SUPPLEMENTARY MATERIAL TO: PROJECTION ESTIMATION OF A
QUADRATIC FUNCTIONAL FROM INDIRECT OBSERVATIONS

OUSMANE SACKO!

ABSTRACT. We consider the convolution model: Y = X + ¢, where X and ¢ are independent. We aim
to estimate SR f?(x)dx, where f is the unknown density of the signal X from n observations of Y. We
introduce a new projection estimator based on expanding f in the Hermite basis. Convergence rates for f
within the Sobolev-Hermite ball are provided for various error types. We also present an adaptive procedure
inspired by Goldenshluger and Lepski (2011) to select the appropriate space, and we demonstrate an oracle
inequality for the adaptive estimator. Numerical experiments are conducted to illustrate the effectiveness
of our methodology.

Key words: Deconvolution; Hermite basis; Model selection; Projection estimator; Quadratic functional;
U-statistics.

APPENDIX A. PROOF OF AUXILIARY RESULTS

A.1. Proof of Lemma 7.1. Let ffk(j ) be a real random variable defined as:

VY = Uz (Vi) - E[UZ (V).

where Uy is defined in (10). The variables (Y/k(j))ke{l,...,n} are ii.d. with IE[EN/IC(J)] = 0 and E[(EN/IC(]))Q]

Var(f/k(j )). By definition of 17 ; given (24), we have
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By recalling that E[SN/IC(] )] = a;(f) by construction, it holds

2 n N o~ (ot
ktl=1,0=1
2 N S0) 5 () N S0) 5 () )
= maj’(f) E [Yk] YUY |+ >, BV ] =0.
kAt l=1,0=1,0=0" et l=1,0=1 00"
We have

E[T3;T5,5] = %aj(f)aj’(f) > E [?,f”f/e(j')] - %aj(f)aj/(f) SE [y}fi)%ﬂ)]
k=14=1 k=1
= oy (Nap (N E| (U2, 00) - B, 0)]) (U7, () — =0z, ()]

n

= %a](f)aj/(f)COV(U; . (}/1)7 U;j/ (}/1))

J

Lemma 7.1 is therefore proved.

A.2. Proof of Lemma 3.1. Let us begin by Part (ii). By Plancherel-Parseval Equality, we have

2
U5, 00 = [ 10, @)y < Il [ 220 a,

* 2 1 * 2
(A1) nnw<2f Ui+ 5 Lt Jw)
lu|</pm ’fa( )‘ T Jlu|>\/pm ’fa( )’
Using the Cauchy Schwarz inequality on the sum, (5) and as | f||> < | f] o, we have for the second integral

[ (—u ,ﬂ N 2 o A
(42 JL>VM1|L< < §3 ;%J@>ﬂmLﬁuovdfg2'f“A<)'

Parseval’s equality and | f|? < | f|e 1mply that
f* 2
[ mEla < oma® .
It follows that

E[|UF, (V)] < If ol oo (A0 (m) + A(m) ) = € (A (m) + A(m) ).

where Cf = | f|lo| fy |co. This gives Part (ii).
Now, we demonstrate Part (i). The difference with Part (i) is related to the study of the first integral
given in (A1). We have

£ (—u) 2 ((Fon — £)*(—u)? £ (—u)|?
du < d d
L&wmlﬁ(ﬁ “<2£Kﬂm THOE “+2ﬂkwm|ﬁ<w !
< 4rAD(m)|f = fl? + 2J |f (u >2‘2 du.
ul<ypm 2]

Injecting this and (A2) in (A1), we get Part (i) and then the announced result.
A.3. Proof of Proposition 7.2.
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A.3.1. Proof of Part (i). We use the following Lemma, which is proved in the sequel.

Lemma A.1. Let U,(I,) be defined in (36). Assume that | f|lc < 00, Assumption (H5) hold and f. is
square integrable. There exists a constant Cy, > 0 depending on | fllw, | fy|w, and fe such that for any

x>0,
{|U (I <\/A m)A(m)a + < AW (m)A(m) + A<1>(m>> z+ A(’Z)xz)}
(A3) < 5.54 exp(—),

where A(m) is defined in (12) and AWM (m) in (13).
Choose x = 4log(n) and set
C. < VA (m)A(m)alog(n) + ( ADm)A(m) + A<1>(m)) 4log(n) }

n—1 1 Alm)1610g(n)

Qi(m) := {|Un(Im)| <
Let us write that

E [mse% {(Ug(fm) - ;V(m)>+” <E [mselﬁn {(Ug(fm) - ;vl(m))+} 1191(@] —E

+E[ms€1}8n{(U2(I )—%Vl( ))Jnm(m)] —E,.

On Q4(m) and as m € M,,, we have for C, > 0 a numerical constant U2(I,,) < C.V;1(m), where V;(m) is
defined in (18). Indeed, it is easy to check Vm e M,
274 (1) ()12 Tod 2
A(m)7log’(n) _ pmA (m)"log"(n) _ log”(n) ’
n?(n—1)2 n?(n —1)2 n(n —1)

and

2
<\/A(1 m)4log(n) + < AM (m)A(m) + A<1>(m)) 410g(n)> e
n—
log®(n)
< AD () A () 2287
< A0 (m)Am) B
Thus, for k1 = 36C%, it yields (U,%(Im) - g—éVl(m)) < 0 and E; is equal to zero.
For the other term, it holds
(Ad) Er< ), [UQ( )196(m)]
meMn
Moreover, by definition of U, (I,,) given in (36) and the Cauchy-Schwarz inequality, we have

wm<meZJme% Efvy, (V)] $2%n Efvg, (Y0P

k#0=1

where vy is given in (34) for t € S,,. It yields by Bessel’s inequality

(A5) Z_ o, (YVa)|* < AQ(m),

m
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by (5) and as | f]e < o0: |E[v,, (Yk)]’ < Hf||oo It comes that

<2 (A4 i) < v alstaE)
Injecting this in (A4), using A(m) < 2,/pmAM (m) and by taking 2 = 4log(n) in (A3), we deduce that
n? c 1 v 4|f]eo)?
By < 4p(1 v 4l Y mB (@50m) < 4p YIS
lo ( ) meMy, n

since m < 4/n by assumption on M,,. This gives Part (i) of Proposition 7.2.

A.3.2. Proof of Part (ii). We start by the centered process vy 1(p;) defined in (32). By the Cauchy-
Schwarz inequality, it holds

E[sup 2 W]\ S Var(vaa(ey)

meMp, meM,,
= 53 ), Z Var <WZ (v, (Vi) Emm)])%m))
meMnk#j 1 mglo 2
= omor & L E [ D (v, (Vi) = Elvg, (Yi)) ¥y, (¥)
1 me./\/lnk;é:; 1m_1 j=0 .
n?(n—1)2m§4n,€§_1 JOE[‘”%(Y’C) [vg, (Y] ]]ZOE[ o (Y0) ]

Thanks to (Ab), it yields

m—1

Z [|v% Yi) — Elvg,; (Yi)] ] Z |v% (Y2)|? < o

3
b
2

As the integral S|u‘>\/p7m |fe,;(§u)‘2du is convergent if f. is ordinary smooth or super smooth if § < 2 or § = 2
with < ¢ and, by definition of W, (Y;) given (35) and (4), it follows that
2
E [\%(Ye)lz] <E me eiuy‘*%du‘

€_§u2 2
< CpE J Hduf e % du
[u|>/pm | f2(u)] [u|>./pm
—§u2
(A6) < e—fmf ————du < e .
luf>ypm | fE (W]
Consequently, we get,
1 18 e 1
E{ sup v, (@]):| S Z m2A(m)e ™ < = e <=,
meMn n(n o 1) meMn, n m=1 n

because A(m) < 2,/pmAM (m) < @ by definition of M,,.
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Let us now turn to the control of E [sup,,e ., V2 2(95)] < Yimem, Var(vn2(e;)) with vy 2(p;) defined in
(38). Similarly to the study of le(cpj), we have

1

E{Supy (gpj)]\ ;> i mZ E||wy, (Vi) ]mZ:EU\I'%Yg 7.

meMn meMn k=1 j=0

[e=]

.

Equation (A6) imply that

E| sup v2,(¢)) 1 < 1 fe*£m<#
i, D | S T S ) & S -1)

which ends the proof of Part (ii).

A.4. Proof of Lemma A.1. In order to prove this result, we use an exponential inequality for U-statistic
of order 2. Let x > 0. Applying Theorem 3.4.8 given in Giné and Nickl (2016) (see Section B.2), we have
for C' an absolute constant

P {n(n — D|Un(In)| > € (A1va + Agz + Aga? + Aua®) | < 550677,

where the constants (A;)ie1,... 4 are given by:

j—1
A=) ) B[ Y))]
j=21i=1
n j—1 n—1 n
Az=sup{E[Z Ln(Y;, Y)oa (YD) 3,(Y)) | LE[ Y 02 (¥)] < 1LE[Y. A2(Y))] <1},
j=21i=1 i=1 j=2

i—1
A% = max (maxsup{ZEy (E,a:)]} maxsup{ Z Ey,[1 m,Y])]} )

J z i=1 Jj=1i+1

Ay = sup |Ln(z,y)|,
x7y

with I, is given in (36). As the map (z,y) — IL,(x,y) is symetric in its entries (that is I, (z,y) =
I, (y,2))) and the random variables Y7,...,Y,, are i.i.d, the first three constants becomes (see also Giné
and Nickl (2016), Section 3.4.3, pp. 176):

o n(n—1)

43 = "D g[ir, v, )P,
Ay = §Sup{E (Y1, Y2)a(Y1)B(Ya)], E[a®(Y1)] < 1, E[8%(Ya)] < 1}
A% =(n-—1) sup {]Ey1 12 ]} (n—1) sup {Ey2 oz, Yz)]}

Let us now compute these terms.

e Computing of A;. Notice that for any real-valued function ¢, the function z — v;(x) (defined
n (34)) is also real-valued. We have

m—1

B[V, )] = 2 {E[ (v, () ~ Eloy, (01)]) (v, () — Bl 0] |}
4,k=0
m— m—1

Z [vg, (V)vg, (YD) +2 Y. [Elvg, (Y1)] Efvg, (Y1)][*
4,k=0 4,k=0
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Using the definition of v given in (34), as ¢} = V27(i7)p; (see (5)) and Bessel’s inequality
(applied twice), it yields

m—1

1 m—
1 E [vg, (Y1), (Y1)] =5 Z
3,k=0 gk=

qu1+wY1 (Pj(u) QOj(U)]l dud 2
7o) f2 (o) Movtevmdudy

([ fpu o)
or ) ) 17wy (o) el <vom

Since § | £ (u)|du < 27| £ £-] and | ()] < 1, we get

m—1

> [E[vg, (Y)vg, (V)] < IF13 11 AGm)AD ).
7,k=0

Again, with the Bessel inequality and (5), we have

Hf*H2

m—1 m—1
2. |Elv,, (Y1) = - 2| F*(—u)p;(w)dul* < < [ flloo-
7=0

27 =0 lu|<y/pm

Therefore, we deduce E [\Im(Yl,Yg)| ] 2HfHoon5HA( )A ( )+ 2| fI% a

< 20(| oo v 1F1B1F:1 )N/ AGm)AD (1),

e Computing of Ay. We have by the Cauchy Schwarz inequatily, E[a?(Y;)] < 1 and E[BJQ(YQ)] <1

E [T (Y2, Ya)oi (V1) (Y2)] = ﬂ T (1, 0) i) B3 (0) fiy (1) fir (0) dudl

< \/ [[ 1t v>|2fy<u>fy<v>dudv\/ [[ @Bz @ )uae

< AVE[|In(V1, Y2)|?].

Following the computation of Ay, we derive

([l v 115 1Le1 B0/ A(m)AD (m).

e Computing of Az. Let fixed z. Set a; = u)du. By remarking that vy is

2r S|u|<\//%f () (

real-value and @; is a real number, we have

m—1

Eva [1Tn(@, V)] = Y] (0, (2) = @) (0, (@) — @) By | (v, (V2) = 87) (05, (V2) — )|

= D, (v, (2) = @) (vy, () — Gg) U Vg Vi fy = k| Vg, fy — @ f%ka + %ﬁk) :
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Let us recall that E[v,,(Y1)] = @; by definition of v; given in (34). Thus, Plancherel Equality and
the orthogonality of (¢;) imply

m—1 m—1 2
ByillIn( Y € 3] (00,(2) = 80 (0) = ) [ 0p, 0008y = [ | 2 (00, (0) @) ()] fr o)y
§,k=0 j=0
m—1 2
< Iyl j 3 (v, v, (v)| dy
7=0
m—1 * 2
1 ©r (= )
= > d
‘fY|OOJ (Z ]Z_:O ’ng] 27T f*() |Z|<W) (y) Y
Il | v D 4z = |y o AD(m) Y (v, (2)
” |z|</pm ;) el fa*(z> ” ];) il 2
It comes that
m—1
Ey, (| Tm (2, Y2) P] < [ fy |l &AM (m) ) (vy, (z) — @))?
7=0
The Bessel and Plancherel equalities give (see (A5))
m— m—1 m—1
Z v, (2) — 3 < 2 (Z [0, (2)[? + Z 6?)
iz0 =0 j=0

A flloo v 1)A(m).
We derive that

Ey, [[Lm(2, Y2) "] < 4(If |0 v DIfy loA(m) AN (m),

and

A3 < 2¢/([flloo v DI fy lor/ nA(m)AD (m).
e Computing of A,. Note that

m(@,9)| Z v, () — ) (v, () — ).

We bound successively the terms. By the Cauchy Schwarz inequality and (A5), it holds

m— m— m—1
s _ Am)
Z |U<PJ ,UGDJ Z U‘PJ Z ’USDj(y” = oo

j=0

L

and

m— m—1 m—1
; g, (2)85] < JZ o0, (@ )24 Y a2 <2 agm),
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since Y701 @2 < | flloc. This implies | (2, )| < 4(s= v A/142 v [ fl0)A(m) and

71
A 12(% VR ufnoo) A(m).

Collecting the above evaluations, it yields Vx > 0

i = £ (s Tt f>}

< 5.54 exp(—x),
3
where C, > 0 depending on f, | f|o and || fy |e. Since 2% 22 < xAW(m) + A(?m2, it follows

h P{10ntl > 2 (VA0 mAme + (A0 m)Am) + A“)(m)) o BT
< 5.54exp(—a).

Hence the announced result.

A.5. Proof of Proposition 7.3. We only proof Part (i). The proof of Part (ii) can be found in Sacko
(2020) (see Proof of Lemma 7.3, p. 23). Let us recall that P, 1(t) = L 37 | (v:(V2) — E [v(Y3)]) , with v

is given (34). Notice that
2| (e = gve) ] < 3 [ e{(iem - gem) >

Z f {|Pn1 (2fm)| = ;V(m)Jr:c}dx.

meMy,

Now, we apply Bernstein inequality given in Appendix B.1. We need to evaluate two quantities b and v.
We distinguish two cases.
The ordinary smooth case. By the Cauchy-Schwarz inequality, it holds

25 ()| = 5 i CIm)* (=)

1 ) 1
<= JIfx ——
o e oy < w\/ il f T
20 fleA(m) - b

By the Plancherel theorem and under (H5), we take (see (19))
Fn(w)]? n
B [loop, O0F) < 4l [ 2 0 — v ()
lu|<\/pm ‘fa (U)’ o
Applying Bernstein inequality leads to have for any « €)0, 1(

P{1Pas(2f)| > [V () + 2}

<2 fexp (< (5avim) +2)) v exp (— 1o [orvim +2 ) |
<2{ex (~ 15 (33vim) + 2)) v exw (=5 [pavim ) exp (-0 va) |
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Moreover, for any k1 = 384| fy |«p, we have

n K1

oM >
2oaa” (M)

Va(m)
3841y o Va(m) 08 = plos(n),

where p is an integer which shall be specified in the sequel. It also holds for any m € M,, and k1 >
384/ f[loop?/(a*cy)

/ﬂ :‘11 log( )
21" = O \/24 ABm =2~ > plogln)

since V(m) = Vi(m) + Va(m) = Vi(m) = (m)A(m)? nQ( ") and AC )(m) = ¢, (see (7)). Therefore, we
obtain for k1 large enough

(AT) P{ypn,l(zfmn > %V(m) + x} <on? {exp (—%x) v exp <—”(14b0‘)\/§> } .

[ frm (w)|?

The super smooth case. We take an upper bound of S‘u|< du in such a way as to set

Vo | f2 (u)]?
= 4| fllooll fywAM (m) and b does not change. Again with V(m) = Vi(m) + Va(m) = Va(m) =
AWM (m)log(n)/n, it holds for k1 > 384|f|«|fy|w that 5V (m) > plog(n). Thanks to V(m) >

A(l)(m)A(m) log® ) and ry 384Hf|\00p2/(a 1), we get Gra/55V(m) = plogn. We derive that (A7)
holds for the super smooth case.
By choosing p = 3 with some changes variables, we deduce that

E {mse%)n {(ngl(zfm) . ;V(m)>+” <2 ) JW {exp (—%x) v exp <—”(14;a)\/5> } dz

meMy
(1) T
I (4\fyHoonHooA ) g1, 200 )gcl
S n n*(1—a) n

where Cf is a constant depending on | fl|e, | fy |« and fe via (7). This concludes the proof.

APPENDIX B. CONCENTRATION INEQUALITIES

B.1. Bernstein inequality. Let Y7, ...,Y,, be n independent real random variables and S, = > ;(Y; —
E[Y;]). Assume there exist two constants s? and b, such that Var(Y;) < s? and |Y;| < b. Then, for all

x > 0, we have
nr nx2
P (]|S,| = nz) < 2max (exp (—m> , exp (_4b>> _

Moreover, it holds
b
P <|Sn| > V2ns?x + ;) < 2e "

A proof of Bernstein inequality can be found in Birgé and Massart (1998), p. 366.
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B.2. Exponential inequalities for U-statistics of order two. Let Y7,...,Y,, be n independent ran-
dom variables defined on a Polish space S and let us consider the degenerate (or canonical) U-statistic of
order 2: Up(h) = X', ;1 h(Y;,Y;), where the function h : 5% R is such that E[|h(Y;, Y;)|] < oo for any
1<i,5 <n. Let Al, Ag, Az and A4 be defined as follows:

S IR

7j=21:=1

n j—1 n—1 n
Ay = sup {E [Z DAY Y))ai(Yi)Bi(Y)) | L E[ Y af (V)] < LE[Y ] B7(Y))] < 1},
=2 i=1 i=1 j=2

w
I

A2 = max (maxsup {Z_] Ey, [hQ(E,x)]} ,m;axsup{ Zn: Ey, [h?(x, Y])]} ,)

R z =it
Ay = sup [h(z,y)],
x?y
where Ey [ X] denotes the conditional expectation of X given Y. Then, there exists an absolute constant
C > 0 such that for any = > 0,

P{|Un(h)] = C (A1Va + Asz + Aga? + Asa®) | < 5.54e77

The Bernstein-type inequality for canonical U-statistics of order 2 is proven in Houdré and Reynaud-
Bouret (2003) for real variables. The above result is a simplified version of Theorem 3.4.8 given in Giné
and Nickl (2016).
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