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Abstract The rheology of particle suspensions has been extensively explored in the case of a simple
shear flow, but less in other flow configurations which are also important in practice. Here we investigate
the behavior of a suspension in a squeeze flow, which we revisit using local pressure measurements to
deduce the effective viscosity. The flow is generated by approaching a moving disk to a fixed wall at
constant velocity in the low Reynolds number limit. We measure the evolution of the pressure field at
the wall and deduce the effective viscosity from the radial pressure drop. After validation of our device
using a Newtonian fluid, we measure the effective viscosity of a suspension for different squeezing
speeds and volume fractions of particles. We find results in agreement with the Maron-Pierce law, an
empirical expression for the viscosity of suspensions that was established for simple shear flows. We
prove that this method to determine viscosity remains valid in the limit of large gap width. This makes
it possible to study the rheology of suspensions within this limit and therefore suspensions composed
of large particles, in contrast to Couette flow cells which require small gaps.

PACS. XX.XX.XX No PACS code given

1 Introduction

Many natural events and industrial processes involve
the flow of suspensions made of solid particles dispersed
in a fluid. This is the case of mudflows [1], handling of
fresh concrete [2] or food processing [3]. This context
has motivated an intense research activity in the field of
dense suspensions rheology, with a particular emphasis
on the case of simple shear flows [4]. Most of the rheo-
logical studies of suspensions have been realized in the
Couette flow cells of rheometers which requires small
gaps. This point prevents the study of suspensions com-
posed of large particles, which are often encountered in
the applications. It is therefore necessary to develop new
rheological configurations that are not limited to small
gap widths.

Since Einstein’s pioneering work [5], the law of sus-
pension viscosity η(ϕ), where ϕ is the particle volume
fraction, has been extended by Batchelor to take into ac-
count the hydrodynamic interactions between two par-
ticles [6]. Beyond the dilute regime the expressions of
Einstein and Batchelor are valid, several empirical ex-
pressions have been proposed to account for the viscos-
ity of suspensions. One of the most used is the Maron-
Pierce law which describes the relative viscosity of the

suspension ηr(ϕ) = η(ϕ)/ηf according to the relation:

ηr(ϕ) =

(
1− ϕ

ϕc

)−2

(1)

where ηf is the viscosity of the Newtonian carrier fluid
and ϕc is a critical volume fraction ranging from 0.58 to
0.66. The large range of ϕc for which the viscosity di-
verges - i.e., the suspension becomes solid - has drawn
the attention of several studies [7,8]. The commonly
assumed origins of the variations in volume fraction for
the transition between fluid and the solid are the rough-
ness of the particles [9] or their size dispersion [10,11,
12,13]. In the flowing regime, the strong increase in the
relative viscosity at moderate and large volume frac-
tions has been shown to mainly result from frictional
contacts between particles and depends of their spatial
arrangement [14,15]. Depending on how the frictional
contacts between particles are mobilized when the sus-
pension flows, several phenomena can occurs such as
shear-thinning [16], shear-thickening [17], shear-induced
migration [18] and normal stress difference [19]. The in-
vestigation of normal stress differences in various flow
configurations revealed disparities in intensity [20,21,
22] and in the sign [21,23]. These observations show
the strong influence of the flow configuration on the be-
havior of the suspension. This can be attributed to the
fact that different type of solicitation lead to different
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micro-structures of the suspension. This context raises
the question of the behavior of a macroscopic suspen-
sion in a squeeze flow configuration where the shear-rate
is non-homogeneous and where the micro-structure may
differ from the case of a simple shear flow. This ques-
tion is essential to determine whether the squeeze flow
configuration can be used as a rheological configuration
for studying suspensions.

Compared to simple shear flows, suspensions in squeeze
flows, have been less studied (see [24] for a review). For
this compression-type solicitation, the different stud-
ies have mainly considered the global force experienced
by the moving disk, and the effective viscosity deduced
from this measurement is global because it is integrated
over the surface of the disk. In addition, these experi-
ments are often realized with a small volume of sus-
pension between the plates [25], which creates capil-
lary interfaces that prevent drainage but can affect the
squeeze flow. For a zeolite suspension of volume frac-
tion between 5 and 20 %, the required squeezing force
corresponds to the one expected for a Newtonian fluid
of viscosity equivalent to the effective viscosity of the
suspension [26]. It is no more the case at large volume
fractions (ϕ > 0.40) and for suspending fluids of low
viscosities (ηf < 1 Pa.s), where a different flow regime
has been identified. In this case, the suspending fluid
filtered through particles and induced a more concen-
trated region of particles in the center [27,28]. The con-
sequences of flow filtration have been observed in the
measurements of the normal stress distribution made
with pressure-sensitive films in a suspension undergo-
ing constant-force squeeze flow [29]. They observed that
above 55% in volume fraction, the normal stress profile
deviated from the Newtonian prediction and was larger
in the central region and lower at the edge. This pressure
distribution was interpreted as the result of jamming
in the central zone. However, these previous studies do
not consider the intermediate case where the suspension
is concentrated but where no filtration occurs and the
squeeze flow can be used as a rheological configuration
to measure the effective viscosity of the suspension.

In this paper, using an experimental setup soliciting
a fluid in compression, we revisit the rheology of the sus-
pension in the squeeze flow configuration to investigate
the behavior of suspension in a non simple shear flow
and in the limit of large gap widths. We measure the
effective viscosity of the suspension through local pres-
sure sensors. After developing the theoretical framework
of our non viscosimetric flow, in which we describe the
velocity field and the pressure field analogously, we de-
duce a global relation allowing to measure the effective
viscosity of the fluid. Then we validate our experimental
protocol on a Newtonian fluid and we apply it to deduce
the effective viscosity of a suspension. The dependence
with the particle volume fraction of the measured rel-
ative viscosity of the suspensions is in agreement with

the empirical law of Maron-Pierce established for simple
shear flows.

2 Experimental setup

2.1 Suspension

The suspensions were prepared mixing polystyrene par-
ticles (Microbeads TS 500) with Poly(ethylene glycol-
ran-propylene glycol) monobutyl ether (PEG) from Sigma-
Aldrich, of viscosity ηf = 2.9 ± 0.1Pa · s and density
ρf = 1050 kg.m−3 that matches the nominal density
of the polystyrene particles at 20◦C. The rheology of
the suspending fluid was confirmed to be Newtonian
over the shear rate range [0.01−100 s−1] using cylindri-
cal Couette cell of internal radius Ri = 13.33mm and
intergap of 0.085Ri (Anton Paar MCR 501), with a dy-
namic viscosity of ηf = 2.90 ± 0.02Pa.s at 20◦C. The
polystyrene particles are smooth, rather mono-dispersed,
spherical with a diameter of a = 500± 40µm. The sus-
pensions were prepared by agitating the particles in a
planetary mixer (Kenwood KCL95), gradually adding
the suspending fluid, and mixing for 10 to 15 min. The
suspension was then passed through a vacuum bell jar
to remove air bubbles. This protocol allows to prepare
homogeneous suspensions with volume fractions ϕ =
[0.3−0.5]. The rheology of these suspensions was charac-
terized in the same cylindrical Couette cell (Anton Paar
MCR 501) used for the carrier fluid. As the intergap of
the cylindrical cell is 1.13 mm, we studied the same
suspension but made with particles of 80 µm in size in
order to avoid particle size effects in the gap. We observe
that the viscosity of suspension follows increases with
the volume fraction in agreement with the prediction
given by Eq. (1) leading to ϕc = 0.62± 0.01. This value
of ϕc is in the range of usual values (0.58 < ϕc < 0.66)
reported in a review [4]. This review also reports there is
no systematic effect of the grain size on ϕc (from 40 µm
up to 1100 µm).

2.2 Squeeze flow

The squeeze flow is generated into a rectangular reser-
voir filled with the fluid (total volume is 5 L) where an
immersed disk of 150 mm in diameter approaches a ver-
tical wall of the reservoir (see Fig. 1a). The horizontal
motion of the disk is imposed by a linear stage (Physik
Instrumente M-414) that permits to control the moving
velocity V0 and the separating distance H between the
disk with the vertical wall. The parallelism between the
disk and the wall is ensured with an angle lower than
1.2◦. In order to measure the fluid pressure P during
the squeeze flow, the wall was instrumented with two
pressure sensors (Keller PR-25) that have a resolution
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Figure 1. a Sketch of the experimental setup: a moving disk is squeezing the suspension at a constant velocity V0 along
ex. Pressure sensors are located on the opposite wall in order to measure the pressure difference P1 − P2. b Velocity field
associated to the squeeze flow deduced from Eqs. (7) and (8). The color map represents the norm of the velocity. c Shear
rate field associated to the squeeze flow according to Eqs. (7) and (8). The color map represents the shear rate calculated
from Eq. (13). The black arrows represent the velocity field as in figure b.

of ±2 Pa. The first sensor was installed along the cen-
tral axis of the moving disk and measure the pressure
P1 at this location. The second sensor is placed at a dis-
tance R = 60 mm from the central axis and measure the
pressure P2. The signals P1 and P2 were registered as
a function of time with a sampling frequency of 100 Hz
and synchronized with the displacement of the disk as
it approaches the instrumented wall. In all experiments,
the initial and final separating distances were H = 47.6
mm and H = 10.0 mm, respectively. The velocity range
explored was V0 = [0.5 − 10]mm.s−1 and ensured that
the Reynolds number based on the separating distance
H, Re = ρfV0H/ηs, was smaller than 10−1 even for ex-
periments at ϕ = 0 (pure suspending fluid).

3 Viscosimetry

3.1 Effective viscosity model

In this section, we describe the ideal case of a Newtonian
liquid, of constant viscosity η and density ρ, squeezed
between two disks of diameter D which are approaching
each other at the relative velocity V0. Numerous studies
have addressed this problem theoretically [30,31,32,33]
and here we only recall the main calculation steps that
allow us to derive a measure of the effective viscosity in
this configuration in the limit of low Reynolds number.

The problem is parametrized in a cylindrical frame
of reference (0, ex, er, eθ) where (er, eθ) is the vertical

plane (Fig. 1a). At the edge of the disks, the pressure ap-
plied by the rest of the fluid in the tank is considered to
be constant. The flow is assumed to be stationary and in
the limit of low Reynolds number, Re = ρV0H/η < 0.1,
so that the advection terms in the equilibrium equation
are neglected. Far from the edges of the disk, the quasi-
static velocity field V in this axisymmetric geometry
can be written: v(x, r) = V/V0 = vx(x, r)ex+vr(x, r)er
where x and r are the cylindrical coordinates normal-
ized by the distance H. The pressure field P (x, r) is
normalized by the stress scale 3ηV0/H to get the non-
dimensional pressure p(x, r) = P (x, r)H/3ηV0. In this
configuration, the conservation of momentum is simi-
lar to the Stokes equation (neglecting the volume force
terms):

0 = −3
∂p

∂x
+

(
∂2vx
∂r2

+
1

r

∂vx
∂r

+
∂2vx
∂x2

)
(2)

0 = −3
∂p

∂r
+

(
∂2vr
∂r2

+
1

r

∂vr
∂r

− vr
r2

+
∂2vr
∂x2

)
(3)

The incompressibility of the flow (∇ · v = 0) allows
to define the existence of a stream function ψ(r, x) such
that:

vx(x, r) = −1

r

∂ψ

∂r
vr(x, r) =

1

r

∂ψ

∂x
(4)

Using the stream function ψ(r, x) and cross differ-
entiating Eqs. (2) and (3) in order to eliminate pressure
p, it leads to the equation:
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0 =
1

r

(
∂4ψ

∂r4
+
∂4ψ

∂x4
+ 2

∂4ψ

∂r2∂x2

)
− 2

r2
∂

∂r

(
∂2ψ

∂x2
+
∂2ψ

∂r2

)
+

3

r3
∂2ψ

∂r2
− 3

r4
∂ψ

∂r
(5)

Equation (5) admits a solution of the form ψ(r, x) =
r2λ(x) which results in an equation on λ:

0 =
d4λ

dx4
(6)

The velocity boundary conditions on the fixed wall
are defined by vx(0, r) = 0 and vr(0, r) = 0. The bound-
ary conditions on the moving wall are vx(1, r) = −1 and
vr(1, r) = 0. By combining Eqs. (4) and (6), the velocity
field, solution of the problem is:

vx(x) = −x2 (3− 2x) (7)

vr(x, r) = 3rx (1− x) (8)

Once the normalized velocity field has been determined,
it is possible to determine the pressure field by integra-
tion of Eqs. (2) and (3):

p(x, r) =
(
−r2 − 2x (1− x)

)
+ p0 (9)

where p0 is an integration constant. Equation (9) allows
to deduce that the normalized pressure difference ∆p =
p(0, 0) − p(0, R/H) between the center of the flow and
the periphery expresses:

∆p =

(
R

H

)2

. (10)

In a dimensional form, Eq. (10) writes:

∆P =
3ηV0R

2

H3
. (11)

This relation means that from the measurement of the
pressure difference ∆P = P1 − P2 made with the two
pressure sensors located at a distance R on the fixed
wall of the experimental setup and knowing the veloc-
ity V0 of the moving disk and the separating distanceH,
one can deduce the viscosity η of the fluid. Note that
Eq. (11) has been established without considering lu-
brication approximation implying H/R≪ 1, as already
mentioned in [24].

3.2 Validation with a Newtonian fluid

In order to validate our experimental setup, we real-
ized a set of measurements with the pure Newtonian
suspending fluid (ηf = 2.9 ± 0.1 Pa.s) squeezed in our
setup at a velocity V0 = 4 mm.s−1. The corresponding
pressure difference P1−P2 is shown as a function of the

separating distance H in Fig. 2a ((+), lower curve). We
first observe that the pressure difference is vanishingly
small at large separation distances and increases dras-
tically as the disk approaches the wall. We also observe
there is no drift of the pressure during ten successive
compression cycles. The pressure profiles remain simi-
lar and thus can be averaged over 10 cycles in order to
obtain a unique pressure profile. Then, we present the
normalized value ∆p deduced from this signal as a func-
tion of R/H, (+) in Fig. 2b. The pressure difference has
been normalized using the value of the viscosity mea-
sured in the rheometer. The dark solid line in Fig. 2b
represents the prediction of Eq. (10) and a good agree-
ment between experiments and theory is observed with
no fitting parameters. Note that this agreement is valid
for the whole range of aspect ratio H/R as expected
and also reported in [24]. Thus, the measurement of the
radial pressure drop in a squeeze flow allows to deduce
the dynamic viscosity of the fluid that is squeezed.

3.3 Effective viscosity of suspension

We performed similar experiments with suspensions of
polystyrene particles squeezed at constant speed. Fig-
ure 2b shows the evolution of the normalized pressure
difference ∆p as a function of R/H for a compression
speed V0 = 4mm/s and different volume fractions ϕ. We
observed that the normalized pressure difference scales
as ∆p ∼ (R/H)2 as for a Newtonian fluid but with a
prefactor that increases with ϕ. For a suspension of rel-
ative viscosity ηr, the normalized pressure difference,
Eq. (10), reads:

∆p = ηr(ϕ)

(
R

H

)2

. (12)

According to this expression, the prefactor that can
be extracted from the logarithmic plot in Fig. 2b corre-
sponds directly to the relative viscosity of the suspen-
sion ηr. Experiments have been conducted with suspen-
sions of various particle volume fraction 0.3 ≤ ϕ ≤ 0.5
and for different compression velocities V0 ranging from
0.5 to 10 mm.s−1. The relative viscosity ηr(ϕ) deduced
from these experiments are displayed in Fig. 3, as a
function of ϕ (the different colors correspond to differ-
ent velocities V0). We observe that the relative viscos-
ity of the suspension has no clear dependence on the
squeezing speed for each particle volume fraction ϕ. In
this configuration, we do not observe a significant shear
thinnig effect [21]. Thus, for each ϕ we average the rela-
tive viscosity over different compression velocities. The



K. Zidi, B. Darbois Texier, G. Gauthier, A. Seguin: Viscosimetric Squeeze Flow of Suspensions 5

100

101

102

103

100

1
2

101

R / H

D
 p

(a) (b)

H  (mm)
10 20 30 400 50

 P
1
  

- 
 P

2
  

 (
P

a)

1000

750

500

250

0

Figure 2. a Pressure difference ∆P = P1 − P2 as a function of H for pure fluid (lower curve) and suspension of ϕ = 0.45
(upper curve). The imposed velocity is: V0 = 4 mm.s−1. The data has been collected on ten successive realizations (data
points ranging from turquoise to blue). The mean of these realizations have been plotted with symbol (+) for the pure fluid
and with symbol (⋄) for suspension. b Normalized pressure difference ∆p of the pure fluid and suspension as a function of
H/R. For the pure fluid, the symbols (+) are experimental data and the dark solid line corresponds to theoretical prediction
given by Eq. (10). For suspension, the symbols are experimental data (▼) ϕ = 0.30, (•) ϕ = 0.35, (■) ϕ = 0.40, (♦) ϕ = 0.45
and (▲) ϕ = 0.50. The colored solid lines correspond to theoretical prediction of Eq. (12) where ηr is fitted by least mean
square method.

inset of Fig. 3 shows the increase of the relative vis-
cosity with the particle volume fraction. The best fit of
the evolution ηr(ϕ) with the Maron-Pierce law given by
Eq. (1) is found for ϕc = 0.61±0.02. This value is equal
to the value estimated from rheological measurements
detailed in Sect. 2.1. Moreover it is in agreement with
the set of values found in previous studies [4].

3.4 Discussion

Measurements of suspension viscosity in rheometer faces
different issues such as particle size effects, shear-induced
migration and particle wall slip that are not predomi-
nant in squeeze flow configuration. Conversely, the draw-
back of squeeze flow is the liquid/solid separation that
gives rise to shear jamming, but which is not observed
here. We discuss in the following these different issues in
cylindrical Couette rheometers and homemade squeeze
flows.

Most Couette rheometers use gaps of the order of
1 mm. Thus, in order to have enough particles in the
gap (> 10), it is difficult to characterize suspensions
whose particles have a diameter > 100 µm. One ad-
vantage of the present setup is that it can be used to
characterize suspensions of particles up to 1 mm in di-
ameter, although this requires a larger volume of sus-
pension than Couette rheometers.

Moreover, the squeeze flow presents by nature large
shear gradients that might lead to particles migration.
The intensity of this phenomenon must be estimated

because it can affect the hypothesis of homogeneous
suspension considered in the theoretical analysis. The
shear rate inhomogenity can be estimated by defining
the shear rate γ̇ as the second invariant of the strain
rate tensor [34]. From Eqs. (7) and (8) for the velocity
field, the normalized shear rate writes:

γ̇(x, r) =
3

2

(
12x2(x− 1)2 + r2(2x− 1)2

)1/2 (13)

The predictions of Eq. (13) for the normalized shear
rate are plotted with a color map in Fig. 1c. We ob-
serve that the local shear rate at the walls (x = 0 or
1) ranges from 0 at the center (r = 0) up to a normal-
ized value of 3r/2 at a normalized distance r from the
center. According to Morris and Boulay [35] and con-
sidering only the effect of the shear rate gradient along
a X-direction on particle migration, the characteristic
shear deformation γc associated to particle migration is
generated by the particle pressure gradient. Thus, it can
be written 1/γc = (a2/ηf V0) (∂Π/∂X) , where Π is the
particle pressure and a the diameter of the particles. In
our configuration, assuming the particle pressure scales
as Π ∼ ηf γ̇ V0/H and X = xH, it reduces to:

1

γc
=

a2

H2

∂γ̇

∂x
. (14)

Equation (13) allows to deduce that the shear rate gra-
dient along the x-direction verifies the inequality ∂γ̇/∂x <
3r. This implies that the characteristic deformation for
particles migration respects γc > H3/3 a2R. Consider-
ing typical values of these parameters corresponding to
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the experiments presented above, H = 10 mm, R = 80
mm and a = 0.5 mm, the previous criteria becomes
γc > 17. This characteristic deformation is larger than
the typical deformation imposed in the squeeze exper-
iment which is of order R/H ≃ 5. This confirms that
particles migration is not significant in our experiments
and the suspension can be assumed to be homogeneous.

Another known issue with squeeze flow geometry is
the possible solid-liquid separation [27,28]. Phase sep-
aration occurs when the characteristic convection time
of the suspension τc ∝ 1/γ̇, which scales as H/V0, is
large compare to the characteristic time of the fluid
flow through the particles (filtration) τw. As the filtra-
tion follows the Darcy’s law, the filtration character-
istic time scales τw ∝ H3/ηr(ϕ)k(ϕ)V0 where k(ϕ) =
a2(1−ϕ)3/(45ϕ2) is the Carman-Kozeny’s permeability
[36,37]. Thus the Peclet number defined as the ratio of
τw and τc reads:

Pe =
45ϕ2 (ϕc − ϕ)2

(1− ϕ)3 ϕc
2

H2

a2
(15)

If Pe ≫ 1, the filtration rate is low and the suspension
remains homogeneous during the flow. On the contrary,
if Pe ≪ 1, the filtration rate becomes significant and
leads to particle/fluid separation. In the experiments
presented above, an underestimate of the Peclet num-
ber is given by ϕ = 0.5. It leads to minimal value of
Peclet number Pe ≃ 1000. Thus, the Peclet is always
much larger than unity and no phase separation is ex-
pected in these conditions.

Furthermore, a major difference between Newtonian

fluids and suspensions is the existence of normal stress
differences in the suspension. These normal stress dif-
ferences are a consequence of contact between solid par-
ticles, which induce additional stresses compared with
the case of a pure fluid and lead to the dilatation of the
suspension under shear. Several experimental [38,20,21,
4] and theoretical [35] works present this normal stress
effect. In our experimental configuration, the pressure
sensor encodes the first normal stress difference N1 (the
difference between the normal stress in the flow and in
the shear directions), whose signature should be a de-
viation from the usual effective viscosity of suspensions
(Fig. 3) [35]. As we do not observe any deviation from
Maron-Pierce law, we can conclude that N1 ≃ 0. This
is compatible with several experimental studies [4], also
reporting that N1 ≃ 0 for suspensions.

The last point concerns boundary conditions at the
walls. In order to induce total slip conditions at the
walls and generate a pure biaxial extensional flow, lubri-
cated walls can be used. [39]. This approach is limited
by the fact that slip is often partial rather than per-
fect and is difficult to estimate experimentally. In the
present study, we have considered no-slip conditions at
the walls and the agreement between theory and exper-
iments is correct. In future, it would be interesting to
study how a change in boundary conditions affects the
determination of the effective viscosity of a fluid in a
squeeze flow.

4 Conclusion

In this study, we have considered a squeeze flow config-
uration as a viscometer. The squeeze flow is generated
between a disk and a wall approaching at constant rel-
ative velocity. The fluid viscosity is deduced from the
measurements of the radial pressure drop along the wall
made with two pressure sensors. Indeed, the solution of
the Navier-Stokes equations in a squeeze flow geometry
and in the absence of inertia provides a linear relation
between the radial pressure drop and the fluid viscosity.
We have first validated this protocol with a Newtonian
fluid whose viscosity has been estimated with a relative
accuracy of 1 %. Then, this approach has been applied
to a suspension of particles in order to determine its rel-
ative viscosity ηr regarding the suspending fluid. These
experiments yield viscosity measurements in agreement
with the Maron-Pierce law where the relative viscosity
of the suspension evolves as ηr ∼ (1 − ϕ/ϕc)

−2. The
critical packing fraction ϕc associated with the mea-
surements in a squeeze flow is in good agreement with
the one obtained from simple shear experiments. Thus,
viscosity measurements made in a squeeze flow are con-
sistent with the ones done in a simple shear flow cell,
a result that reinforces the modeling of the suspension
by a fluid of effective viscosity. Any characteristic phe-
nomena of suspension flows such as shear-induced mi-
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gration, liquid filtration or the presence of normal stress
differences do not affect the viscosity measurement in a
squeeze configuration. Finally, this work proves that the
concept of effective viscosity for suspensions of particles
is robust to a change in the flow geometry.

This work is based on local pressure measurements
but it would be interesting in the future to investigate
the fluid velocity field in order to test the validity of
the theoretical prediction of this field when the fluid is a
suspension of particles. Our approach to determine fluid
viscosity has been proved to be efficient in the limit of
small Reynolds number Re ≪ 1. It would be of interest
to study the response of a suspension in a squeeze flow
when the Reynolds number is not vanishingly small in
order to address the role of inertia in this configuration.
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