is also found in 
suspended matter, WWTP sludge and sediments. These matrices are 
often not considered; therefore, furosemide concentrations may be 
underestimated. It is also investigated in other matrices such as food in 
order to estimate the sanitary risk in the case of treated wastewater reuse 
for crop irrigation.  

1 Occurrence in medicalized institutions wastewaters 

Medicalized institutions gather a larger number of patients, then, 
high concentrations of furosemide are expected in their effluents. For 
example, according to Ort et al. (2010), hospital discharges account for 
5.9% of furosemide in total wastewater discharges but are more spatially 
condensed. Depending on the users of the different institutions (veteri-
nary or human hospital, maternity, oncological institution …), signifi-
cant concentrations of furosemide can be found directly at the outlet and 
even after treatment by the wastewater treatment plants (Fig. 1). 

Studies on raw water from medical institutions are less common than 
on treated wastewater for university hospitals and general hospitals 
(Fernandez, 2018a; Nielsen et al., 2013; Huber et al., 2016) but for 
veterinary hospitals, Fernandez (2018a) observed a little higher con-
centration in the outlets. Furosemide concentrations are around a few 
hundred ng/L in both sample types, which is relatively low but can be 
explained by a less important use of furosemide in veterinary medicine. 
The median concentrations in general hospital influents (7818 ng/L) are 
a little higher than in the effluents (6295 ng/L) which seems coherent 
because the effluents are treated. The same applies to university hos-
pitals; median concentration in inlet waters are 4600 ng/L and median 
concentrations in outlet are 3450 ng/L but mean concentrations are 
much higher due to very high values of 196000 and 392000 ng/L found 
in a Norwegian hospital effluent (Thomas et al., 2010). There is a visible 
difference between general hospitals and university hospitals. In nursing 
homes, the median concentration is around 3.2 μg/L and the values 
found by the different authors are quite close. Two relatively high 
concentrations were found in a maternity hospital and a pediatric hos-
pital (Santos et al., 2013a) which confirms that the use of furosemide in 
children is also important. Indeed, Prandota (2001) reports its use in 
premature infants with chronic lung disease, children with nephrotic 
syndrome, acute or chronic renal failure, congestive heart failure, pro-
gressive hydrocephalus. Finally the median concentration of health fa-
cilities for human patients is 3915 ng/L. Gillard et al. (2014) found a 
close value (3207 ng/L) for eight institutions in Belgium (hospitals, 
neuro-psychiatric units or rest homes). The authors also found important 
furosemide concentrations up to 57900 ng/L and hypothesized that 
these concentrations may be related to its heavy use in psychiatric units 
to counteract the side effects of several psychotropic drugs which have a 
known anti-diuretic activity (Spigset and Hedenmalm, 1995). While 
healthcare facilities constitute a major source of high furosemide 
contamination locally, discharges from individual patients’ homes may 
be less concentrated, but probably more prevalent. Moreover, it was 
reported that furosemide concentrations found in the effluents of several 
nursing homes were relatively low, which was attributed to the fact that 
part of the furosemide was absorbed in the disposable diapers of the 
incontinent patients in the establishments studied (Lacorte et al., 
2018a).  

2 Occurrence in WWTPs 

The largest number of studies found on the presence of furosemide 
focus on WWTPs and most of them are conducted in Europe. The highest 
concentrations of furosemide are found in wastewater influents (Fig. 2). 

Fig. 1. Furosemide concentration in WWTP effluents and influents (μg/L) of various types of medical institutions. Each x represents a value of furosemide and 
(number) indicates the number of values per medical institutions. The yellow boxplot shows the concentration in the raw water, the purple boxplot shows the 
concentration in the wastewater after treatment (Kleywegt et al., 2016; Gillard et al., 2014; Fernandez, 2018a; Nielsen et al., 2013; Huber et al., 2016; Thomas et al., 
2010; Oliveira et al., 2015; Lee, 2014; Afsa et al., 2020; Kovalova et al., 2012; Ajo et al., 2018; Gómez-Canela et al., 2019; Mackuľak et al., 2019; Mir-Tutusaus et al., 
2017; Nagarnaik et al., 2010; Nelson et al., 2011; Santos et al., 2013a; Verlicchi et al., 2012a; Wahlberg et al., 2011; Yilmaz et al., 2017). 
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In Europe, furosemide median concentration is around 2600 ng/L in 
WWTP influent with a range of variation between 525 ng/L for Iceland 
to 13000 ng/L for Czech Republic. Furosemide average concentration is 
around 4400 ng/L and average concentrations are quite close to the 
medians, except for Czech Republic, where Rozman et al. (2017) found a 
maximum concentration reaching 71500 ng/L for Onšov municipality. 
This result is puzzling given the very low number of inhabitants (230 in 
2022), and average age of the population (45.6 years). In this village, 
furosemide was the pollutant with the highest concentration, ahead of 
the other commonly-found compounds paracetamol, caffeine and 
ibuprofen. A much greater number of studies on furosemide is carried 
out in Spain than other european countries, but the concentrations are 
below the averages and medians. Compared with the furosemide con-
sumption data shown in Table S3, interestingly, a high concentration of 
furosemide in the raw water is not necessarily linked to a high con-
sumption, as it is the case for Sweden, for example, but this could be 
biased by the low number of consumption data. 

Outside Europe, a few studies have quantified furosemide in WWTP 
inlets. In North America, concentrations of 1830 ng/L in Canada 
(Kleywegt et al., 2016), median concentrations of 3565 ng/L in USA 
(Lara-Martín et al., 2014; Oliveira et al., 2015) and 436 ng/L in Mexico 
(Lesser et al., 2018; Estrada-Arriaga et al., 2016) are, thus in the same 
orders of magnitude as in Europe. In Asia and Africa, furosemide con-
centrations are globally lower than in Europe, with 170 ng/L, 330 ng/L 
in Vietnam and Korea respectively (Kuroda et al., 2015; Lee, 2014) and 
200 ng/L in Tunisia (Afsa et al., 2020). Despite many studies dealing 
with pharmaceutical pollutants in China, it should be noted that only 
one mentioned furosemide. Thus, due to the small amount of data 
available, it is difficult to conclude on furosemide contamination in 
these locations. 

Globally, several hundred to several thousand ng/L of furosemide 
were found in untreated wastewater. It has also been found in landfill 
leaching ponds up to 3840 ng/L (Rodríguez-Navas et al., 2013a) and 

fitness center discharges up to 102 ng/L (Schröder et al., 2010a). 
Fortunately, wastewater treatment processes are sometimes effective in 
removing furosemide. However, furosemide has been found across 
Europe in municipal, urban, industrial and agricultural treated waste-
water effluents (Fig. 2). 

Many more studies have been carried out on WWTP outlets (205) 
than on inlets (98). These studies allow the evaluation of the treatment 
efficiency but also the quantification of pollutants transfer/discharge 
from WWTPs to the environment. In WWTP outlets, the median con-
centration in Europe is around 1150 ng/L and the average concentration 
is 1220 ng/L. Median range is from 44 ng/L in Slovakia (Alygizakis 
et al., 2019a) to 4350 ng/L in Denmark (Huber et al., 2016; Jacobsen 
et al., 2004a; Matamoros et al., 2009a; UNESCO, 2017). Several con-
centrations far above 1000 ng/L were found in Denmark (4200 ng/L in 
Kjølholt et al. (2003a); 4500 ng/L in Jacobsen et al. (2004a); 4600 ng/L 
in Mogensen et al. (2008); 7200 ng/L in Matamoros et al. (2009a); 1300 
ng/L in UNESCO (UNESCO, 2017)) and the highest average concentra-
tion reported is in Czech Republic with 4130 ng/L due to two very high 
concentrations (11000 (Rozman et al., 2017) and 26000 (Vymazal et al., 
2017) ng/L). The Czech Republic has the highest concentrations of 
furosemide found both at WWTPs inlets and outlets. 

In North America, a value of 80 ng/L was found by Estrada-Arriaga 
et al. (2016) in Mexico and a median value of 640 ng/L has been ob-
tained (Lara-Martín et al., 2014; Oliveira et al., 2015; Batt et al., 2008; 
Meador et al., 2016) in USA. In Asia, furosemide median concentrations 
of 562, 497 and 3601 ng/L have been found in Japan (Hanamoto et al., 
2018; Nakada et al., 2007), Malaysia (Al-Odaini et al., 2010; Al-Odaini 
et al., 2013) and Korea (Lee, 2014; Kim, 2018a), respectively. This last 
value is surprisingly high compared to those usually found in treated 
wastewater. Finally, in Africa, concentrations of 67 ng/L and 1300 ng/L 
have been found in Tunisia (Afsa et al., 2020) and Uganda (Dalahmeh 
et al., 2020). In these cases, there are less data available than in Europe, 
even concerning WWTP outlets to our knowledge, and no data at all 

Fig. 2. Furosemide median concentration in municipal, urban, industrial, agricultural or unspecified WWTP influents (left) and effluent (right) (ng/L). The figures 
have been produced by QGISv3. The gradients on the map represents the range of median concentrations, which also appear under the name of each country. The 
number of studies per country is indicated in parentheses (Riva et al., 2015); (Huber et al., 2016); (Santos et al., 2013a); (Rozman et al., 2017); (Jacobsen et al., 
2004a); (Kjølholt et al., 2003a; Mogensen et al., 2008; Vymazal et al., 2017); (Rodríguez-Navas et al., 2013a); (Feo et al., 2020); (Gros et al., 2012); (Valcárcel et al., 
2011); (Gracia-Lor et al., 2012); (López-Serna et al., 2010); (Giebułtowicz et al., 2016); (Sandre et al., 2023); (Kot-Wasik et al., 2016); (Kasprzyk-Hordern et al., 
2009); (Koronaiou et al., 2023), (Lacey, 2008); (Wahlberg et al., 2011a); (Chen et al., 2016; Møskeland et al., 2006; Schröder et al., 2010a; Papageorgiou et al., 2019; 
Dasenaki and Thomaidis, 2015; Papageorgiou et al., 2016a; Lacey et al., 2012; Lacey et al., 2008; Verlicchi et al., 2012b; Verlicchi et al., 2013; Verlicchi et al., 2012a; 
Castiglioni et al., 2018; Jie, 2012; Sousa et al., 2011; Salgado et al., 2010a; Ibáñez et al., 2013a; Gros et al., 2009; Rosal et al., 2010; Ginebreda et al., 2012; 
Fernandez, 2018a; Pérez et al., 2010; Collado et al., 2014; Teijon et al., 2010; Urtiaga et al., 2013a; Čelić et al., 2019; Klamerth et al., 2013a; Gros et al., 2017; Kim, 
2018a; Falås et al., 2012; Wahlberg, 2010; Golovko et al., 2021; Baresel et al., 2019; Lee et al., 2014; Finckh et al., 2022; Alygizakis et al., 2019a; Al Aukidy et al., 
2012; Sousa et al., 2012; Salgado et al., 2011).(Acuña et al., 2015)(Biel-Maeso et al., 2018a; Bueno et al., 2012; Burcea et al., 2020; Campos-Mañas et al., 2017; 
Díaz-Garduño et al., 2017)(Gómez et al., 2008a)(Jelic et al., 2011)(Martínez Bueno et al., 2007)(Petre et al., 2016)(Petrović et al., 2014)(Prieto-Rodriguez et al., 
2012; Prieto-Rodríguez et al., 2013) 
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have been published from South America or Oceania to date. 
The highest furosemide concentrations in the aquatic environment 

were found by Kleywegt et al. (2019) in effluents from a pharmaceutical 
facility in Canada (1200000 ng/L), quite close those found in Denmark 
by UNESCO (UNESCO, 2017) in WWTP effluents (1300000 ng/L), thus 
suggesting the proximity of a pharmaceutical facility to the sampling 
point. Indeed, the river downstream of the pharmaceutical facility in 
Canada shows very significant furosemide concentrations (3650 ng/L), 
underlining that this type of facilities contributes significantly to river 
contamination, raising serious environmental concerns. 

Finally, the median concentrations at WWTP outlets are almost three 
times less concentrated than those at WWTPs inlets, which highlights a 
substantial overall reduction of furosemide in the aqueous phase by the 
treatment plants. Another possibility would be a partial transfer of 
furosemide to solid phases such as sewage sludge (Fig. 3). For instance, 
Petrovic & Verlicchi (Petrovic and Verlicchi, 2014) have shown that 2% 
of the furosemide is transferred to the sludge, making it likely that sig-
nificant levels are present in the sludge of furosemide-laden water, as 
observed in WWTPs. 

According to Fig. 3, furosemide in treated sludge (28 ng/g.dw) is 3 
times less concentrated than in raw sludge (80 ng/g.dw), meaning that 
the different sludge treatments might be relatively efficient for the 
removal of furosemide. In comparison, Riva et al. (2021) found slightly 
higher content for Hydrochlorothiazide (36.7 ng/g.dw), the other most 
used diuretic after furosemide. Different parameters can influence the 
affinity of furosemide to sludge. However, the furosemide partition co-
efficient (Table S4) between the dissolved and particulate phases (Kd) 
suggests that it has a rather good affinity with these matrices. 

Stuer-Lauridsen et al. (2000) further showed that the affinity of 
furosemide with sludge is several orders of magnitude more important 
than suggested by the partition coefficients; indeed Svahn & Bjorklund 
(Svahn and Björklund, 2015) underlined that the sorption mechanisms 
are effectively too complicated to be estimated from the log p (also log 
Kow, octanol/water partition coefficient) or log d (pH-dependent par-
titioning coefficient) of the molecules. The Kd value depends on several 
parameters, including nature and concentration of organic carbon, and 
pH which varies during wastewater treatment (between 5 and 9) which 
could explain why the digested sludge Kd is lower than that of thickened 
sludge (Jelic et al., 2012). 

Moreover, with increasing water stress in some countries, water 
reuse is becoming an important issue but could be a source of micro-
pollutant contamination, just as sludge spreading and urine use as fer-
tilizer. Sludge spreading and the use of urine as fertilizer could also 
generate significant contamination. A few studies showed that furose-
mide can accumulate (weakly) in food crops irrigated by wastewater: 
Delli Compagni et al. (Delli Compagni et al., 2020) modelized a possible 
accumulation of furosemide especially in the roots of maize, rice and 
ryegrass, but also potentially in leaves and seeds by its transfer through 
the phloem. However, not all plants seem to accumulate. Indeed, Mar-
tínez-Piernas et al. (2019) did not detect furosemide in tomatoes while 

tomato plants were irrigated with reused water containing 1700 ng/L of 
furosemide.  

3 Occurrence in surface waters 

Many studies quantified furosemide in surface water but only a few 
focus on lakes, seas, oceans, estuaries and deltas. River waters are the 
most studied for the presence of pharmaceutical compounds and furo-
semide has been quantified in many locations (Fig. S1). The furosemide 
median concentration in European rivers is 93 ng/L, with an average 
concentration of 265 ng/L and a maximum concentration found of 6894 
ng/L in Portugal (Palma et al., 2020), which is almost 30 times above 
average. In non-European countries, the maximum quantified concen-
tration (1235 ng/L) is found in the Hudson River in USA (Cantwell et al., 
2018). This relatively high concentration has been explained by the 
proximity of a WWTP discharge, which contributes strongly to the vol-
ume of water present especially during low tides. In other compart-
ments, concentrations are lower in most cases. The few studies which 
detected furosemide in lakes, estuaries or coastal waters have not re-
ported concentrations over 47 ng/L (Wahlberg et al., 2011a; Matamoros 
et al., 2012; Togola et al., 2008; Rodríguez-Navas et al., 2013a), except 
once at 2300 ng/L in coastal waters in Portugal (Almeida et al., 2017). 
However, this unusual value has not been explained by the authors, nor 
confirmed by more recent studies. 

Generally, furosemide is rarely detected in coastal or oceanic waters 
(Afsa et al., 2020; Biel-Maeso et al., 2018a; Feo et al., 2020), probably 
because of the importance of the water volumes involved (dilution ef-
fect). Studying the surface water content constitutes the first step toward 
risk assessment, providing an idea of exposure concentrations of 
non-target organisms in these environments. In addition, as in the case 
of sludge, some of the furosemide may be found in the sediment (Fig. 3). 
The median furosemide content in sediment is 2.7 ng/g.dw. As furose-
mide has a low polar to apolar surface ratio, it is expected to form more 
hydrogen interactions with sediments (Bäuerlein et al., 2012). Accord-
ing to the data presented in Fig. 3, in sediments, furosemide is 10 times 
less concentrated than in treated sludge. This disparity may be due to a 
significant dilution effect in river water. On the other hand, Björklund 
et al. (2016) calculated a very high Kd in sediment for furosemide (2517 
L/kg). However, the furosemide content in sediment found by these 
authors is very high (350 ng/g.dw) compared to other values found in 
the literature (Fig. 3) and could explain this high Kd, which would 
therefore not be representative of the affinity of furosemide to 
sediments.  

4 Occurrence in ground and drinking waters. 

Pharmaceutical residues in groundwater studies investigate the 
magnitude of the contamination, while analysis of drinking water aims 
at assessing the risk that residues represent for the population or eco-
systems. These environments are rather protected but not totally devoid 

Fig. 3. Furosemide contents in river sediments and WWTP sludge (ng/g dw). Each x represents a value of furosemide. The cyan boxplots represent furosemide 
concentrations in untreated sludge (no digestion or biological treatments). The magenta boxplot represents the concentrations in the sludge after treatment and the 
yellow boxplot represents the concentrations in the sediment. Concentrations are given in ng/g of dry content except for Ferrari et al., 2011 which is expressed as 
ng/g of wet content (Huber et al., 2016; Riva et al., 2021; Björklund et al., 2016; Narumiya et al., 2013; Wahlberg et al., 2011a; Gros et al., 2009; Ginebreda et al., 
2012; Salgado et al., 2010a; Ferrari et al., 2011; Ferreira da Silva et al., 2011; Sadutto et al., 2021; Jelić et al., 2009; Rodríguez-Rodríguez et al., 2012). 
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of furosemide contamination (Table S5). Sources of groundwater 
contamination include loss from sewage systems, urban runoff by sus-
tainable urban drainage systems which promote the infiltration of runoff 
water locally (Eriksson et al., 2007), wastewater discharges, industrial 
discharges or infiltration of river water to the aquifer (Jurado et al., 
2012; Sui et al., 2015). Whereas concentrations of a dozen to a few 
hundred ng/L of furosemide have been found occasionally in France and 
Spain, it is mostly not even detected in groundwater (Mogensen et al., 
2008; Gros et al., 2012; Meffe and de Bustamante, 2014; Vulliet and 
Cren-Olivé, 2011; Benotti et al., 2006; Valcárcel et al., 2011; Stackelberg 
et al., 2004), nor in natural river biofilm (Huerta et al., 2016). Furose-
mide is also rarely detected in drinking water (Wahlberg et al., 2011a; 
Gracia-Lor et al., 2012; Anderson et al., 2010; Marube et al., 2017; 
Zuccato et al., 2000; López-Serna et al., 2010), only once reaching 29 
ng/L in Poland (Giebułtowicz et al., 2016). Drinking water treatment 
processes are indeed relatively effective for furosemide (Baken et al., 
2018), in particular chlorination, ozonation and UV (Ultra-violet) ra-
diation: the secondary amine or the furan ring in furosemide reacts 
quickly with chlorine or ozone and it is therefore quickly photodegraded 
by UV lights (Sandre et al., 2023). However, its degradation can lead to 
by-products formation (see below) such as 1-acetyl-1-methyl-2-phenyl-
hydrazide (de Jongh et al., 2012).  

5 Temporal variation 

Temporal variations of furosemide concentrations in the receiving 
environment have been linked to its use and its elimination efficiency by 
WWPs. Delli Compagni et al., (2020) observed lower concentrations of 
furosemide in summer (≃70 ng/L) than in winter (≃180 ng/L). As 
furosemide is well photodegraded, especially in rivers (Hanamoto et al., 
2014), the authors hypothesized that the decrease in concentration in 
summer is due to increased radiation favoring its photolysis. In addition, 
furosemide degradation is also more important in WWTPs in summer 
(54%) over winter (8%) (Castiglioni et al., 2006) and in WWTP sludges 
(8 ng/g.dw in summer, 31 ng/g.dw in winter (Riva et al., 2021) pre-
sumably due to a more important biological activity with a warmer 
temperature. However, one study did not find significant variations in 
furosemide concentrations between seasons (Kot-Wasik et al., 2016). On 
the other hand, a higher contribution of furosemide by river to coastal 
waters was observed in spring (Feo et al., 2020; Moreno-González et al., 
2014), which was also the case in a canadian WWTP effluent with higher 
concentrations in spring versus fall, while undetected in summer (Singh 
et al., 2015a). In Mexico, two to three times higher concentrations of 
furosemide were observed in municipal WWTP influent in the dry (514 
ng/L) versus wet (173 ng/L) season, which could be due to dilution 
during the rainy season. The authors also noted a better WWTP effi-
ciency during the dry season due to a longer residence time and smaller 
volumes of wastewaters to be treated (Estrada-Arriaga et al., 2016). 

4. Fate of furosemide from its consumption to receiving water 

After consumption, furosemide will pass through the human body 
before being excreted in urine. It will be then transferred to the sewer 
network and the WWTPs, where it will be eliminated with various 
efficiency.  

1 Metabolization 

In adults, most of furosemide (between 69 and 99%) is excreted 
within the first 4 h after intake regardless of the mode of administration, 
mainly through urine and marginally through feces (Calesnick et al., 
1966; Aranda et al., 1982; Stankiewicz et al., 2015). Furosemide can be 
metabolized in the liver and the guts by uridine diphosphate glucur-
onyltransferase but mostly (85%) in the kidneys (Phakdeekitcharoen 
and Boonyawat, 2012). It is highly bonded to plasma albumin (>90%) 
which leads to a low-efficiency filtration by the glomerulus (Prandota 

and Witkowska, 1976; Phakdeekitcharoen and Boonyawat, 2012; 
Andreasen and Jakobsen, 2009). Finally, between 11% and 23% of 
furosemide is excreted in its glucuronide form (Riva et al., 2015; Zuccato 
et al., 2005; Aranda et al., 1982; Bindschedler et al., 1997; Andreasen 
et al., 1982; Boles Ponto and Schoenwald, 1990). However, furosemide 
remains mostly untransformed and an average of 66% (Bindschedler 
et al., 1997; Andreasen et al., 1982; Zuccato, 2004a) is excreted in un-
changed form in adults and 84.5% in children (Aranda et al., 1982). 
Furosemide can be hydrolyzed to a lesser extent in the human stomach 
(Andreasen et al., 1982) and in aqueous solutions (Bundgaard et al., 
1988). At constant temperature and pH, Bundgaard et al. (1988) 
describe a first order kinetics, and an improvement of the hydrolysis rate 
when pH decreases. Furosemide thermal decomposition was studied in 
the early 2000s (Beyers et al., 2000). However, furosemide only de-
grades at 218 ◦C which is far from the environmental conditions.  

2 Degradation in WWTPs and advanced process 

Furosemide degradation in WWTPs is quite variable. Effective 
degradation rates around 70% have been found in literature (Matamoros 
et al., 2009a; Sandre et al., 2023; Kasprzyk-Hordern et al., 2009), owing 
to more efficient WWTP processes and/or time of sampling: due to the 
higher temperature in summer, the biodegradation activity is indeed 
stronger, and furosemide is better degraded. Medium elimination rates 
25-40-50-54% were found in conventional mechanical-biological 
treatment (Castiglioni et al., 2006; Kot-Wasik et al., 2016; Park et al., 
2017; Gros et al., 2010). These percentages of removal can be much 
increased by adding tertiary or quaternary treatments in WWTPs, as 
shown in Fig. 4. 

The degradation of furosemide by innovative processes has been 
widely studied in more than 35 papers (Fig. 4). The effectiveness of these 
processes appears very variable, ranging from complete elimination of 
furosemide to no elimination, or even higher furosemide concentrations 
following Membrane Bio Reactor (MBR) processes (Nielsen et al., 2013). 
This phenomenon has been explained by the deconjugation of glucur-
oconjugated forms of furosemide, increasing the concentration of 
quantifiable “native” furosemide (Kovalova et al., 2012; Kosma et al., 
2014). Due to their highly variable efficiency, it is difficult to conclude 
on the performance of MBR (from − 14 to 95% elimination of furose-
mide) and absorption on xylite (from 15 to 100% elimination). The 
effectiveness of xylite depends on the water residence time within the 
process, a longer time resulting in a more effective absorption (Rostvall, 
2017). The MBR efficiency relies on the upstream processes and the type 
of membrane used. The lowest removal rates reported for furosemide are 
obtained with ceramic membranes (Nielsen et al., 2013; Joannis-Cassan 
et al., 2021). On average, biological treatments (Activated sludge, 
Anaerobic-Anoxic-Aerobic system (A2O), Peroxidase, Plant, Fugus, 
Constructed wetland, Chitosan film, MBR) are not much more efficient 
than physical-chemical treatments (i.e., all the rest): average efficiency 
of 74% versus 70%, respectively. Filtration techniques such as sand 
filtration and ultrafiltration are not the most efficient (<50%) although 
ultrafiltration coupled with Gas-phase Pulsed corona discharge (PCD) 
shows better performances. On the other hand, reverse osmosis can 
completely eliminate furosemide due to the membranes that retain even 
small organic molecules (Eriksson et al., 2007). The majority of the 
processes found in the literature are oxidation processes. Their effi-
ciency is very variable, and depends on the reactivity of the oxidants 
involved with furosemide (Sandré et al., 2022). Ozonation processes are 
among the most efficient due to the quick reaction of ozone with the 
furan ring and the aniline group of furosemide (Zoumpouli et al., 2021). 
Photo-Fenton, chlorination, electro-oxidation and peroxydation allow 
almost complete elimination of furosemide. Peroxidases have also been 
shown to be very effective (Almaqdi et al., 2019), but the process has not 
been tested at WWTP scale and may be difficult to implement because it 
requires high enzyme concentration in high concentrations and the 
buffering of the pH. On the other hand, UV radiation appears rather 
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ineffective. Despite its high sensitivity to photodegradation (Bundgaard 
et al., 1988), the wastewater matrix must be too complex to allow 
optimal removal of furosemide. UV-H2O2 process on the other hand 
shows good efficiency because the addition of H2O2 results in the for-
mation of reactive oxygen species which will react strongly with furo-
semide (Miklos et al., 2018). Furosemide elimination by absorption is 
also interesting. Absorption on xylite, lignite or activated charcoal (in 
powder or granulated form) shows an efficiency of more than 60%. 
These techniques have the advantage of trapping the molecules and 
therefore potentially release less by-products than oxidation methods 
(Cuthbertson et al., 2019).  

3 Natural degradation 

Under environmental conditions, furosemide has several degrada-
tion pathways. First, furosemide has been known to be photodegradable 
for a long time: it is sensitive to visible light with fluorescent lamp 
(Katsura et al., 2015a), sunlight (Starling et al., 2019) and UV radiation 
(Bundgaard et al., 1988; Moore and Burt, 1981) which will react with 
the chlorine, furfuryl or sulfamoyl groups (Sandre et al., 2023). 
Although its photodegradation is unlikely in the wastewater system, it is 
expected once discharged into the aquatic environment. It has been 
reported to be biodegraded by environmental bacteria such as Agro-
bacterium tumefaciens and Arthrobacter ureafaciens (Laurencé et al., 
2014), fungus like Aspergillus candidus, Cunninghamella echinulata and 
Trametes versicolor (Laurencé et al., 2014; Olvera-Vargas et al., 2016a; 
Badia-Fabregat et al., 2015; Badia-Fabregat et al., 2016) and anaerobic 

Fig. 4. Removal efficacy of furosemide by different advanced processes (%). Each x represents a value of furosemide removal. The purple boxes represent the 
techniques for which the removal of furosemide is done by a biological process and the blue boxes represent those for which the process is physicochemical (Machado 
et al., 2017; Nielsen et al., 2013; Vymazal et al., 2017; Park et al., 2017; Kovalova et al., 2012; Rostvall, 2017; Joannis-Cassan et al., 2021; Sandré et al., 2022; 
Almaqdi et al., 2019; Badia-Fabregat et al., 2016; Ajo et al., 2018; Jie, 2012; Rosal et al., 2010; Kjølholt et al., 2003a; Ibáñez et al., 2013a; Urtiaga et al., 2013a; 
Klamerth et al., 2013a; Gómez et al., 2008a; Huerta-Fontela et al., 2011; Singh et al., 2015a; Ahmed et al., 2017; Arola et al., 2018; Cruz-Morató et al., 2014; Heidari 
et al., 2020; Ikonen et al., 2021; Kim et al., 2014; Kovalova et al., 2013; Llorens-Blanch et al., 2015; Machado et al., 2020; Muñoz et al., 2009; Reungoat et al., 2012; 
Rizzi et al., 2020; Verlicchi et al., 2015; Cuervo Lumbaque et al., 2020). 
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microorganisms (Narumiya et al., 2013; Gros et al., 2020), forming 
several by-products. 

5. Degradation by-products of furosemide 

During its passage in the human body, in sewage networks, in 
WWTPs or in the environment, furosemide undergoes several degrada-
tion pathways, leading sometimes to its real elimination, but more 
frequently to the concomitant production of by-products, more or less 
stable, thus resulting in an apparent furosemide decrease when assessing 
removal at the WWTPs. These by-products can be formed by various 
processes, and may remain unidentified if global and sensitive analytical 
methods such as LC-MS/MS or HRMS are not applied. Furthermore, they 
may have a significant toxicity, which is currently understudied (poorly 
taken in account). The structure of several degradation products has 
been identified in the literature (Table 1). Some of these have been 
known for a long time and others have been identified only recently with 
the improvement of screening techniques. 

Pathways for the formation of most of these by-products have been 
proposed (Zoumpouli et al., 2021; Koronaiou et al., 2023; Jakimska 
et al., 2014a; Peterson, 2013; Shao et al., 2024). As mentioned earlier, 
the glucuronide form (product 60) is the second most common form of 
furosemide. It is quite well referenced in the early literature (Aranda 
et al., 1982; Bindschedler et al., 1997; Andreasen et al., 1982; Mizuma 
et al., 1998). pH has a strong influence on its stability, it is more stable at 
pH < 6, while more basic pH leads to a rearrangement into a β-glucu-
ronide. However, both forms ultimately hydrolyze into furosemide 
(Hammarlund-Udenaes and Benet, 1989). The half-life of furosemide 
glucuronide in aqueous medium at physiological pH is 5.3 h (Yang et al., 
2006). Like furosemide, its glucuronide form is photodegraded but 20 
times faster (Sekikawa et al., 1995). The chlorine atom can be 
substituted by a hydroxyl group by photodegradation leading to the 
product 59. Three major pathways for the formation of saluamine (32), 
the glucuronide form (60) and the Glutathione S-conjugate form (57) 
have been described (Peterson, 2013). Furfural (61), another degrada-
tion product, has been long known. Furfural is a small, highly soluble 
molecule that is also produced naturally by plants such as corn (Yue 
et al., 2022) and is rapidly biodegraded (Mandalika et al., 2014). Salu-
amine is the most referenced degradation product of furosemide and has 
been identified as a metabolite in humans (Andreasen et al., 1982; 
Hammarlund-Udenaes and Benet, 1989). It can be obtained by several 
processes: Electro-Fenton (Laurencé et al., 2011), acid catalyzed hy-
drolysis (Beyers et al., 2000), photodegradation (Katsura et al., 2015a; 
Koronaiou et al., 2023; Jakimska et al., 2014a; Della Greca et al., 2004a) 
and biodegradation (Laurencé et al., 2014; Olvera-Vargas et al., 2016a). 
It was also found after incubation in sediments spiked with furosemide 
(Li et al., 2014a). 

The pyridinium of furosemide (51) has been identified as a degra-
dation product much more recently. Initially produced by electro-
chemistry (Laurencé et al., 2011), it was first obtained by microsomal 
incubations of furosemide (Chen and Burka, 2007), by furosemide 
bioconversion by two fungi, Aspergillus candidus and Cunninghamella 
echinulata (Laurencé et al., 2014; Olvera-Vargas et al., 2016a) and 
finally found in furosemide treated-patients urine (Laurencé et al., 
2019), therefore qualifying it as a human metabolite. 

The gamma-ketocarboxylic acid (product 49) has been identified on 
several occasions as well (Peterson, 2013; Bukkitgar and Shetti, 2016; 
Williams et al., 2007a). According to the reaction pathway proposed by 
Olvera-Vargas et al. (2016a), this product would be an intermediate 
preceding the formation of the pyridinium of furosemide (51) or the 
formation of the hydroxyketone product 48, which can be hydrolyzed to 
saluamine (32). The hydroxyketone (48) has also been repeatedly 
identified as an anodic oxidation (Olvera-Vargas et al., 2016a), metab-
olization (Williams et al., 2007a) or biotransformation product (Peter-
son, 2013). 

Most of the degradation products structures are proposed following 

NMR or mass spectrometry analysis but the absence of analytical stan-
dards makes it challenging to ascertain their authenticity. Some prod-
ucts have been obtained by the same processes in several other studies, 
which reinforces their probability to be genuine, such as ozonation 
products 13 and 40 (Zoumpouli et al., 2021; Tsilikidis et al., 2015) and 
product 58, a dimer from photodegradation of furosemide was observed 
(Della Greca et al., 2004a; Isidori et al., 2006a). Product 2 seems to be 
the most frequently found both as a photodegradation product (Sandre 
et al., 2023; Katsura et al., 2015a; Jakimska et al., 2014a; Yagi et al., 
1991) and as a degradation product of furosemide glucuronide (Mizuma 
et al., 1998). On the other hand, several products were described only 
once in the literature. It may be due to their very low concentration, or 
because they are intermediates of transformation and disappear quickly 
(Sandre et al., 2023; Tsilikidis et al., 2015; Aalizadeh et al., 2019). These 
structures are mostly similar to furosemide, Saluamine (32) or pyr-
idinium of furosemide (51), with variations in hydroxyl or sulfhydryl 
groups, chlorine substitutions, furan cycles opening or rearrangements 
(Laurencé et al., 2014; Koronaiou et al., 2023; Jakimska et al., 2014a; 
Shao et al., 2024). The prevalence of a degradation product depends on 
the media conditions. For example, saluamine (32) and product 2 were 
detected in several matrices (Jakimska et al., 2014a), whereas product 
34 was only found in treated wastewater and could therefore be a result 
of water treatment processes. Saluamine is one of the least well docu-
mented degradation products. Saluamine (32) has rarely been searched 
for, and, to our knowledge, only two studies quantify it in WWTP ef-
fluents, with concentrations of 48 ng/L and 470 ng/L (Sandre et al., 
2023; Koronaiou et al., 2023). We also recently quantified pyridinium of 
furosemide (51) in WWTP effluent over 200 ng/L. The presence of these 
two compounds has been verified unambiguously using analytical 
standards, which is not the case for the remaining by-products. 
Furthermore, Koronaiou et al. (2023) performed a non-target analysis 
on WWTP samples and showed the presence of products 14 (≃350 
ng/L), 13 (≃25 ng/L), 23 (≃330 ng/L), 34 (320 ng/L) in the influents, 
and 13 (≃25 ng/L), 10 (≃220 ng/L), 34 (208 ng/L) in the effluents. 

6. Toxicity and ecotoxicity of furosemide and its degradation 
products  

1 Health hazard of furosemide 

As a medication, the toxicity of furosemide on humans has been 
widely reviewed. In short, numerous adverse effects have been reported 
such as dehydration in the most common case (23%) and hydrolytic 
disturbance (21%) (Peterson, 2013).  

2 Environmental toxicity of furosemide 

The impact of furosemide in the environment and aquatic fauna has 
been less investigated than in humans, but a few studies aim to assess the 
risk of pharmaceutical compounds. Risk calculations are based on ratios 
between Measured Environmental Concentrations (MECs) or Predicted 
Environmental Concentrations (PECs) and Predicted No-Effect Concen-
trations (PNECs). PNECs are determined from the Effect Concentrations 
(ECs) obtained experimentally on different classes of organisms or 
estimated using different models such as ECOSAR (Table 2). 

The bacterium Aliivibrio fischeri seems to be the most sensitive to 
furosemide followed by the green algae Selenastrum capricornutum. 
Among invertebrates, the crustacean Daphnia magna appears as the most 
sensitive organism. In comparison, the EC50s obtained in the fish cell 
lines appear to be quite high. However, these results cannot be extrap-
olated to toxicological relevance in whole organisms and ecosystems 
because these in vitro tests do not take into account systemic effects of 
the molecule, neither organ/tissue specific effects nor possible detoxi-
fication processes. 

It should be noted that the data summarized in Table 2 for lethality, 
immobilization or growth inhibition are obtained in acute exposure (i.e., 

F. Sandré et al.                                                                                                                                                                                                                                  



Environmental Pollution 348 (2024) 123799

9

Table 1 
Degradation products of furosemide.  

1. Furosemide 
C12H11ClN2O5S 
330.7 

2. Photodegradation product 
C12H12N2O6S (Sandre et al., 2023; Katsura 
et al., 2015a; Koronaiou et al., 2023; Jakimska 
et al., 2014a; Mizuma et al., 1998; Yagi et al., 
1991; Brienza et al., 2019) 
312.3 

10. Photodegradation product 
C12H11NO4 (Koronaiou et al., 2023) 
233.1 

11. Photodegradation product 
C12H12N2O5S (Shao et al., 2024;  
Jakimska et al., 2014a) 
296.3 

13. Photodegradation product 
C11H11ClN2O3S (Koronaiou et al., 
2023; Vargas et al., 1998) 
286.0 

14. Photodegradation product 
C11H11ClN2O4S (Koronaiou et al., 2023) 
302.0 

15. Photodegradation product 
C11H9ClN2O3S (Koronaiou et al., 2023) 
284.0 

16. Photodegradation product 
C11H10N2O4S (Koronaiou et al., 2023) 
266.0 

18. Photodegradation product 
C11H10N2O5S (Koronaiou et al., 
2023) 
282.0 

19. Photodegradation product 
C11H9NO3 (Koronaiou et al., 2023) 
203.1 

20. Photodegradation product 
C11H9NO4 (Koronaiou et al., 2023) 
219.1 

22. Photodegradation product 
C10H9NO3 (Koronaiou et al., 2023) 
191.1 

23. Photodegradation product 
C11H12N2O4S (Koronaiou et al., 
2023) 
268.0 

28. Metabolization, anodic oxidation 
product 
C12H11ClN2O6S (Laurencé et al., 2011;  
Mitchell et al., 1976) 
346.7 

29. Anodic oxidation, photodegradation 
product 
C12H9ClN2O5S (Koronaiou et al., 2023;  
Shao et al., 2024; Laurencé et al., 2011;  
Bukkitgar and Shetti, 2016; Lumbaque 
et al., 2021) 
328.7 

30. Electro-beam degradation product 
C12H11ClN2O6S (Shao et al., 2024) 
346.0 

31. Electro-beam degradation 
product 
C12H10ClNO3S (Shao et al., 2024) 
283.0 

32. Acid catalyzed hydrolysis, Electro- 
Fenton, metabolization, photodegradation 
product 
C7H7ClN2O4S (Beyers et al., 2000; Almaqdi 
et al., 2019; Laurencé et al., 2014; Koronaiou 
et al., 2023; Peterson, 2013; Laurencé et al., 
2011; Brienza et al., 2019; Jakimska et al., 
2014a; Lumbaque et al., 2021; Della-Flora 
et al., 2021; Carda-Broch et al., 2000; Williams 
et al., 2007a; Baranowska et al., 2010; Li et al., 
2014a; Katsura et al., 2015a; Olvera-Vargas 
et al., 2016a) 
250.7 

34. Photodegradation product 
C7H8N2O4S (Koronaiou et al., 2023;  
Jakimska et al., 2014a) 
216.2 

40. Ozonation product 
C8H7ClN2O5S (Zoumpouli et al., 2021;  
Tsilikidis et al., 2015) 
278.7 

42. Chlorination product 
C8H9ClN2O5S (Sandre et al., 2023) 
280.7 

46. Photodegradation product 
C11H10N2O4S (Koronaiou et al., 2023) 
266.0 

47. Photodegradation product 
C11H10N2O5S (Koronaiou et al., 2023) 
282.0 

48. Anodic oxidation, Ozonation, 
Biotransformation, Metabolization 
product 
C12H11ClN2O6S (Zoumpouli et al., 2021;  
Peterson, 2013; Williams et al., 2007a;  
Olvera-Vargas et al., 2016a) 
346.7 

49. Metabolization product 
C12H13ClN2O7S (Peterson, 2013;  

50. Electro-beam degradation product 
C7H7NO3S (Shao et al., 2024) 
185.0 

51. Chemical, enzymatic oxidation, 52. Bioconversion producta 

(continued on next page) 
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short duration exposure). Chronic exposures (i.e., long term exposure) 
would be more representative of environmental conditions. For chronic 
exposures, Isidori et al. (2006a) indeed obtained much lower EC50s for 
Brachionus calyciflorus (2.5 mg/L) and Ceriodaphnia dubia (2.3 mg/L) 
versus 100 mg/L and 84.1 mg/L in acute exposure, respectively. Riva 
et al. (2019) and Mendoza et al. (2015) set a PNEC of 45.15 μg/L and 
1.56 μg/L based on the ECs of algal, crustacean and fish toxicity tests. 
These PNECs are then used to determine the Risk Quotient (RQ) or 
Hazard Quotient (HQ) by calculating the ratio MEC/PNEC. When this 
ratio is greater than 1, it is considered that there is a risk for the envi-
ronment. Papageorgiou et al. (2016a) have assessed furosemide RQ and, 
according to European Guidelines (EMEA, 2006), it presents a high 
toxicological risk for invertebrates and moderate risk for fish. As a result, 
risk assessments may underestimate its impact. Moreover, most of the 
time, ECs are based on the lethality of compounds to organisms, which is 
not a very sensitive parameter. For example, based on those lethality 
values, furosemide was considered as not problematic for aquatic en-
vironments (Lacey, 2008; Carlsson et al., 2006). However, an increasing 
number of studies reported that analysis of organism behavior, which 
integrates many physiological processes, is environmentally more rele-
vant to anticipate impacts on survival, as behavioral toxicity can be 
observed at concentrations 10 to 100 times lower than lethal concen-
trations (Sandré et al., 2022; Legradi et al., 2018). Thus, furosemide, at 
the concentrations mentioned above, may well have a negative impact 
on aquatic organisms’ survival. 

Other markers may be also relevant to study. For example, genotoxic 
and cytotoxic effects of furosemide were shown on Danio rerio (Rocco 
et al., 2010) and in rodent hepatocytes (Mondal et al., 2012) along with 
an irreversible binding to hepatocyte were found (Williams et al., 
2007a). Hepatotoxicity was associated with depletion of GSH (reduced 
form of glutathion) and protein thiols at high concentrations (Peterson, 
2013; Fent et al., 2006) noted an estrogenic activity in vitro experiments. 
This endocrine disruption potential could have negative impacts not 
only at the individual level but also at the population level, endangering 
its survival. Despite some information on toxicity, to our knowledge 

there is no information on furosemide accumulation in biota.  

3 Toxicity of furosemide degradation products 

The toxicity of furfural (product 61) has been well studied because it 
is used to produce furfuryl alcohol which is extensively used in various 
industrial process (Grosse et al., 2017). Furfural exposure in humans 
occurs through the lungs or skin and provokes irritations (Flek and 
Sedivěc, 1978). Furfural is rapidly metabolized by enteric bacteria under 
both aerobic and anaerobic conditions and 83–88% is excreted in urine 
in 72 h (Boopathy et al., 1993). In the environment, furfural presents a 
higher toxicity than furosemide with an LC50 of 29 mg/L for 24 h 
exposure and 13 mg/L for 72 h exposure in Daphnia magna. For fish, 
LC50 after 96 h exposure is 10.5 mg/L for Poecilia reticulata and 32 mg/L 
for Pimephales promelas which is also lower than furosemide for different 
fish species. Chronic exposure of fishes to furfural leads to growth 
retardation, morphological abnormalities, and lethargy (Reed and 
Kwok, 2014). There is little data concerning the other degradation 
products of furosemide. Saluamine (32) is only referenced as a degra-
dation product of furosemide and is therefore much less studied. Only 
one study investigated its toxicity, which showed that it induces changes 
in some body parameters in mouse models such as increased alanine and 
aspartate aminotransferases, increased creatinine, reduced blood 
glucose, liver and kidney congestion (Al-Omar et al., 2009). We recently 
showed that pyridinium of furosemide (51) leads to the development of 
characteristic biomarkers of Parkinson’s disease in mice and generates 
oxidative stress and inhibition of the mitochondrial respiratory chain 
(Laurencé et al., 2019). Furthermore, Olvera-Vargas et al. (2016a) noted 
an EC50 of 34.4 mg/L and an EC20 of 18.9 mg/L in Aliivibrio fischeri for 
15 min exposure, which is lower than the EC20 of 72.3 mg/L they ob-
tained for furosemide in the same conditions. Collectively, these results 
suggest that pyridinium of furosemide (51) is also more toxic than 
furosemide. A study conducted on the photodegradation product 58 
showed that its EC50 values were lower than for furosemide for Bra-
chionus calyciflorus (1.04 mg/L) and Ceriodaphnia dubia (0.57 mg/L) 

Table 1 (continued ) 

Bukkitgar and Shetti, 2016; Williams 
et al., 2007a) 
364.8 

bioconversion, photodegradation 
product 
C12H10ClN2O5S (Laurencé et al., 2014;  
Peterson, 2013; Laurencé et al., 2011;  
Chen and Burka, 2007; Laurencé et al., 
2019) 
329.7 

C12H10ClN2O6S (Laurencé et al., 2014;  
Shao et al., 2024) 
345.7 

56. Electro-beam degradation 
product 
C12H9ClNO3S (Shao et al., 2024) 
282.0 58. Photodegradation product 

C24H22N4O12S2 (Della Greca et al., 2004a;  
Isidori et al., 2006a) 
622.6 59. Metabolization product 

C24H32ClN5O10S3 (Peterson, 2013;  
Williams et al., 2007a) 
682.2 

60. Metabolization product 
C18H19ClN2O11S (Peterson, 2013;  
Mizuma et al., 1998; Williams et al., 
2007a) 
506.9 

61. Anodic oxidation, 
photodegradation product 
C5H4O2 (Laurencé et al., 2014;  
Carda-Broch et al., 2000) 
96.1   

66. Electro-beam degradation product 
C5H5NO2 (Shao et al., 2024) 
113.0   

67. Electro-beam degradation product 
C5H5NO2 (Shao et al., 2024) 
113.0    

Structure have been drawn by ChemDraw15. Name, structure, and molecular masse are listed under each product. 
a The position of the hydroxyl group can vary on the pyridin ring. 
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reflecting a higher toxicity (Isidori et al., 2006a), as well as mutagenic 
activity at concentrations between 6.25 and 100 mg/L. The hydrox-
yketone product 48 with an EC20 of 37.42 mg/L in Aliivibrio fischeri for 
15 min exposure (Olvera-Vargas et al., 2016a) and a metabolite corre-
sponding to product 28 are also more toxic than furosemide, the latter 
causing hepatic necrosis in rats, mice and hamsters after intraperitoneal 
injections (Mitchell et al., 1976). 

Assessing the toxicity of all by-products is a challenging task, given 
their considerable number. Some studies therefore tend to predict their 
acute or chronic toxicity using an in-silico methodology such as that 
provided by the ECOSAR software. Thus, the toxicity of some thirty 
products derived from the photodegradation of furosemide was evalu-
ated (Koronaiou et al., 2023; Shao et al., 2024). These studies quickly 
highlighted the possibly high acute (products 15, 18, 19, 20, 22, 31, 46 
and 56) or chronic (products 11, 14, 15, 16, 18, 19, 20, 22, 23, 29, 30, 
31, 46, 47, 50, 51, 56, 66 and 67) toxicity of furosemide by-products in 
fish, daphnia and/or algae and the hypothesis that imine formation, 
decarboxylation, desulfurization and the presence of chlorine, lead to 
more toxic by-products (Koronaiou et al., 2023). Concerning chlorina-
tion products, many of these remain unknown, with regard to the spe-
cific analysis and complex chemistry of halogenated compounds. The 
assessment of their toxicity is thus a major challenge, and the few 

publications, yet showing the carcinogenic, cytotoxic, genotoxic activ-
ities as well as adverse modification on benthic and fish communities 
structures of some known by-products (Cuthbertson et al., 2019; Prasse 
et al., 2015), insufficiently reflect the toxicity of the majority of the 
unknown by-products. In the case of furosemide, out of the 74 
by-products identified (see Table 1 and Table S6), only one comes from 
chlorination (product 42 (Sandre et al., 2023)). This reduced number of 
chlorination by-products is in accordance with previous findings (Kor-
onaiou et al., 2023), which indicated that dechlorination is one of the 
major processes forming most of furosemide by-products. While in silico 
models prove useful in predicting the toxicity of various substances, 
their capacity remains limited in the face of the intrinsic complexity of 
living systems, particularly due to challenges in integrating crucial pa-
rameters such as exposure time, organism sensitivity, and contaminant 
bioavailability. For a more complete evaluation of the environmental 
impact, mixtures should also be taken into account. Indeed, interactions 
between molecules can lead to synergistic or antagonistic effects 
(cocktail effects) and are quite complex. Because furosemide is a 
medication, it is frequently in interaction with other compounds such as 
benzalkonium chloride or spironolactone. However, there is very few 
data about the ecotoxicity of the mixture or about the interactions be-
tween furosemide and its degradation products. To the best of our 
knowledge, only one study presents toxicity data of mixtures of 30 
compounds including furosemide, resulting in a 30% decrease in liver 
cell (HEK293) proliferation (Pomati et al., 2006). 

7. Conclusion 

Given the wide consumption of medicines, increasing demographical 
urban pressure and population aging, the chemical and ecotoxicological 
assessment of pharmaceuticals and their metabolites constitutes major 
challenges. Improving our understanding of drugs follow-up to and in 
the environment in the framework of water resources protection against 
these new pollutants is crucial. Furosemide is a good example of con-
taminants of emerging concern as a widely prescribed loop diuretic for 
the elderly, but also for younger adults and children, and in veterinary 
medicine, for almost 60 years. It is one of the most sold drugs in the 
world and considered essential by the World Health Organization. Many 
studies classify it as a priority pollutant based on its production, sale or 
consumption, its occurrence in the environment, its persistence in 
freshwater, its removal in WWTP or input in wastewater, its excretion 
rate and its toxicity or ecotoxicity. Indeed, a significant consumption of 
furosemide in medical institutions or by individuals has been noted, in 
particular in European countries. Furosemide can be metabolized or 
degraded in WWTPs with an average removal of over 50%. However, 
new processes or processes used for other purposes are being studied to 
obtain a better degradation of furosemide. Among the most efficient 
processes (>90%) are absorption processes on chitosan and on activated 
carbon, followed by oxidation processes such as ozonation, chlorination, 
electro-oxidation, photo-Fenton and reverse osmosis. The elimination of 
furosemide by fungi (Trametes versicolor) also seems promising. How-
ever, furosemide, like many other anthropogenic compounds including 
pharmaceuticals, still remains in treated WWTP effluents and significant 
concentrations can be discharged in the receiving water. Moreover, 
furosemide is degraded into several by-products, list of which is growing 
as progress is made in the development of highly sensitive analytical 
technologies enabling the detection of contaminants - including by- 
products - in the ng/L range. The best known is the glucuronide conju-
gate, but it is not of great concern because it is rapidly degraded. On the 
other hand, saluamine, pyridinium of furosemide, furfural, and certain 
products resulting from metabolization or photodegradation present a 
higher toxicity than the parent molecule. There are also new or simply 
little studied degradation products for which information on their 
toxicity is needed. 

Furosemide is highly concentrated at sources such as hospitals and 
WWTP influents but also after treatment of these effluents for which 

Table 2 
EC (Lethality, Immobilization or growth inhibition) value for several organisms 
exposed to furosemide.   

Species Duration EC 
(mg/L) 

Bacteria Aliivibrio fischeri EC10 15 min (Di Nica et al., 
2017) 

7.5   

EC20 15 min ( 
Olvera-Vargas et al., 2016a) 

72.3   

EC50 15 min (Di Nica et al., 
2017) 

33.2   

EC50 30 min (Isidori et al., 
2006a) 

> 200 

Green algae Desmodesmus subspicatus EC50 72H (Guo, 2015) 322.2  
Pseudokirchneriella 
subcapitata 

EC50 72H (Christensen 
et al., 2009a) 

142   

ECOSAR (Kuzmanović et al., 
2015) 

19.8 

Zooplankton Brachionus calyciflorus EC50 24H (Isidori et al., 
2006a) 

> 100 

Crustacean Artemia salina EC50 24H (Diaz-Sosa et al., 
2020) 

273.0   

EC50 48H (Diaz-Sosa et al., 
2020) 

225.1  

Daphnia magna ECOSAR (Kuzmanović et al., 
2015) 

560   

EC50 24H (Isidori et al., 
2006a) 

60.6   

EC50 48H (Christensen 
et al., 2009a) 

239.0  

Thamnocephalus 
Platyurus 

EC50 24H (Isidori et al., 
2006a) 

70.6  

Ceriodaphnia dubia EC50 48H (Isidori et al., 
2006a) 

84.1 

Cnidarian Hydra vulgaris Acute tox. (Pascoe et al., 
2003) 

> 1 

Teleosts Pimephales promelas ECOSAR (Kuzmanović et al., 
2015) 

521  

Cyprinodon variegatus EC50 96H (Christensen 
et al., 2009a) 

497  

Cyprinus orfus EC50 (Hanisch et al., 2002) > 500 

Cell line Oncorhynchus mykiss EC50 24H (Christensen 
et al., 2009a) 

1131  

Poeciliopsis lucida 
hepatoma 

EC50 24H (Christensen 
et al., 2009a) 

2576 

EC = Effect Concentration. 
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most studies are conducted in Europe. Furosemide is also found in 
WWTP sludges. Consequently, furosemide and its degradation products 
end up in the receiving environment. In river water, furosemide is found 
at a few hundred ng/L and has been observed in groundwater. It has also 
been reported in sediment. It is important to analyze the solid phases as 
well as the aqueous phase when evaluating the extent of furosemide 
contamination, as significant concentrations of this substance are pre-
sent in both. By doing so, a more comprehensive understanding of the 
contamination can be obtained. Therefore, furosemide is widely present 
in the environment and could be a problem due to its occurrence and 
persistence in water. Although its acute toxicity is moderate, its chronic 
toxicity has been shown to be more important. Furosemide has hepa-
totoxic effects in rodents, cytotoxic and genotoxic effects in fish, and an 
estrogenic activity has also been demonstrated in vitro. In addition, its 
degradation products are more toxic for those of which we have infor-
mation. Three of its degradation products are rather preoccupying, as 
the limited information available suggests that they have a more 
important acute toxicity than furosemide, affecting physiological pa-
rameters, growth and mitochondrial respiration. Furthermore, this 
could be also the case for some of the other identified degradation 
products, for which standards do not even exist, and for those remaining 
to be discovered to date. Unfortunately, there is a gap of knowledge 
about their fate in the environment. It is then absolutely necessary to 
continue the chemical, toxicological and ecotoxicological characteriza-
tions of these pollutants, and in a wider scope, those of pharmaceuticals 
and their degradation products. Non-targeted analytical chemistry ap-
proaches are a powerful tool to find new degradation products. Adverse 
outcome pathway (AOP) studies could be interesting approaches to 
understand the mechanisms of action of these new pollutants and multi- 
model approaches in ecotoxicology could lead to a better understanding 
of their off-target effects and the environmental risk for ecosystems. 
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en médecine générale en Aquitaine. Enquête de pratique auprès des médecins 
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Chen, Y., Vymazal, J., Březinová, T., Koželuh, M., Kule, L., Huang, J., Chen, Z., 2016. 
Occurrence, removal and environmental risk assessment of pharmaceuticals and 
personal care products in rural wastewater treatment wetlands. Sci. Total Environ. 
566–567, 1660–1669. https://doi.org/10.1016/j.scitotenv.2016.06.069. 

Cheng, J.W.M., Nayar, M., 2009. A review of heart failure management in the elderly 
population. Am. J. Geriatr. Pharmacother. 7 (5), 233–249. https://doi.org/10.1016/ 
j.amjopharm.2009.10.001. 

Chetboul, V., Pouchelon, J.-L., Menard, J., Blanc, J., Desquilbet, L., Petit, A., Rougier, S., 
Lucats, L., Woehrle, F., 2017. The TEST study investigators. Short-term efficacy and 
safety of torasemide and furosemide in 366 dogs with degenerative mitral valve 
disease: the TEST study. J. Vet. Intern. Med. 31 (6), 1629–1642. https://doi.org/ 
10.1111/jvim.14841. 

Chinnaiyan, P., Thampi, S.G., Kumar, M., Mini, K.M., 2018. Pharmaceutical products as 
emerging contaminant in water: relevance for developing nations and identification 
of critical compounds for Indian environment. Environ. Monit. Assess. 190 (5), 288. 
https://doi.org/10.1007/s10661-018-6672-9. 

Christensen, A.M., Markussen, B., Baun, A., Halling-Sørensen, B., 2009. Probabilistic 
environmental risk characterization of pharmaceuticals in sewage treatment plant 
discharges. Chemosphere 77 (3), 351–358. https://doi.org/10.1016/j. 
chemosphere.2009.07.018. 

ClinCalc DrugStats Database, 2018. ClinCalc DrugStats Database. 
Collado, N., Rodriguez-Mozaz, S., Gros, M., Rubirola, A., Barceló, D., Comas, J., 
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during wastewater treatment and environmental risk assessment using hazard 
indexes. Environ. Int. 36 (1), 15–26. https://doi.org/10.1016/j.envint.2009.09.002. 
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Ibáñez, M., Gracia-Lor, E., Bijlsma, L., Morales, E., Pastor, L., Hernández, F., 2013. 
Removal of emerging contaminants in sewage water subjected to advanced oxidation 
with ozone. J. Hazard Mater. 260, 389–398. https://doi.org/10.1016/j. 
jhazmat.2013.05.023. 

Ikonen, J., Nuutinen, I., Niittynen, M., Hokajärvi, A.-M., Pitkänen, T., Antikainen, E., 
Miettinen, I.T., 2021. Presence and reduction of anthropogenic substances with UV 
light and oxidizing disinfectants in wastewater—a case study at kuopio, Finland. 
Water 13 (3), 360. https://doi.org/10.3390/w13030360. 

Isidori, M., Lavorgna, M., Nardelli, A., Pascarella, L., Parrella, A., 2005. Toxic and 
genotoxic evaluation of six antibiotics on non-target organisms. Sci. Total Environ. 
346 (1–3), 87–98. https://doi.org/10.1016/j.scitotenv.2004.11.017. 

Isidori, M., Nardelli, A., Parrella, A., Pascarella, L., Previtera, L., 2006. A multispecies 
study to assess the toxic and genotoxic effect of pharmaceuticals: furosemide and its 
photoproduct. Chemosphere 63 (5), 785–793. https://doi.org/10.1016/j. 
chemosphere.2005.07.078. 

Ivanova, S., Ivanov, K., 2019. Undeclared furosemide in food supplements. Biomed. Res. 
30 (5), 733–737. https://doi.org/10.35841/biomedicalresearch.30-19-314. 

Jacobsen, B.N., Kjersgaard, D., Winther-Nielsen, M., Gustavson, K., 2004. Combined 
chemical analyses and biomonitoring at avedoere wastewater treatment plant in 
2002. Water Sci. Technol. 50 (5), 37–43. https://doi.org/10.2166/wst.2004.0306. 
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Laurencé, C., Rivard, M., Lachaise, I., Bensemhoun, J., Martens, T., 2011. Preparative 
access to transformation products (TPs) of furosemide: a versatile application of 
anodic oxidation. Tetrahedron 67 (49), 9518–9521. https://doi.org/10.1016/j. 
tet.2011.10.006. 
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2015. Pharmaceuticals and iodinated contrast media in a hospital wastewater: a case 
study to analyse their presence and characterise their environmental risk and hazard. 
Environ. Res. 140, 225–241. https://doi.org/10.1016/j.envres.2015.04.003. 

Miklos, D.B., Remy, C., Jekel, M., Linden, K.G., Drewes, J.E., Hübner, U., 2018. 
Evaluation of advanced oxidation processes for water and wastewater treatment – a 
critical review. Water Res. 139, 118–131. https://doi.org/10.1016/j. 
watres.2018.03.042. 

Mir-Tutusaus, J.A., Parladé, E., Llorca, M., Villagrasa, M., Barceló, D., Rodriguez- 
Mozaz, S., Martinez-Alonso, M., Gaju, N., Caminal, G., Sarrà, M., 2017. 
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Barceló, D., Montenegro, M.C.B.S.M., 2013. Contribution of hospital effluents to the 
load of pharmaceuticals in urban wastewaters: identification of ecologically relevant 
pharmaceuticals. Sci. Total Environ. 461–462, 302–316. https://doi.org/10.1016/j. 
scitotenv.2013.04.077. 

Savarese, G., Lund, L.H., 2017. Global public health burden of heart failure. Card. Fail. 
Rev. 3 (1), 7. https://doi.org/10.15420/cfr.2016:25:2. 
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F. Sandré et al.                                                                                                                                                                                                                                  

https://doi.org/10.1016/j.scitotenv.2012.04.059
http://refhub.elsevier.com/S0269-7491(24)00513-X/sref329
http://refhub.elsevier.com/S0269-7491(24)00513-X/sref329
https://doi.org/10.2174/157341206777934608
https://doi.org/10.1007/s10661-016-5732-2
https://doi.org/10.1007/s10661-016-5732-2
https://doi.org/10.1016/j.carbpol.2022.119420
https://doi.org/10.1016/j.carbpol.2022.119420
https://doi.org/10.1016/j.watres.2021.117487
https://doi.org/10.1016/j.watres.2021.117487
http://refhub.elsevier.com/S0269-7491(24)00513-X/sref334
http://refhub.elsevier.com/S0269-7491(24)00513-X/sref334
http://refhub.elsevier.com/S0269-7491(24)00513-X/sref334
https://doi.org/10.1016/S0140-6736(00)02270-4
https://doi.org/10.1016/S0140-6736(00)02270-4
https://doi.org/10.1016/j.jhazmat.2005.03.001

	Comprehensive analysis of a widely pharmaceutical, furosemide, and its degradation products in aquatic systems: Occurrence, ...
	1 Introduction
	2 Consumption of furosemide
	3 Occurrence in the environment
	4 Fate of furosemide from its consumption to receiving water
	5 Degradation by-products of furosemide
	6 Toxicity and ecotoxicity of furosemide and its degradation products
	7 Conclusion
	Funding
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Appendix A Supplementary data
	References


