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PROJECTION ESTIMATION OF A QUADRATIC FUNCTIONAL FROM INDIRECT
OBSERVATIONS

OUSMANE SACKO!

ABSTRACT. We consider the convolution model: Y = X + ¢, where X and ¢ are independent. We aim
to estimate SR f?(x)dx, where f is the unknown density of the signal X from n observations of Y. We
introduce a new projection estimator based on expanding f in the Hermite basis. Convergence rates for f
within the Sobolev-Hermite ball are provided for various error types. We also present an adaptive procedure
inspired by Goldenshluger and Lepski (2011) to select the appropriate space, and we demonstrate an oracle
inequality for the adaptive estimator. Numerical experiments are conducted to illustrate the effectiveness
of our methodology.

Keywords: Deconvolution; Hermite basis; Model selection; Projection estimator; Quadratic function-
als; U-statistics.

1. INTRODUCTION

1.1. Bibliographical context and application. Consider the convolution model given by:

(1) Yi=Xr+e, k=1,...,n,

and the following assumptions
(H1) The variables (Xj)r>1 are independent and identically distributed (i.i.d.) with an unknown density

f, with respect to the Lebesgue measure,

(H2) The variables (ex)g>1 are i.i.d. with a known density f., with respect to the Lebesgue measure,
(H3) The variables(Xy)r>1 and (¢ )k>1 are independent.

Our aim is to propose an adaptive estimator of the quadratic functional of a density

0(f) = fR 12 (x)da

from n copies Y1,...,Y, with common density fy = f * fe, where g x h(z) = {3 g(x — y)h(y)dy denotes
the convolution product between g and h.

The quadratic functional plays an important role in mathematical statistics. A typical application
example is the goodness-of-fit testing problem, which is based on an estimation of ||f — fo|? for fo some
given density (see Fromont and Laurent (2006), Butucea (2007)). It also appears in the estimation
of integral functionals (see Laurent (1996), Giné and Nickl (2016) Section 5.3.1), in particular for the
estimation of entropy (see Han et al. (2020)).

When the variables of interest are available, that is e, = 0 almost surely (a.s.) in Model (1), the question
of nonparametric estimation of quadratic functionals has been studied extensively. For instance, Bickel
and Ritov (1988) investigate the estimation of {5 (f (D)2(z)dz, where f(@ denotes the d-th derivative of
f by using a kernel method. They establish that the parametric rate can be reached if the regularity of
f@ is large enough. However, their procedure is non adaptive. Efromovich and Low (1996) propose a
projection estimator of SR( f@)2(z)dx on the Fourier basis. The authors provide convergence rates for f(@
belonging to the Lipschitz class of order g with a logarithmic loss for small 8 values. But 5 is unknown.
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Laurent (2005) develops an adaptive estimator of 6(f) by considering the Haar basis. The author obtains
the same convergence rate as in Efromovich and Low (1996) when the density f belongs to a Besov class.
Recently, Goldenshluger and Lepski (2022a,b) establish minimax rates for the Lj-norm of a multivariate
density function with p > 1 on the Nikolskii space. Furthermore, the problem of estimating a general
functional can be found in Birgé and Massart (1995), Laurent (1996), Kerkyacharian and Picard (1996),
Tribouley (2000). In privacy constraints framework, Butucea et al. (2023) investigate minimax rates and
propose adaptive estimators (up to a logarithmic factor) of 6(f) = Sé f?(x)dx based on the Haar wavelet
basis.

In convolution models (1), to our knowledge, Butucea (2007) is the first to consider the problem of
estimating of (f) = (g f?(z)dx from Model (1). The author proposes a kernel estimator and proves
minimax results under certain assumptions on the density of noise f.. Loubes and Marteau (2014)
apply the estimation of 6(f) = {; f?(z)dz in context of goodness-of-fit tests. Chesneau (2011) considers
the estimation of quadratic functional of f in the cases where the convolution of the signal f with some
known function is contaminated by Gaussian noise. Recently, Schluttenhofer and Johannes (2020) provide
minimax results for quadratic functional estimation problems in the case of a circular version of Model
(1).

However, the projection method and adaptation issues from Model (1) have not yet been addressed
in the literature. In the present paper, our main goal is to provide an adaptive projection estimator of
SR f?(x)dz, based on the decomposition of f in the Hermite basis. The Hermite basis is R-supported
and then leads to the construction of an unconstrained estimator on f’s support. When using compactly
supported bases with support [a, b], the bounds a and b are determined in practice from the dataset. The
Hermite basis does not require this preliminary choice. Our methodology is mainly based on the various
good properties of the Hermite basis. For instance, the Fourier transform of a function of the Hermite
is almost the same Hermite function up to a constant and it decreases as e for sufficiently large x
and ¢ a constant (see below Equations (4) and (5)). This is important in the context of our inverse
problem for solving integrability issues. Recently, Belomestny et al. (2019) prove that the Hermite basis
has low complexity, requiring only a few coefficients for accurate estimation. The estimate is therefore
parsimonious.

1.2. Contributions. Our main contributions are non asymptotic and described as follows:

e First, we introduce a new projection estimator of SR f?(x)dx constructed from the expansion
of f in the Hermite basis. Our procedure has the advantage to be kernel-free and reduces the
problem of estimating § f?(z)dz to the estimation of a small number of coefficients. Moreover,
the proposed estimator generalizes the projection estimator in the direct observation case (g =0
almost surely in Model (1)).

e Then, we provide convergence rates for f belonging to the Sobolev-Hermite ball and for various
types of error. These rates coincide with the one obtained by Butucea (2007) and Laurent (2005),
respectively in convolution Model (1) and direct observation cases.

e Following Goldenshluger and Lepski (2011)’s methods, we propose an innovative adaptive proce-
dure to select the relevant dimension of the projection space. We demonstrate that the adaptive
estimator satisfies a non asymptotic oracle inequality and achieves the optimal rate, with at least
a logarithmic factor. To the best of our knowledge, this result is new in the literature for the
estimation of { f?(z)dz from Model (1).

e Finally, we illustrate the good performance of our procedure through numerical experiments and
compare our method to the penalization approach in the direct observation case.

1.3. Organization of paper. In Section 2, we recall the definition of the Hermite basis, regularity
spaces, classical assumption on the noise and we describe our methodology. In Section 3, we discuss the
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rates of convergence over Sobolev Hermite ball. Section 4 is devoted to the adaptive estimation. The
results of a simulation study are detailed in Section 5. All the main proofs are presented in Section 7,
while the Proofs of auxiliary results and concentration tools are postponed to Section A and B of the
supplementary material.

2. METHODOLOGY, HERMITE BASIS AND REGULARITY SPACES
2.1. Hermite basis and regularity spaces.

2.1.1. Notation. For a, b two real numbers, denote avb = max(a,b), aAb = min(a, b) and a; = max(0, a).
Let z be the complex number, we denote by Z the conjugate of z. For g and h two functions in L2(R), we
denote (g, h) = fg g(z)h(x)dz the scalar product on L2(R) and [g| = ( J:Zg g9(z)|*dz) /2 the norm on
L%*(R). The Fourier transform of g is defined by g*(u) = {e"™*g(z)dz. We recall the Plancherel-Parseval
equality (g, h) = (2m)~Yg*, h*). Let u, and v, be two real sequences, denote u, < v, if there exists a
positive constant ¢ such that for all n € N, u,, < cv, and u, = v, if u, < v, and v, < uy,.

We begin by recalling the definition of the Hermite basis and regularity space.

2.1.2. The Hermite basis. Define the Hermite basis (¢;);>0 from Hermite polynomials (H;);>0 by:
(@) = e Ho (@) Hi(@) = (—1Ve” L () e (29112 :
(2) pj(x) = c;Hj(x)e , Hj(z) =(-1)e dxj(e ), ¢ = (27j/m) , veR,j7=0.

The family (H;);>o is orthogonal with respect to the weight function e~ Sz Hj(:n)Hk(m)e_xde =
27 j1\/76; i, where d ; is the Kronecker symbol (see Abramowitz and Stegun (1964), Chap. 22.2.14). It
follows that the sequence (¢;); >0 is an orthonormal basis on R. The infinite norm of (¢;);>¢ is such that
(see Abramowitz and Stegun (1964), chap. 22.14.17 and Indritz (1961))

(3) I3lloo = suplip; ()] < do, with do = L
xe
From Askey and Wainger (1965), it yields
(4) i (@) < Cle™, 2l =2 +1,  Cl >0,
where ¢ is a positive constant independent on z and 0 < § < % The Fourier transform of (¢;) ;>0 satisfies:
(5) ) = V2r(i) ;.

2.1.3. Regularity spaces. We consider the regularity spaces associated to the Hermite basis called Sobolev-
Hermite spaces. In the sequel, it is used to the evaluate the bias of our estimator.

Definition 2.1 (Sobolev-Hermite ball). For s > 0, define the Sobolev-Hermite ball of regularity s and
radius D by:

(6) Wi(D) = {8 € L*(R), ), k*ai(6) < D}, ax(6) = (b, k) = fRe(ﬂf)wk(Sﬂ)dw-
k=0

When s > 1 is an integer, Bongioanni and Torrea (2006) showed that # € W}, (D) if and only if 6 is s-times
differentiable and the functions 6, ...,00, z — z5=¢0() belong to L*(R) for £ = 0,...,s — 1.
Recall also the definition of the classical Sobolev ball

Definition 2.2 (Usual Sobolev-ball). A Sobolev class with smoothness s > 0 and radius D > 0 is defined
by:

WD) = {0 e L2(R),f (1 + u?)%|0* (u)2du < D}.
R
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For any s > 0, we know in Bongioanni and Torrea (2006) that W (D) < W#(D'). Moreover, if s > 1 is
an integer the space W#(-) is given by:

S
We(-) = { e L*(R), 6 is s-times differentiable and Z 1092 < o0}
/=1
Therefore, if § has a compact support, 8 € W7 (D) is equivalent to § € W#(D’), where D and D’ are
related constants.

2.1.4. Assumption on the noise. The following assumptions on the noise are considered in convolution
context.
(H4) The Fourier transform of the noise density is such that f* # 0.
Assume also that: there exist ¢; = ¢} >0, and v = 0,0 > 0,8 = 0 (with v > 0 if 6 = 0) such that
(7) A+ <O 2 < (1 +2) e’ vteR.
In the sequel, we consider two types of errors.
e If § =0, we say that € and f. are ordinary smooth.
e When 6 > 0, they are called super smooth noises or functions.
Let us note that Condition (7) implies Assumption (H4) and is fulfilled by some classical densities.
Examples of ordinary smooth noises are: Gamma, Laplace and Gamma symmetric distributions. For

super smooth noises, we can cite Gaussian, Mixed Gaussian and Cauchy distributions.
Let us now present our methodology.

2.2. Methodology Let (Yk)ke1
to estimate 6(f SR f?(x)dx from indirect observations Y,...,Y,. For any integer m > 1, define
Sm = Span{goo, e Pm—1}, the linear spaces generated by o, ..., @m_1. Assuming that f € L2(R), we

decompose f in an orthonormal basis (here in the Hermite basis) and we define its orthogonal projection
on Sy, by:

ny be n iid. observations drawn from Model (1). Our purpose is

-----

=Z %’%m=@wﬁiywwmm

Set
m—1

On(f) = I fml® = D] a3 (f).

7=0

We will estimate 6,,(f). Under (H4) and using Plancherel-Parseval’s theorem, we have

1y
0 () = 5o
Since f5(u) = { €™ fy (z)dx = E[e™1], we estimate f(u) by:
~ 1 & .
© Frlw = - Y1
k=1
Consider the random variables (U (Yk))geq1,...,ny defined as:
1 et 1 t*(—=z)
1 F(Vi) = — : =5 :
(10) UF0) = 5t Uil = g
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Hence, injecting (9) into (8) and assuming that the ratio ¢;/f¥ is integrable over R for j € {0,...,m —1},
we define the following estimator:

m—1 - n
(11) Om(f) = D a3(f),  where a§<f>—n(n1_ 5 2 Up (YU, ().
j=0 k#0=1

The Hermite basis ensures that the ratio ;/fZ is integrable in many cases, in particular, for any ordinary

~

smooth noise or super smooth noise with ¢ < 2. Consequently, 0,,(f) is well defined for several function
classes satisfying Condition (7). Furthermore, by the Plancherel-Parseval theorem, it is evident that

E[UZ,(Yi)] = a;(f). Hence, ém(f) is an unbiased estimator of 6,,(f) = Z?:ol a?(f). Moreover, for any

real function ¢, it hold that U;*(x) = U (x). Thus, our estimator §m( f) is a real random variable, which
is crucial since we are estimating a real number.

3. RATES OF CONVERGENCE

3.1. Risk bound for fixed m. Let m > 1 an integer and p > 0 an absolute constant. Define

u g (u)|?
(12) A(m) ::f d A(m) = f LZ10] .

lu|</pm | f2(w)]*’ =0 Jlul>y/pm [fE)

and

(13) AWM (m) = sup |fX(u)| >
lul<y/pm
We can establish the following bound on the quadratic risk.

Proposition 3.1. Let (Yi)req1,..ny be n id.d. observations drawn from Model (1) and assume that
assumptions (H1) to (H4) hold. Assume that f is bounded (||f|c < 00) and f. is square integrable.
Consider the estimator 0, (f) defined in (11).

1
(i) Then, for any p > 0 and Cy = 4| f|&||f:| < oo, it holds

0 2 1, G M &\
Bl(Gn(f) = 1)V SIS = Sl + e 2y Alm) (A (m) + Am) ) + LAY m)
4Hf“§o 4 * 2
v ey Sy, (0P
(i) Moreover, if p = 2 and f. satisfies (7) with 0 < § <2 or (§ = 2, with p < &), where £ is defined

in (4), then, we get

B ()~ 0P < =l + s

where Cy and Cy are constants depending on Co, | fy |, p and constants appearing in (7)-(4).

4 C
(1) = * 21, =2
A(m)AY (m) + - E[|Ufm(Y1)| ]+ )

Let us make some comments on the bounds obtained in Proposition 3.1. The first term in the right-hand
side (|f — fm|*) is the classical bias term: it is decreasing with m. The others are variance terms. It has
been established (refer to Proposition 3.1 in Sacko (2020)) that A(m) becomes negligible under Condition
(7). More precisely, under the assumptions outlined in Proposition 3.1 (ii), we have:

m—1
. | (u)
(14) Alm) Zofm Fx ()]

Epm

‘2
du<e "2 .

2
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Equation (14) is a key property of the Hermite basis and what makes it so relevant in the context of
inverse problems. Consequently, the main variance term is A(m)A®M (m)/n(n — 1) + E[|U} (Y1)|?]/n.
The first is clearly increasing with m contrary of E[|U} (Y7)|?]/n, which is a mixed of bias and variance
(see Lemma 3.1). It can be negligible for ordinary smooth noises with an adequate choice of m. The
examination of E[|UF (Y1) |?] entails technical intricacies. Let us proceed to bound it in two distinct ways.
Consider the following assumption:

(H5) The density fy is bounded.
Observe that if (f and f. belong to L2(R)) or (f or f. is bounded), (H5) is automatically satisfied.

Lemma 3.1. Assume that (H5) holds, | f|le < 00 and set C{ = | floo| fy]o < 0.
(i) For any m =1, it holds

* 2
m@mmm<zhm<ww>u funl? + |f‘@&ﬂd0+%Mm.
u|<,/pm 5
(ii) Furthermore, it yields

E[U}, (V)] < Co (AD(m) + A(m)).

Lemma 3.1 (i) is the key to achieve the parametric rate: 1/n. It also indicates that the term E[|UF (Y1)|?]/n
will influence the rate of convergence if f. is ordinary smooth. Moreover, using

2HfYHooA(1)(m) | fy |2 (AM (m))?
n n2 ’

”f_ fm”2 < Hf_me4 +

it holds by Lemma 3.1 (i):

E[UF, Y)IP] _

(15) <17~ gl + M A0y ¢ e [ IEC0R, Gy,
\

n(n—1) ™M Jul</pm | f2 (u)|?

The first two terms are the same as in Proposition 3.1 (ii)) with two additional terms M S\U|<F |J|£;((_“)‘)Z|, du+
%A(m) Under regularity conditions on f, the term %Slul <Jpm {;( * )|)2‘ du is negligible for an adequate
choice of m compared to A(m)AM (m)/n(n — 1). The last term A(m)/n has order 1/n for any value of

m € N and is therefore neghglble The second part is applicable in the super smooth case and shows that
the rate depends on AW (m)/n.

Remark 1 (Rate of convergence from direct observations). When X}, are available, e, = 0 a.s. and the
terms AW (m) and A(m) are bounded uniformly in m. Thus, ]E[|U}"m(Y1)|2]/n is a residual term compared
to the term C1A(m)AM (m)/n(n — 1) < /m/n(n —1). For f € W5 (L) (see Definition 2.1), we recover
the rate n=3/4s+t1D) , n=1 computed respectively over Lipschitz and Besov reqularity spaces by Bickel and
Ritov (1988), Laurent (2005). Our results contain the case of direct observation.

3.2. Rate of convergence on Sobolev-Hermite ball. In order to derive rates of convergence, we
consider the Sobolev-Hermite regularity spaces, defined in Definition 2.1.

Proposition 3.2 (Order of bias and variance). Let (Yi)re(1,. ny be n i.i.d. observations drawn from
Model (1) and assume that assumptions (H1) to (H5) hold. Assume that | f| < o0, f belongs to W (L)

and f: is square integrable. Consider gm(f) be defined in (11).
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(i) If p = 2 and f. is ordinary smooth (that is f. satisfies (7) with 6 = 0), we have

~

1 1
E[(0m(f) = 0(f))%] < 2Lm™ % + € m2t3 —m N, + n) ;

_
n(n —1) n
where € is a constant depending on fo, L, | f|ew and | fy |-
(ii) If p = 2 and f. is super smooth (that is f. satisfies (7) with 0 < 6 <2 or (6 = 2, with p < ¢)),
where £ is defined in (4), it holds

~ 1 1 g 1 S 1
E[(6,, _ 1< Lm™2 29+35 2u(mp)2 | =y op(mp)2 |
[(0m(f) —0(f))7] m= + & (n(n—l)m ze —i—nm e +n ,

where €y is also a constant depending on fe, L, | flleo and | fy |-

Proposition 3.2 is a consequence of Proposition 3.1 and Lemma 3.1. Part(i) of Proposition 3.2 can be seen
as an equivalent version of Proposition 1 obtained by Butucea (2007) in the kernel strategy. By realizing
a bias-variance compromise with respect to m in the risk bound in Proposition 3.2, we obtain rates of
convergences.

Theorem 3.3 (Rate of convergence for ordinary smooth noise). Let (Y )ref1,....ny be n i.i.d. observations
from drawn Model (1) and assume that assumptions (H1) to (H5) hold. Suppose that |f|ew < o, f
belongs to Wi (L), and f. is square integrable and ordinary smooth. Consider 0,,(f) be defined in (11).

a4
Take meops = [n3+4+1]. Then, we have

___ 8 . 1
n 4s+4~v+1 ZfS < P}/ _|_ 17

~

(16) sup  E[(On,, (f) — 0(1))*] S
fews (L) ~1

n if s =y + %.
We attain the classical rate in the deconvolution scenario when f. exhibits ordinary smoothness, see
Butucea (2007). This rate is known to be optimal under additional condition on the derivative of f* and
for densities belonging to the classical Sobolev space. If v = 0, corresponding to direct observation case,
we achieve the rate n=8/(4s+1) \ =1 see Bickel and Ritov (1988), Laurent (2005).

Theorem 3.4 (Rate of convergence for super smooth noise). Let (Yi)re(1,...ny be n i.i.d. observations
drawn from Model (1) and assume that assumptions (H1) to (H5) hold. Suppose that | f|e < 0 and f

belongs to Wi (L), and f. is square integrable and super smooth with 0 < § < 2. Let 0,,(f) be defined in
(11). By selecting mopt = [l(kf#

5 , we obtain the following bound
L) g

~

sup (B, (f) — 0(1))%] < (logn) ™%
fewg (L)

If fe is super smooth, we attain the optimal rate, computed over the classical Sobolev spaces (log n)f%
(see Butucea (2007)). For the lower bound, Butucea (2007) considers test functions with compact support.

Thus, the rate (log n)f% also represents the optimal rate over Sobolev-Hermite spaces, as these spaces
coincide with the ones mentioned above (see Section 2.1.3) for compactly supported functions.
Let us summarize the previous rates in Table 1. Let us note that the rate obtained for the classes of
mean mixture or variance mixtures of the Gaussian distribution in Sacko (2020) can be extended in our
context. Specifically, if f is a Gaussian density and f. is ordinary smooth, we deduce from Proposition
3.1 and Lemma 3.1 that:

5 log” 2 (n)  log”*(n)

sup Eemoptf—OfQS v 1.~s,
s B[, (5 =00 < 2 —1,.
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0=0 0<d<2
ordinary smooth super smooth
_ 8s 1 4s
rate | n 4s+dl v on~ (logn)~s

~

TABLE 1. Rate of convergence for E[(6p,,,, (f) — 0(f))?] if f € W§ (D).

where mgp: = log(n).
When f and f- are both exponentially decaying, the rate can be better than any power of logarithm. For
instance, if f(z) = exp(—22/(20?)) and g(z) = exp(—x2/(2¢?)), selecting myp = (0 + ()1 log(n) yields

2

SuprWIS{(L) E[(gmopt(f) - H(f))2] $ 'fl_m.
4. ADAPTIVE ESTIMATION

In this section, we propose a selection procedure for the estimator ém( f). First, let us note that the
adaptive procedure from Model (1) has not been explored in the existing literature. We also note that
the procedure by penalization introduced by Laurent (2005) for the direct observation is not adapted to

our inverse problem. Indeed, it is based on the fact E [(% Doy f(Xk) — 9(f))2] < 1§ Pla)de < %

is a residual term. For the inverse problem case, by definition of U; given in (10),

2
[ Ifvlee [ L0,
. <n§1Uf<Y’“) 9<f)> ST RRwE ™

Thus, we see that {; |{Z,‘5@1;|)2|2 du is not necessarily finite, for instance when f(u) decreases faster than
f*(u) near infinity. This is why, we introduce a novel approach inspired by the Goldenshluger and Lepski
(2011) method. The method is based on the comparison of estimators of ém( f).

From now on, let us assume that the constant p > 2 given in (12) is fixed. Consider the following

collections of model:
-1) n
ni=41<m< Am)AD (m) < =L A0y <
M= {1 <m < Wl A0 < S a0 (m) < s
where A(m) and AM(m) are respectively given in (12)-(13). We aim to identify the m e M, that

minimizes the bias-variance decomposition of 6,,(f) given in Proposition 3.1(ii). The bias |f — fn|?* is
estimated by:

(17) Am) = e { () = B (12 = saV ()|

where V(m) = Vi(m) + Va(m) is the order of variance term up to log(n) factor:
log?(n)

(1) Vatm) = (Aem)AD(m))

and

(Sluls/m lﬂ;’:émj du) logTEn) if f. is ordinary smooth,

(19) Va(m) =

A(l)(m)% if f. is super smooth.
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Here, 1 is a numerical constant to be calibrated.
We shall prove that (see Proof of Theorem 4.1 provided below) for any given noise.

BLAG)] < 315 — ful? 4 VarBu( 1) + 0 (1)

n

~

The presence of Var(6,,(f)) is related to the term V5(m), which is not necessarily increasing with m in the
ordinary smooth case and depends on |f,,(u)|>. Note that |f,(u)|> will be replaced later by an estimator

|fm(u)|2 .
v [ P

(see Section 5). For super-smooth noises, we take an upper bound on §

2
fr Mdu < D) | 2
pm |Je

and this is why Va(m) = AM(m)log(n)/n in this case. Moreover, in this case, we have

BLAG)] <317 - fulP +0 (1)
Select:
(20) iy = arg min {ﬁ(m) + /@V(m)} :

where k9 = k1 > 0 is also a numerical constant which must be calibrated.
We can prove the following oracle result.

Theorem 4.1 (Oracle inequality). Let (Yi)reqi,. ny be n i.i.d. observations drawn from Model (1) and
asume that assumptions (H1) to (H5) hold. Suppose also that |f|e < 0, fe is square integrable and
Condition (7) is fulfilled. Let é\mn (f) be defined in (11) with my, selected in (20). There exists a constant
ko such that for any k1 = Kg:

~

B0, (/) 00| < C inf <|f — ful +V(m)

)
n n

E[IU};(YDIQ]) c’
+——— |+ =

where C' = max (36, (6k2 + 3C1)) with Cy is given Proposition 3.1 and C' is a numerical constant depend-
ing on fe, | flo and | fy|co.

The term E[]U}‘m(Yl)\Q]/n has the same order as |f — f||* + V(m), see (15) under adequate regularity
and choice of m. The bound given in Theorem 4.1 is non asymptotic and shows that the estimator
O, (f) realizes automatically a bias-variance trade-off up to log(n) terms in ordinary smooth cases.
Unsurprisingly, we recover the optimal rate for super smooth noises. Indeed, it is known that a logarithm
factor in the variance does not affect the rate of convergence. Combining Proposition 3.1 and Lemma 3.1,
we get

___ 8 -1
R (%) el ( log’én)) if f. is ordinary smooth,
sup  E[(0,(f) — 0(/))*] <
feWg (L) _as : .
(logn)~ s if f. is super smooth.

Note that the logarithm factor is due to Goldenshluger and Lepski (2011)’s procedure. In addition, when
X}, are available (v = 0), we recover the rate n~8s/(45+1) , =1 up to logarithm factor contrary to Laurent
(2005)’s where the rate n~! can be achieved for n large enough.

The value kg is not explicit here and depends on the unknown quantities such as | f|, ||fy|. This is
due to the control of our U-statistic of order 2 and to the quantity A(m), which is bounded by a non
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explicit constant, see (14). In practice, we set k2 = 2k1 and calibrate k; through preliminary simulation
experiments.

5. NUMERICAL STUDY

5.1. Implementation. In this section, we illustrate the performance of our methodology by implement-
ing the estimator 6,,(f) defined in (11) for both direct and inverse problem scenarios. Consider the
following distributions for the signal

() N(1,1/4), 0(f) = 52= ~ 05641896,

.. 5o \2 r2a—1)

(ii) Gamma G(a, 3), with « =1 and 5 =4, 0(f) = (F(a)> Gzt ~ 0.15625,
(ii) Laplace £(v/2), 8(f) = 2— ~ 0.3535534,
(iv) Cauchy standard, 6(f) = 5= ~ 0.1591549.

From now, we set p = 4. For the noise, we distinguish three cases: direct case (that is € = 0 a.s.), ordinary
smooth and super-smooth cases.

e The direct and ordinary smooth cases. We choose the following estimator of the variance
V(m):

2
V(m) = Am)AD () E s Tam), o=

where Va(m) estimates Va(m) given in (18). We tested two estimators of Va(m). They are all
based on the estimation of |f,,(u)|?>. The first is an unbiased estimator of |f,, (u)|*:

(21) P = S @, A=M S Uz, Uz, (),
7]— l#k=1

where U; is given (10). The second estimator has a bias but is much faster to compute. It is
obtained by replacing f,,(u) by the Hermite density estimator studied in Sacko (2020). It is

defined as: .
m— R R 1 n
= > Ay, @ =~ > Up, (V).
=0 k=1

Both estimators exhibit equivalent performances. Then, we only implement the following estimator
of Va(m) for risk evaluations:

. w2 log(n)
vl )‘wa—m |f:<u>2d> n

This estimator is obtained by substituting |f,(u)|? with ]fm(u)\Q in (19). Set € = 0 a.s. in the
direct case and consider the Laplace noise in the ordinary smooth case with a density given by:

A gy = Ny Zavs
fe(m)—§e ; fg($)—m7 = .

For the last case, A(m) and AM(m ) are respectively given by:

0+ v = (o + o3 (v + N

Al = stx/m

and

AD () = (1 n pA—TZ)
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e The super smooth case. Take a Gaussian noise with density:
1
fel@) = —m=—c "7 fH@) = e o = 110,
2o

The variance is defined in (18)-(19) with

1
A(m) = 2,/pm <f0 e“gggpmdu> , AW (m) = 7M.

where Sé ewrozm gy ig computed by a Riemann sum discretized in 100 points.
The adaptive method is described in three steps:

~

e For any m € M, compute fAl(m) = SUD,em, {((Hm/(f) - émAm,(f))Z _ HlVa(m’)> }, where
+
é\m( f) is defined in (11) and Va(m) corresponds to the variance term which is specified above.
e Choose m,, via m, = argmin,e,, {ﬁ(m) + HQV&(m)} ,

e Compute HAmn(f) = Zﬁlo_l %7 with a?(f) given by (11).

We mention that the coefficient (a?( f))o<j<m—1 is computed by Riemann’s approximation in the inverse
problem case.

Calibration of x; and k3. Following the idea developed by Lacour and Massart (2016), we set ko = 2k
and k1 = 1073 in the direct case, k1 = 3 x 1073 in the Laplace noise case, and k1 = 8 x 10™% in the
Gaussian noise case.

Comparison with penalization method in the direct case. We compare our adaptive procedure
with the penalization procedure introduced by Laurent (2005). In this case, the space Sy, is selected by:

~

~ (D)
) = arg min {~Gu(f) + pen(m) . 5ER(m) = =/ (Ba() + )vimlog(vim + 1),

meMy,

and the adaptive estimator is given by

0= 0,0 (f) = BeR(@Y) = sup {Gn(f) = Ben(m)
n meMy,
where k(1) is a constant which must be calibrated and é\m( f) is given here by (11) with ¢ = 0 almost
surely. In practice, we choose k(1) = 0.1.

5.2. Numerical results. First, we note that all results are rounded to three decimal places. Moreover, in
all cases, we see that increasing the value of n leads to a smaller MSE, thereby improving the estimation.
In Table 2-3:

e The first line shows the MSE values with standard deviations in parentheses, multiplied by 1000.

e The second line represents the average of the dimension selected by the adaptive methods, and in
the last line, we provide the average over the repetitions of the parameter estimates for each case.

e The value of the true unknown parameter 6(f) = § f*(z)dz (and the signal to noise ratio de-
fined by SNR = Var(X)/Var(e) in parenthesis for the deconvolution case, except the Cauchy
distribution) are provided in bold in the first column.

In Table 2, we compare the proposed procedure to the penalization approach in the direct observation
case. In general, both methods have equivalent performance and the results are very satisfactory.

In Table 3, we present simulation results for the deconvolution case, computed over 200 independent
simulations. Unsurprisingly, we observe that the MSE obtained in the case € = 0 almost surely is smaller
than the noisy case. These results illustrate the influence of noise through the signal-to-noise ratio values:
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the larger this value is, the better the estimate, as shown by distribution (ii). For distribution (i), the
procedure gives a poorer result compared to (ii), or (iii) due to the lower signal-to-noise ratio value. We
also observe that the MSE obtained in the Laplace noise case is globally smaller than in the Gaussian
noise case. These observations are consistent with theoretical results. For all distributions, the procedure

O. SACKO

tends to overestimate the true parameter when the SNR is lower.

Our method Penalization method
200 500 200 500
0(f)
0.894(1.440) 0'460(0.602) 0'917(1.476) 0'460(0.610)
14.66 14.17 27.8 28.01
0.564... 0.568 0.563 0.570 0.564
0.085(0.110) 0.037(0.054) 0.083(0'111) 0.033(0.055)
23.63 25.69 35.24 39.8
0.156... 0.155 0.154 0.156 0.155
1.126(1.423) 0.372(0.454) 1‘158(1.462) 0.376(0.453)
13.51 15.6 25.8 31.58
0.354... 0.361 0.354 0.362 0.355
0.276(0.411) 0.116(0_152) 0.276(0_419) 0'116(0.156)
7.97 9.1 24.31 27.19
0.159... 0.158 0.159 0.159 0.160

TABLE 2. First line: empirical MSE 1000 x E[(éﬁln(f) —0(f))?], with 1000xsd in paren-

theses (left: our method, right: penalization method); second line: mean of m,, or m

(1)

n’3

third line: mean of étﬁln (f)or 0. (f) computed over 100 independent simulations in direct

observation case.

In this paper, we propose a new estimation procedure of a quadratic functional of a density based on
the expansion of f into the Hermite basis from Model (1). We demonstrate that our estimator achieves
the optimal rate obtained in Butucea (2007). An adaptive procedure to select the relevant dimension
is proposed, and we establish non asymptotic oracle inequality for the resulting estimator. Numerical

6. CONCLUDING REMARKS

experiments illustrate the convergence and good performance of our methodology.
To conclude, we outline some perspectives for future work:

e In this study, we consider that (X;)ie1,... » are i.i.d. One possible extension is to investigate the case
of dependent X;. For instance, we can replace Assumption (H1) by: (X;);>1 is strictly stationary

and [-mixing.

e We can also account for uncertainty in the noise distribution, i.e., study the case where the density

fe is unknown but estimated through an additional sample.

e One of the motivations for this work is the issue of goodness-of-fit testing. We can investigate

whether our results extend to this framework.

These points will be studied in future work.
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n = 200 n = 500
o(f) Noise Laplace Gaussian Laplace Gaussian
2.384(4.066) 2-949(s.484) 1.061(1641) 1.144(1 908)
6.74 6.23 7.135 6.84
0.564...(2.5) 0.579 0.576 0.580 0.580
0'209(0.280) 0'714(0.824) 0'061(0.078) 0.225((0.237)
11.645 9.69 13.125 10.975
0.156...(40) 0.151 0.135 0.156 0.145
1'398(2.631) 1.350(2_544) 0'633(0.833) 0'780(1.189)
4 4.46 5.260 5.54
0.354...(10) 0.368 0.368 0.366 0.368
0.706(1.224) 0.610(0.926) 0.351(0.437) 0.3090.383)
2.96 2.4 1.440 3.715
0.159...(-) 0.176 0.174 0.173 0.173

TABLE 3. First line: empirical MSE 1000 x E[(é\mn(f) —0(f))?] (with 1000xsd); second
line: mean of Mmy,; third line: mean of 65, (f) computed over 200 independent simulations.

7. PROOFS

7.1. Proof of Proposition 3.1.

7.1.1. Proof of Part (i). We have by the Pythagorean theorem
(22) E[(0(f) = 0] = I/ = fuul* + Var(@u(f)).

Let us bound Var(ém( f)). By definition of ém( f) given in (11), it holds

m—1 . m—1 o —
(23)  Var@u(f) = Y, Covi@d(f).ai(f) = >, B[ ()~ Ela2(N]) (aF(f) — Bl ()]) |-
§,k=0 §,k=0

The following decomposition holds:

— N 1 no Y oY
(D ~EE0N) = ooy 2 g o e ()
(A0 =1 € €
-y 2 (Um0 = Bl 00)) (U, 09) ~ BLU, ()
C#0'=1
+ 200 Y, (U, () — BIUZ, (v2))
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It follows that

m—1 m—1 m—1
Var Z COV Tl,j7 Tl,k) + 2 Z COV(TLJ', Tg,k) + Z COV(TQJ, TQJC).
k=0 k=0 k=0

We state the following Lemma.

Lemma 7.1. Let j and k be two positive integers. Let Uy be defined in (10). It yields

2
COV(TLJ',TLk) = E[T17jT1’k] = (COV (U;J (Yl), U;k (H))) s

2z
n(n—1)

COV(TLJ',TQ,]{;) = E[TLjTg’k] = O,

Cov(Taj, To k) = E[To ;T2 x] = %aj(f)ak(f)COV(Usj(E% U, (Y1)).

The proof of Lemma 7.1 is detailed in Section A of the supplementary material.
Applying Lemma 7.1, we derive that

2 m—1

> (Cov (U2, (), U2, 0)) )+ SVar(Ug, (11))

7,k=0

(25) Var(f,(f)) = nn—1)

2
We bound the Z] =0 (Cov (U;j(Yl), U;‘jk(Yl)>) . Let us notice that

m—1

> (Cov (U7,(1), UL, ( 1)) 2le ‘E[ (Yl)”2+2|\fu4.
7,k=0

J,k=0
Moreover, by definition of U given (10) and from (5), we have

2

m—1 2 1 m .%‘

y
2 3 [l ovuon]f - 5 \ [[ 28288 fro 4 sy
Ji,k=0

We decompose the integrals in 3 pieces:

m—1 m—
DS CARCAC) )
J,k=0 gok=

2
-5

H 1) D) g + Y) g /< pmdrdy

fE( fg (v)
2 = () pr(y) 2
= Z fY(x+y)1|x\>W1\y|<dedy =S
7r i () f*(y)
1m2ﬂ yf(+)]1 dedy| = 5
ﬂk (z) inU Y)L|z|,ly|>/pmATAY| = O3

=51+ 55 + 55.
We bound successively these above terms. Let

Uy (z) = fngx(+)y)90k(y)]l|y<\/mdy= T_f,{ ||<\/m780k>
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where (7,h)(y) = h(y — z). Through Bessel’s inequality (applied twice), it holds for the first term

m—1
Sy = 3 >

jk‘ 0
’fy xz +y ’2
H| Dy |2]1|x\ lyl<y/pmdrdy.

Let us remark that by the Cauchy-Schwarz inequality and Parseval’s theorem, we have {|f$(z)|dz <

\I’k

P S L NC PR
fs |-\<\/,m780j < 2 || < /pm T

|12 (@)

2w | fIN fe] < 27erHoona” Thus, with the substitution u = x + y and v = x, we obtain for S;:

MW (m w12
: w( )f 'f}fév;" o] Ju—v|<yprdudv < 2HfHoonsllA )(m)A(m).

S1 <

%
Let ®;(x) = %ﬂ\-b S <pk>. Using the Bessel and Cauchy-Schwarz inequalities, it yields for S

2
52:7

J
]1|~<\ram7%0j>
£

2 1
WZJ|<W|f€<>\

2 )2 |‘Pj<33)’2
< — d dr | d
<z 2 f e TG (J’fy crofis| R ’“") Y

< A1 SN A ) A(m),

2
< dy

(:L")

j|;v>\/;ﬁ

1
where we use in the last line {|f3(z + y)|?dz < (|f3(2)|dz < 27| f|Z]|f:]. Finally, by making the
1

substitution u = z + y and v = z, and as {|f3(2)|dz < 27| f|2| /-], we have from the Cauchy-Schwarz
inequality,

1 m—1 . 2

J,k=0

1 m—1 . 2
n(zoﬂ r)
j= £
< A7 f oo 2|2 A% (m).

Therefore, we get

92 m—1
n(n —1) Z

J,k=0

Co
n(n—1)

4)£13
* n(n—1)

&

—0 _A%(m
n(n—l)A( )

(Cov (U7, (1), U5,01))” < A(m) (A (m) + Afm)) +

(26)
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Injecting (26) in (25), we deduce

~ C C?
Var(0,,(f)) < Wil)A(m) <A(1)(m) + A(m)) + ng)AQ(m)
2
(27) m + %Var(U]’fm (Y7)).

Plugging (27) in (22) completes the proof of Part (i).

7.1.2. Proof of Part (ii). It is a consequence of Part (i). It is based on the fact that A(m) is bounded
uniformly in m. Indeed, we have from (4)-(7) and p > 2 that (see also Proposition 3.1 (ii) given in Sacko
(2020))

m—1 ) 2 m—1
A(m) = J |(’Oi (u)|2du < O m J (1+ u2)76“|"|66_5"2du.
j=0 \u|>\/;ﬁ ’fé‘ (u)| j=0 \u|>\/;ﬁ

Since S\U|>\/W(1 +u2)verll’ =€ gy < o0 if § < 2 or 6 = 2 and € < p, it follows that

A(m) S me "™ < 1.

This implies Part (ii) and concludes the proof.

7.2. Proof of Proposition 3.2. We only prove the ordinary smooth case. The super smooth is handled
in the same way using Part (ii) of Lemma 3.1. By Proposition 3.1 (ii) and (15), it yields

E[(Bn () — 00 <21f — fl* + WA

4|fy\oof |f*(=w)?
|

(m)A® (m)

+ o du+ —,
™

u<ypm | fEW)? n
where C' is an absolute constant. We evaluate the order of each term. For f e W} (L), we recall that

2
| f=Ffml* = (ijm a?(f)) < L?m~%. From Lemma 1 in Comte and Lacour (2011) p.586 and elementary

computation, it yields under (7):

s 83 s
(28) A(m) = m T e m? , AN (m) < e1(1 + pm)Tellem)?
As fe W5 (L) € W5(L') (see Section 2.1.3) and f; is ordinary smooth, it holds
w2
f / i w) du < clf (14 u)*|f* ()21 + )" du < L'y (]1527 +(1+ pm)*(577)118<7> ,
ul<ypm | [E(w) lul</pm

where ¢ is given in (7). Denote by € > 0 the maximum among constants that appear in the previous
upper bound of E[(0,,(f) — (f))?], obtained by computing the order of each term. Setting § = 0 in the
above bounds, we get f e W (L) and (7)

| 1
T T+ 2 )
n(n — 1)m n' =T

~

E[(n(f) — 0(F))2] < 2L%m + ¢ (

Hence the result for the ordinary smooth case.
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7.3. Proof of Theorem 3.3 and 3.4. The ideas is to replace m by mgy in Proposition 3.2. We
distinguish two cases: ordinary smooth and super smooth cases.

4
e The ordinary smooth case. Plugging the value mgy = [n%+4%+1] in the bound given in
Proposition 3.2 (i), it yields

~

___ 8 __ 8s+1 __ 8s
B[ (1) = 0] 5 (0T 40" 55T 40! ) S (07T v Y.

The result is proven for ordinary smooth noise.
log n
dp

e The super smooth case. Injecting mgp = %( )%] in Proposition 3.2 (ii), one obtains

~ _4s
E[(6m(f) = 60(f))?] < (log(n) 7).
This concludes the proof of Theorem 3.3 and 3.4.

7.4. Proof of Theorem 4.1. For the sake of simplicity, we set §m( f) = 0., By definition of ﬁ(m) given
in (17) and my, in (20) and Vm € M,,, we have the following decomposition:

(B, —0)* < 3B, — B nm)® + 3B nm — O)? + 3(6n — 0)?
< 3(A(n) + K1V (1)) + 3(A(m) + 51V (m)) + (0, — 0)?
< 6A(m) + 62V (m) + 30 — 0)°.

By taking the expectation, one obtains

(29) E| (B, — 0(/)?] < 6E[A(m)] + 6x2V (m) + BE[(n — 0())?].
We bound E[/T(m)] Decompose (ém/Am - §m/)2 as follows:
(30) O am — Om)? < B0 wm — B[O am))? + 3(E[O ] — E[O])? + 3(Orw — B[O ])2.

Consequently, it yields

Am) <3 sup {(@ronm— Bl an))? =GV (0)) 43 sup { (o =B = 2v)) |
+3 sup- {(E[ém,m] - E[e“m,]ﬁ} .

Observe that, if m’ < m, the last term is equal to zero. So, by definition of O given in (11), we have

sup {Elfw ] ~Ellw])*} = sup { ] -EBu)?} = s (Sl = ]2}

m/'eMy, m'eMy,m<m/ m/'eMy,m<m/

< sup AP = 1fl®?} = 1F = finl

m/eMy,m<m/
where the last inequality is obtained by using the Pythagorean theorem. It comes that:

~

Apm) <3 snp. {((ém, —E[D,])? - *z),lv<m’))+} +3 sup. {(@Mm — B[l am])? — FgV(mU)J

+3|Lf = finl "
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As
~ A~ K
sup {((em,m — E[y nm])? — %V(m’)) }
m'eMnp +

< max ( o (O~ B0 = V) {o s | (o~ Bl ?Wm'm})

m'eMy,m'=Zm m'eMy,m'<m

< sw (O~ B - EvOn))

m/'eMp,m/'<m

} t (O — E[G])"
.

we deduce that

~

E[A(m)] <3|f — fum|* + 6E [ sup {((ém, —E[0])? - "“V(m’))+} + 3Var ().

m/'eMp,m/'<m 6

By (27), (14), it holds
n 4 * 2 Co
Var(B) < OV (m) + - B[UF, (R)P]+ 2,

where C and Cy are constant appearing in Proposition 3.1 (ii) and Uy is given in (10). This implies

E[A(m)] <31 — ful* + 6C1V (m) + 2 E[UF, ()] + O

+6E {m%n {((ém, —E[d,])? — ?V(m’))+” .

Now, we need the following result which leads to control the last term of the above bound.

Proposition 7.1. Under the assumptions of Theorem 4.1, there exists a constant k1 = kg such that

B[ s { (0w B2 - Svinn) ] < S

m/'eMy, n
where CO) depends on f-. | flw and || fy ||

Mainly, the constant kg depends on | f|w, ||fy |, and the density f.. Proposition 7.1 and 3.1 (ii) and
(29) imply that

0, (0)
E| (@, () = 000))%] < 211f = fnl® + (652 + 9C1) V() + %E [UE, (v)[2] + 3600 +9Cy

n
where Uy is defined in (10).

Choosing C' = max (36, (6k2 + 3C1)) and C’ = 36C(?)+3C5 and then taking the infimum on M,, completes
the proof.

7.5. Proof of Proposition 7.1. Define a degenerate U-statistic of order 2 by:

n m—1
B Ul = s Y Hal YD), Halew) = Y (U3 (0) ) (U5, ()~ )
kAl=1 j=0

where a; = a;(f) = { fo; and Uy is defined in (10) and the empirical measure by

(32) P i= = MU - [ o1
=1
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From (24), we have:
O, — E[0] = Up(Him) + Pp(2fm)-

This implies that

| s { (s Gvion) ] <2x] g {(vh0) - vim) |
(33) +2F [ sup {(Pg(zfm) - EV(m)>+}] .

meMn
We bound successively the two terms in the right hand side of (33).

Bounding of E [SqueMn {(UfL(Hm) — %V(m))+}] First, we decompose the Uy, (H,,) given by (31) in
three processes by splitting the integrals. By Plancherel-Parseval’s formula, it holds

v~ 5 (b [t

(L wk )

o7 Slul<ym € fs*g;? )“_ (37 Sjul<ym © fé"gy() : ]
iuYy P\ 7Y iuYy P\ U
57 Sutzyom € Fry W~ Elaz fus om € e vl

1 S eiuYe 7 (—u) du — E[i S oiuYe ¢ (—u) du
% 2 Ju|</pm fE*SfL) 2m |u|<\/pT7L f*& u) .

—_

j=

[e=]

43 S " S~ Bl S @ Sy ]
Define
(34) vy, (z) = JIuKW B (p;;(_ufl;) du.
and
(35) Ve, (Ye) = % fmzwﬁ - EL) SOJ;;E (_1;;) -

Thanks to (34) and (35), we get

m—1 m—1
(Vi Yo) = 3 (v, (Vi) = Elvg, (Vo)) (v, (Y0) — Elvg, (Y1) + 3 (v, (Y2) — Efu,, (YO ¥y, (Vi)

Jj=0 7=0

5T (o (00) — Bl 0, () £ 3 W, ()0, ().
Jj=0 j=0
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Introduce:
(36) Un(In) = 7y D0 Tl )
k#t=1
m—1
Ln(z,y) = ) (v, () = Efvg, (Yi)]) (vg, () — Elvg, (Y2)]),
§=0
n m—1
(31) i) = s D13 (s, (Vi) — B, (V) Wy, (V).
n(n ) k#6=1 j=0
and
n m—1
(3%) nale) =y D 2 Ve, (V)T (1),
k#0=1 j=0
We rewrite
Un(Hm) = Un<Im) + Vn,l((pj) + Vn,Q(SDj)?
and

o o ) <o ey (- |

+ 3IE[ sup V,QLJ(QO]')] + 3E[ sup VTZL,Q(SOJ)} -
meMy, meM,,

We establish the following result.
Proposition 7.2. Let U,(I,) be defined in (36), vp1(pj) in (37) and vy 2(p;) in (38). Under the
assumptions of Theorem 4.1, the following hold.

(i) For k1 large enough, depending only on f., we have

E[ sup {(Ug([m) - mV(m))+}] < 4p0 Y A1)

meMp, 36 n

(it) There exist two constants Cy. 1 and Cy. o depending on f. such that

C 2.1 C ,2
E[ sup vz,moj)] < G, E[ sup u,%,g(soj)] < G2,
meMy, n meMy, n

The proof of Proposition 7.2 is postponed to Section A of the supplementary materiel.
Proposition 7.2 implies

3Cf5,1 + Cy. 2

n

» e | sup { (02001~ Bvm) }] <122
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Bounding of E [SumeMn {(Pg(Qfm) — %V(m))Jr}] To control the deviation of P, (2f,,), we apply

Bernstein inequality given in Section B.1 of the supplementary material. Let us first decompose the
process P, (t) defined in (32) as follows: for any t € S,,, we have using the Plancherel Parseval identity

Palt) = - DU (V) ~ ()

k=1
_ 1 S i t*( ) uYy _ 1 t*( u) uYy w
‘n§<%ﬁ&ﬁnﬁw . EL«hwmfw> d])
l 1 t*(_u) iqu w — i t*(_u) eiqu u
(40) - Zn: (0t (Vi) — Efor(Ya)]) + 1J t*(_u)(:ﬁ(u) — fy(u))du
n = 21 > yom fE(W)

with v is given (34) and f{i is defined in (9). Therefore, we write P,(t) = Py 1(t) + Py 2(t) where

0= 2 3% (00~ Efu(%))
k=1
and
Paalt) = - [ PO ) — fpw))d
T |u|>./pm fE(u) v T et

It follows that

B| s { (P2 - i) ] <2e| s {(R2i00 - Svin) }]

meMy,
(41) +2E[ sup Pl,(2fm)]-

meMy,

We establish the following result, which is proved in Section A of the supplementary material.

Proposition 7.3. Under the assumptions of Theorem 4.1, the following hold.

(i) There exists a constant Cy. 3 such that for k1 > max(384| fy |wp, 384 f|wop?/(a?c))) with p an
integer (p = 4 suits) and « €)0, 1(

c
E [mseljan {(P3,1(2fm) - /;V(m))+}] < %

(ii) There exists a constant Cy. 4 such that

E[ sup P? 2(2fm)] <
meMy, n

From Proposition 7.3 and (41), we obtain

E{ sup {(Pﬁ@fm) - EV(m)>+H < 2%

meMy,
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Finally, injecting this and (39) in (33), we derive that for x; large enough

E[ sup {((ém —E[0,.])? - ’EV(m))J] < @,

meMy, n

where C(©) = 24p(1 v 4| f|)? + 6(Cf.1 + Cp o+ Cp. 3 + Cy.4). Hence the announced result.

Acknowledgements: The author would like to thank F. Comte for helpful advices and kind proof-
readings.
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