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PROJECTION ESTIMATION OF A QUADRATIC FUNCTIONAL FROM INDIRECT

OBSERVATIONS

OUSMANE SACKO1

Abstract. We consider the convolution model: Y “ X ` ε, where X and ε are independent. We aim to
estimate

ş

R f
2
pxqdx, where f is the unknown density of the signal X from n observations of Y . We introduce

a novel projection estimator based on expanding f in the Hermite basis. Convergence rates for f within
the Sobolev-Hermite ball are provided for various error types. We also present a novel adaptive procedure
inspired by Goldenshluger and Lepski (2011) to select the appropriate space, and we demonstrate an oracle
inequality for the adaptive estimator. Numerical experiments are conducted to illustrate the effectiveness
of our methodology.

Key words: Deconvolution; Hermite basis; Model selection; Projection estimator; Quadratic functional.

1. Introduction

Bibliographical context. Consider the convolution model given by:

Yk “ Xk ` εk, k “ 1, . . . , n,(1)

and the following assumptions

pH1q The variables pXkqkě1 are independent and identically distributed (i.i.d.) with an unknown density
f , with respect to the Lebesgue measure,

pH2q The variables pεkqkě1 are i.i.d. with a known density fε, with respect to the Lebesgue measure,
pH3q The variablespXkqkě1 and pεkqkě1 are independent.

Our aim is to estimate the parameter

θpfq “

ż

R
f2pxqdx

from n copies Y1, . . . , Yn with common density fY “ f ‹ fε, where g ‹ hpxq “
ş

R gpx ´ yqhpyqdy denotes
the convolution product between g and h.

This problem is motivated by applications to adaptive goodness-of-fit tests.
When the variables of interest are available, that is εk “ 0 almost surely (a.s.) in Model (1), nonparametric
estimation of a quadratic functional has been studied extensively. For instance, Bickel and Ritov (1988)

investigate the estimation of
ş

Rpf
pdqq2pxqdx, where f pdq denotes the d-th derivative of f by using a kernel

method. They establish that the parametric rate can be reached if the regularity of f pdq is large enough.
However, their procedure is non adaptive. Efromovich and Low (1996) propose a projection estimator

of
ş

Rpf
pdqq2pxqdx on the Fourier basis. The authors provide convergence rates for f pdq belonging to the

Lipschitz class of order β with a logarithmic loss for small β values. But β is unknown. Laurent (2005)
develops an adaptive estimator of θpfq by considering the Haar basis. The author obtains the same
convergence rate as in Efromovich and Low (1996) when the density f belongs to a Besov class. Recently,
Goldenshluger and Lepski (2022a,b) establish minimax rates for the Lp-norm of a multivariate density
function with p ě 1 on the Nikolskii space. Furthermore, the problem of estimating a general functional
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can be found in Birgé and Massart (1995), Laurent (1996), Kerkyacharian and Picard (1996), Tribouley
(2000).

In privacy constraints framework, Butucea et al. (2023) investigate minimax rates and propose adaptive

estimators (up to a logarithmic factor) of θpfq “
ş1
0 f

2pxqdx based on the Haar wavelet basis. Obviously,
the support of f is assumed known and is equal to r0, 1s in the last case.

In convolution models (1), to our knowledge, Butucea (2007) is the first to consider the problem of
estimating of θpfq “

ş

R f
2pxqdx from Model (1). The author proposes a kernel estimator and proves

minimax results under certain assumptions on the density of noise fε. Loubes and Marteau (2014)
apply the estimation of θpfq “

ş

R f
2pxqdx in context of goodness-of-fit tests. Chesneau (2011) considers

the estimation of quadratic functional of f in the cases where the convolution of the signal f with some
known function is contaminated by Gaussian noise. Recently, Schluttenhofer and Johannes (2020) provide
minimax results for quadratic functional estimation problems in a circular version of Model (1).

It is worth noting the projection method and adaptation issues from Model (1) have not yet been ad-
dressed in the literature. In the present article, we delve into how the properties of the Hermite basis
contribute to resolving the estimation problem of θpfq “

ş

R f
2pxqdx from Model (1). The Hermite basis

is an orthonormal basis on R, which then leads to the construction of an unconstrained estimator on f ’s
support. The properties of this basis are described in Belomestny et al. (2019). For instance, the Hermite
basis has low complexity, requiring only a few coefficients for accurate estimation. We also address the
issue of adaptation, which is a also novel aspect of our work.

Contributions. Our approach involves introducing a new projection estimator constructed from the ex-
pansion of f in the Hermite basis. We provide convergence rates for f belonging to the Sobolev-Hermite
ball and for various error types. The rates of convergence coincide with the one obtained by Butucea
(2007). Moreover, if εk “ 0 a.s., we recover the classical rate of convergence as described in Laurent
(2005). An innovative adaptive procedure inspired by Goldenshluger and Lepski (2011)’s methods to
select the relevant dimension of the projection space is presented. We demonstrate that the adaptive
estimator satisfies an oracle inequality and achieves the optimal rate, with at least a logarithmic factor.
Finally, we illustrate our procedure through numerical experiments.

Organization of paper. In Section 2, we recall the definition of the Hermite basis, regularity spaces,
classical assumption on the noise and we describe our methodology. In Section 3, we discuss the rates
of convergence over Sobolev Hermite ball. Section 4 is devoted to the adaptive estimation. The results
of a simulation study are detailed in Section 5. Finally, all proofs are presented in Section 7, while
concentration tools are given in the Appendix.

2. Hermite basis and regularity spaces, methodology

2.1. Hermite basis and regularity spaces.

2.1.1. Notation. For a, b two real numbers, denote a_b “ maxpa, bq, a^b “ minpa, bq and a` “ maxp0, aq.
Let z be the complex number, we denote by z the conjugate of z. For g and h two functions in L2pRq, we

denote xg, hy “
ş`8

´8
gpxqhpxqdx the scalar product on L2pRq and }g} “

` ş`8

´8
|gpxq|2dx

˘1{2
the norm on

L2pRq. The Fourier transform of g is defined by g˚puq “
ş

eiuxgpxqdx. We recall the Plancherel-Parseval
equality xg, hy “ p2πq´1xg˚, h˚y. Let un and vn be two real sequences, denote un À vn if there exists a
positive constant c such that for all n P N, un ď cvn and un — vn if un À vn and vn À un.

We begin by recalling the definition of the Hermite basis and regularity space.
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2.1.2. The Hermite basis. Define the Hermite basis pϕjqjě0 from Hermite polynomials pHjqjě0 by:

ϕjpxq “ cjHjpxqe
´x2{2, Hjpxq “ p´1qjex

2 dj

dxj
pe´x

2
q, cj “ p2

jj!
?
πq´1{2, x P R, j ě 0.(2)

The family pHjqjě0 is orthogonal with respect to the weight function e´x
2
:
ş

RHjpxqHkpxqe
´x2dx “

2jj!
?
πδj,k, where δk,j is the Kronecker symbol (see Abramowitz and Stegun (1964), Chap. 22.2.14). It

follows that the sequence pϕjqjě0 is an orthonormal basis on R such that

}ϕj}8 “ sup
xPR
|ϕjpxq| ď φ0, with φ0 “ π´1{4,(3)

(see Abramowitz and Stegun (1964), chap. 22.14.17 and Indritz (1961)). From Askey and Wainger (1965),
it yields

(4) |ϕjpxq| ă C 18e
´ξx2 , |x| ě

a

2j ` 1, C 18 ą 0,

where ξ is a positive constant independent on x and 0 ă ξ ă 1
2 . The Fourier transform of pϕjqjě0 satisfies:

(5) ϕ˚j “
?

2πpiqjϕj .

2.1.3. Regularity spaces. We consider the regularity spaces associated to the Hermite basis called Sobolev-
Hermite spaces. In the sequel, it is used to the evaluate the bias of our estimator.

Definition 2.1 (Sobolev-Hermite ball). For s ą 0, define the Sobolev-Hermite ball of regularity s and
radius D by:

W s
HpDq “ tθ P L2pRq,

ÿ

kě0

ksa2
kpθq ď Du, akpθq “ xθ, ϕky “

ż

R
θpxqϕkpxqdx.(6)

When s ě 1 is an integer, Bongioanni and Torrea (2006) showed that θ PW s
HpDq if and only if θ is s-times

differentiable and the functions θ, . . . , θp`q, x ÞÑ xs´`θp`q belong to L2pRq for ` “ 0, . . . , s´ 1.
Recall also the definition of the classical Sobolev ball

Definition 2.2 (Usual Sobolev-ball). A Sobolev class with smoothness s ą 0 and radius D ą 0 is defined
by:

W spDq “ tθ P L2pRq,
ż

R
p1` u2qs|θ˚puq|2du ă Du.

For any s ą 0, we know in Bongioanni and Torrea (2006) that W s
HpDq Ă W spD1q. Moreover, if s ě 1 is

an integer the space W spDq is given by:

W spDq “ tθ P L2pRq, θ is s-times differentiable and
s
ÿ

`“1

}θp`q}2 ă 8u.

Therefore, if θ has a compact support, θ P W s
HpDq is equivalent to θ P W spD1q, where D and D1 are

related constants.

2.1.4. Assumption on the noise. The following assumptions on the noise are considered in convolution
context.

pH4q The Fourier transform of the noise density is such that f˚ε ‰ 0.

Assume also that: there exist c1 ě c11 ą 0, and γ ě 0, µ ě 0, δ ě 0 (with γ ą 0 if δ “ 0) such that

(7) c11p1` t
2q
γ
eµ|t|

δ
ď |f˚ε ptq|

´2 ď c1p1` t
2q
γ
eµ|t|

δ
, @t P R.

In the sequel, we consider two types of errors.
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‚ If δ “ 0, we say that ε and fε are ordinary smooth.
‚ When δ ą 0, they are called super smooth noises or functions.

Let us note that Condition (7) implies Assumption pH4q and is fulfilled by some classical densities.
Examples of ordinary smooth noises are: Gamma, Laplace and Gamma symmetric distributions. For
super smooth noises, we can cite Gaussian, Mixed Gaussian and Cauchy distributions.

Let us now present our methodology.

2.2. Methodology. Let pYkqkPt1,...,nu be n i.i.d. observations drawn from Model (1). Our purpose is

to estimate θpfq “
ş

R f
2pxqdx from indirect observations Y1, . . . , Yn. For any integer m ě 1, define

Sm “ Spantϕ0, . . . , ϕm´1u, the linear spaces generated by ϕ0, . . . , ϕm´1. Assuming that f P L2pRq, we
decompose f in an orthonormal basis (here in the Hermite basis) and we define its orthogonal projection
on Sm by:

fm “
m´1
ÿ

j“0

ajpfqϕj , ajpfq “ xf, ϕjy “

ż

R
fpxqϕkpxqdx.(8)

Set

θmpfq “ }fm}
2 “

m´1
ÿ

j“0

a2
j pfq.

We will estimate θmpfq. Under pH4q and using Plancherel-Parseval’s theorem, we have

ajpfq “
1

2π
x
f˚Y
f˚ε
, ϕ˚j y.(9)

Since f˚Y puq “
ş

R e
iuxfY pxqdx “ EreiuY1s, we estimate f˚Y puq by:

pf˚Y puq “
1

n

n
ÿ

k“1

eiuYk .(10)

Consider the random variables pU˚t pYkqqkPt1,...,nu defined as:

U˚t pYkq “
1

2π
x
ei¨Yk

f˚ε
, t˚y, Utpxq “

1

2π

t˚p´xq

f˚ε pxq
.(11)

Hence, injecting (10) into (9) and assuming that the ratio ϕj{f
˚
ε is integrable over R for j P t0, . . . ,m´1u,

we define the following estimator:

pθmpfq “
m´1
ÿ

j“0

{a2
j pfq, where {a2

j pfq “
1

npn´ 1q

n
ÿ

k‰`“1

U˚ϕj pYkqU
˚
ϕj pY`q.(12)

The Hermite basis ensures that the ratio ϕj{f
˚
ε is integrable in many cases, in particular, for any ordinary

smooth noise or super smooth noise with δ ď 2. Consequently, pθmpfq is well defined for several function
classes satisfying Condition (7). Furthermore, by the Plancherel-Parseval theorem, it is evident that

ErU˚ϕj pYkqs “ ajpfq. Hence, pθmpfq is an unbiased estimator of θmpfq “
řm´1
j“0 a2

j pfq. Moreover, for any

real function t, it hold that U˚t pxq “ U˚t pxq. Thus, our estimator pθmpfq is a real random variable, which
is crucial since we are estimating a real number.
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3. Rates of convergence

3.1. Risk bound for fixed m. Let m ě 1 an integer and ρ ą 0 an absolute constant. Define

∆pmq :“

ż

|u|ď
?
ρm

du

|f˚ε puq|
2
, Λpmq :“

m´1
ÿ

j“0

ż

|u|ą
?
ρm

|ϕjpuq|
2

|f˚ε puq|
2
du,(13)

and

∆p1qpmq :“ sup
|u|ď

?
ρm
|f˚ε puq|

´2.(14)

We can establish the following bound on the quadratic risk.

Proposition 3.1. Let pYkqkPt1,...,nu be n i.i.d. observations drawn from Model (1) and assumptions pH1q
to pH4q hold. Assume that f is bounded (}f}8 ă 8) and fε is square integrable. Consider the estimator
pθmpfq defined in (12).

(i) Then, for any ρ ą 0 and C0 “ 4}f}
1
2
8}fε} ă 8, it holds

Erppθmpfq ´ θpfqq2s ď}f ´ fm}4 `
C0

npn´ 1q
∆pmq

´

∆p1qpmq ` Λpmq
¯

`
C2

0

npn´ 1q
Λ2pmq

`
4}f}28
npn´ 1q

`
4

n
Er|U˚fmpY1q|

2s.

(ii) Moreover, if ρ ě 2 and fε satisfies (7) with 0 ď δ ă 2 or (δ “ 2, with µ ă ξ), where ξ is defined
in (4), then, we get

Erppθmpfq ´ θpfqq2s ď}f ´ fm}4 `
C1

npn´ 1q
∆pmq∆p1qpmq `

4

n
Er|U˚fmpY1q|

2s `
C2

n
,

where C1 and C2 are constants depending on C0, }fY }8, ρ and constants appearing in (7)-(4).

Let us make some comments on the bounds obtained in Proposition 3.1. The first term in the right-hand
side (}f ´ fm}

4) is the classical bias term: it is decreasing with m. The others are variance terms. It has
been established (refer to Proposition 3.1 in Sacko (2020)) that Λpmq becomes negligible under Condition
(7). More precisely, under the assumptions outlined in Proposition 3.1 (ii), we have:

(15) Λpmq “
m´1
ÿ

j“0

ż

|u|ą
?
ρm

|ϕjpuq|
2

|f˚ε puq|
2
du À e´

ξρm
2 .

Equation (15) is a key property of the Hermite basis and what makes it so relevant in the context of

inverse problems. Consequently, the main variance term is ∆pmq∆p1qpmq{npn ´ 1q ` Er|U˚fmpY1q|
2s{n.

The first is clearly increasing with m contrary of Er|U˚fmpY1q|
2s{n, which is a mixed of bias and variance

(see Lemma 3.1). It can be negligible for ordinary smooth noises with an adequate choice of m. The
examination of Er|U˚fmpY1q|

2s entails technical intricacies. Let us proceed to bound it in two distinct ways.
Consider the following assumption:

pH5q The density fY is bounded.

Observe that if (f and fε belong to L2pRq) or (f or fε is bounded), pH5q is automatically satisfied.

Lemma 3.1. Assume that pH5q holds, }f}8 ă 8 and set C 10 “ }f}8}fY }8 ă 8.
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(i) For any m ě 1, it holds

Er|U˚fmpY1q|
2s ď 2}fY }8

˜

∆p1qpmq}f ´ fm}
2 `

1

2π

ż

|u|ď
?
ρm

|f˚puq|2

|f˚ε puq|
2
du

¸

` C 10Λpmq.

(ii) Furthermore, it yields

Er|U˚fmpY1q|
2s ď C

1

0

´

∆p1qpmq ` Λpmq
¯

.

Lemma 3.1 (i) is the key to achieve the parametric rate: 1{n. It also indicates that the term Er|U˚fmpY1q|
2s{n

will influence the rate of convergence if fε is ordinary smooth. Moreover, using

2
}fY }8∆p1qpmq

n
}f ´ fm}

2 ď }f ´ fm}
4 `

}fY }
2
8p∆

p1qpmqq2

n2
,

it holds by Lemma 3.1 (i):

Er|U˚fmpY1q|
2s

n
ď }f ´ fm}

4 `
}fY }

2
8

npn´ 1q
∆pmq∆p1qpmq `

}fY }8
πn

ż

|u|ď
?
ρm

|f˚puq|2

|f˚ε puq|
2
du`

C 10
n

Λpmq.(16)

The first two terms are the same as in Proposition 3.1 (ii)) with two additional terms }fY }8πn

ş

|u|ď
?
ρm

|f˚puq|2

|f˚ε puq|2
du`

C10
n Λpmq. Under regularity conditions on f , the term 1

n

ş

|u|ď
?
ρm

|f˚puq|2

|f˚ε puq|2
du is negligible for an adequate

choice of m compared to ∆pmq∆p1qpmq{npn ´ 1q. The last term Λpmq{n has order 1{n for any value of
m P N and is therefore negligible. The second part is applicable in the super smooth case and show that
the rate depends on ∆p1qpmq{n.

Remark 1 (Rate of convergence from direct observations). When Xk are available, εk “ 0 a.s. and the

terms ∆p1qpmq and Λpmq are bounded uniformly in m. Thus, Er|U˚fmpY1q|
2s{n is a residual term compared

to the term C1∆pmq∆p1qpmq{npn ´ 1q À
?
m{npn ´ 1q. For f P W s

HpLq (see Definition 2.1), we recover

the rate n´8s{p4s`1q _ n´1 computed respectively over Lipschitz and Besov regularity spaces by Bickel and
Ritov (1988), Laurent (2005). Our results contain the case of direct observation.

3.2. Rate of convergence on Sobolev-Hermite ball. In order to derive rates of convergence, we
consider the Sobolev-Hermite regularity spaces, defined in Definition 2.1.

Proposition 3.2 (Order of bias and variance). Let pYkqkPt1,...,nu be i.i.d. observations drawn from Model
(1) and assumptions pH1q to pH5q hold. Assume that }f}8 ă 8, f belongs to W s

HpLq and fε is square

integrable. Consider pθmpfq be defined in (12).

(i) If ρ ě 2 and fε is ordinary smooth (that is fε satisfies (7) with δ “ 0), we have

Erppθmpfq ´ θpfqq2s ď 2Lm´2s ` C

ˆ

1

npn´ 1q
m2γ` 1

2 `
1

n
m´ps´γq1sďγ `

1

n

˙

,

where C is a constant depending on fε, L, }f}8 and }fY }8.
(ii) If ρ ě 2 and fε is super smooth (that is fε satisfies (7) with 0 ď δ ă 2 or (δ “ 2, with µ ă ξ)),

where ξ is defined in (4), it holds

Erppθmpfq ´ θpfqq2s ď Lm´2s ` C0

ˆ

1

npn´ 1q
m2γ` 1

2 e2µpmρq
δ
2
`

1

n
mγeµpmρq

δ
2
`

1

n

˙

,

where C0 is also a constant depending on fε, L, }f}8 and }fY }8.

Proposition 3.2 is a consequence of Proposition 3.1 and Lemma 3.1. By realizing a bias-variance compro-
mise with respect to m in the risk bound in Proposition 3.2, we obtain rates of convergences.
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Theorem 3.3 (Rate of convergence for ordinary smooth noise). Let pYkqkPt1,...,nu be i.i.d. observations
from drawn Model (1) and assumptions pH1q to pH5q hold. Suppose that }f}8 ă 8, f belongs to

W s
HpLq, and fε is square integrable and ordinary smooth. Consider pθmpfq be defined in (12). Take

mopt “ rn
4

4s`4γ`1 s. Then, we have

sup
fPW s

HpLq
Erppθmoptpfq ´ θpfqq2s À

$

&

%

n
´ 8s

4s`4γ`1 if s ă γ ` 1
4 ,

n´1 if s ě γ ` 1
4 .

(17)

We attain the classical rate in the deconvolution scenario when fε exhibits ordinary smoothness, see
Butucea (2007). This rate is known to be optimal under additional condition on the derivative of f˚ε and
for densities belonging to the classical Sobolev space. If γ “ 0, corresponding to direct observation case,
we achieve the rate as n´8s{p4s`1q _ n´1, see Bickel and Ritov (1988), Laurent (2005).

Theorem 3.4 (Rate of convergence for super smooth noise). Let pYkqkPt1,...,nu be n i.i.d. observations
drawn from Model (1) and assumptions pH1q to pH5q hold. Suppose that }f}8 ă 8 and f belongs to

W s
HpLq, and fε is square integrable and super smooth with 0 ă δ ď 2. Let pθmpfq be defined in (12). By

selecting mopt “ r
1
ρp

logn
4µ q

2
δ s, we obtain the following bound

sup
fPW s

HpLq
Erppθmoptpfq ´ θpfqq2s À plog nq´

4s
δ .

If fε is super smooth, we attain the optimal rate, computed over the classical Sobolev spaces plog nq´
4s
δ

(see Butucea (2007)). For the lower bound, Butucea (2007) considers test functions with compact support.

Thus, the rate plog nq´
4s
δ also represents the optimal rate over Sobolev-Hermite spaces, as these spaces

coincide with the ones mentioned above (see Section 2.1.3) for compactly supported functions.
Let us summarize the previous rates in Table 1. Let us note that the rate obtained for the classes of

δ “ 0 0 ă δ ď 2
ordinary smooth super smooth

rate n
´ 8s

4s`4γ`1 _ n´1 plog nq´
4s
δ

Table 1. Rate of convergence for Erppθmoptpfq ´ θpfqq2s if f PW s
HpDq.

mean mixture or variance mixtures of the Gaussian distribution in Sacko (2020) can be extended in our
context. Specifically, if f is a Gaussian density and fε is ordinary smooth, we deduce from Proposition
3.1 and Lemma 3.1 that:

sup
fPW s

HpLq
Erppθmoptpfq ´ θpfqq2s À

log2γ` 1
2 pnq

n2
_

logγ´spnq

n
1γąs,

where mopt — logpnq.
When f and fε are both exponentially decaying, the rate can be better than any power of logarithm. For
instance, if fpxq “ expp´x2{p2σ2qq and gpxq “ expp´x2{p2ζ2qq, selecting mopt “ pσ

2` ζ2q´1 logpnq yields

supfPW s
HpLq

Erppθmoptpfq ´ θpfqq2s À n
´ σ2

σ2`ζ2 .
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4. Adaptive estimation

In this section, we propose a selection procedure for the estimator pθmpfq. First, let us note that the
adaptive procedure from Model (1) has not been explored in the existing literature. We introduce a novel
approach inspired by the methods presented in Goldenshluger and Lepski (2011). The method is based

on the comparison of estimators of pθmpfq. From now on, let us assume that the constant ρ ě 2 given in
(13) is fixed. Consider the following collections of model:

Mn :“

"

1 ď m ď t
?
nu, ∆pmq∆p1qpmq ď

npn´ 1q

log2pnq
, ∆p1qpmq ď

n

logpnq

*

,

where ∆pmq and ∆p1qpmq are respectively given in (13)-(14). We aim to identify the m P Mn that

minimizes the bias-variance decomposition of pθmpfq given in Proposition 3.1(ii). The bias }f ´ fm}
4 is

estimated by:

pApmq “ sup
m1PMn

"

´

ppθm1pfq ´ pθm^m1pfqq
2 ´ κ1V pm

1q

¯

`

*

,(18)

where V pmq “ V1pmq ` V2pmq is the order of variance term up to logpnq factor:

V1pmq “
´

∆pmq∆p1qpmq
¯ log2pnq

npn´ 1q
,(19)

and

V2pmq “

$

’

&

’

%

´

ş

|u|ď
?
ρm

|fmpuq|2

|f˚ε puq|2
du

¯

logpnq
n if fε is ordinary smooth,

∆p1qpmq logpnq
n if fε is super smooth.

(20)

Here, κ1 is a numerical constant to be calibrated.
We shall prove that (see Proof of Theorem 4.1 provided below) for any given noise.

Er pApmqs ď 3}f ´ fm}
2 `Varppθmpfqq `O

ˆ

1

n

˙

.

The presence of Varppθmpfqq is related to the term V2pmq, which is not necessarily increasing with m in the
ordinary smooth case and depends on |fmpuq|

2. Note that |fmpuq|
2 will be replaced later by an estimator

(see Section 5). For super-smooth noises, we take an upper bound on
ş

?
ρm

|fmpuq|2

|f˚ε puq|2
du:

ż

?
ρm

|fmpuq|
2

|f˚ε puq|
2
du ď ∆p1qpmq}fm}

2,

and this is why V2pmq “ ∆p1qpmq logpnq{n in this case. Moreover, in this case, we have

Er pApmqs ď 3}f ´ fm}
2 `O

ˆ

1

n

˙

.

Select:

pmn “ arg min
mPMn

!

pApmq ` κ2V pmq
)

,(21)

where κ2 ě κ1 ą 0 is also a numerical constant which must be calibrated.
We can prove the following oracle result.
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Theorem 4.1 (Oracle inequality). Let pYkqkPt1,...,nu be n i.i.d. observations drawn from Model (1) and
assumptions pH1q to pH5q hold. Suppose that }f}8 ă 8, fε is square integrable and Condition (7) is

fulfilled. Let pθ
pmnpfq be defined in (12) with pmn selected in (21). There exists a constant κ0 such that for

any κ1 ě κ0:

Erppθ
pmnpfq ´ θpfqq

2s ď C inf
mPMn

˜

}f ´ fm}
4 ` V pmq `

Er|U˚fmpY1q|
2s

n

¸

`
C 1

n
,

where C “ max p36, p6κ2 ` 3C1qq with C1 is given Proposition 3.1 and C 1 is a numerical constant depend-
ing on fε, }f}8 and }fY }8.

The term Er|U˚fmpY1q|
2s{n has the same order as }f ´ fm}

4 ` V pmq, see (16) under adequate regularity
and choice of m. The bound given in Theorem 4.1 is non asymptotic and shows that the estimator
pθ
pmnpfq realizes automatically a bias-variance trade-off up to logpnq terms in ordinary smooth cases.

Unsurprisingly, we recover the optimal rate for super smooth noises. Indeed, it is known that a logarithm
factor in the variance does not affect the rate of convergence. Combining Proposition 3.1 and Lemma 3.1,
we get

sup
fPW s

HpLq
Erppθ

pmnpfq ´ θpfqq
2s À

$

’

’

&

’

’

%

´

n
logpnq

¯´ 8s
4s`4γ`1

_

´

n
logpnq

¯´1
if fε is ordinary smooth,

plog nq´
4s
δ if fε is super smooth.

Note that the logarithm factor is due to Goldenshluger and Lepski (2011)’s procedure. In addition, when

Xk are available (γ “ 0), we recover the rate n´8s{p4s`1q_n´1 up to logarithm factor contrary to Laurent
(2005)’s where the rate n´1 can be achieved for n large enough.

The value κ0 is not explicit here and depends on the unknown quantities such as }f}8, }fY }. This is
due to the control of our U-statistic of order 2 and to the quantity Λpmq, which is bounded by a non
explicit constant, see (15). In practice, we set κ2 “ 2κ1 and calibrate κ1 through preliminary simulation
experiments.

5. Numerical study

5.1. Implementation. In this section, we illustrate the performance of our methodology by implement-

ing the estimator pθmpfq defined in (12) for both direct and inverse problem scenarios. Let us consider the
following distributions for the signal

(i) N p0, 1q, θpfq “ 1
2
?
π
« 0.2820948,

(ii) Gamma Gpα, βq, with α “ 1 and β “ 4, θpfq “
´

βα

Γpαq

¯2
Γp2α´1q
p2βq2α´1 « 0.15625,

(ii) Laplace Lp
?

2q, θpfq “ 1
2
?

2
« 0.3535534,

(iv) Cauchy standard, θpfq “ 1
2π “« 0.1591549.

Set ρ “ 4. For the noise, we distinguish three cases: direct case (that is ε “ 0 a.s.), ordinary smooth and
super-smooth cases.

‚ The direct and ordinary smooth cases. We choose the following estimator of the variance
V pmq:

rV pmq “ ∆pmq∆p1qpmq
log2pnq

npn´ 1q
` rV2pmq, ρ “ 3,
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where rV2pmq estimates V2pmq given in (19). We tested two estimators of rV2pmq. They are all
based on the estimation of |fmpuq|

2. The first is an unbiased estimator of |fmpuq|
2:

(22) {|fmpuq|2 “
m´1
ÿ

j,j1“0

zajaj1ϕjpuqϕj1puq, zajaj1 “
1

npn´ 1q

n
ÿ

`‰k“1

U˚ϕj pYkqU
˚
ϕj1
pY`q,

where Ut is given (11). The second estimator has a bias but is much faster to compute. It is
obtained by replacing fmpuq by the Hermite density estimator studied in Sacko (2020). It is
defined as:

pfmpuq “
m´1
ÿ

j“0

pajϕjpuq, paj “
1

n

n
ÿ

i“1

U˚ϕj pYiq.

Both estimators exhibit equivalent performances. Then, we only implement the following estimator
of V2pmq for risk evaluations:

rV2pmq “

˜

ż

|u|ď
?
ρm

| pfmpuq|
2

|f˚ε puq|
2
du

¸

logpnq

n
.

This estimator is obtained by substituting |fmpuq|
2 with | pfmpuq|

2 in (20). Set ε “ 0 a.s. in the
direct case and consider the Laplace noise in the ordinary smooth case with a density given by:

fεpxq “
λ

2
e´λ|x|; f˚ε pxq “

λ2

λ2 ` x2
; λ “ 2

?
5.

For the last case, ∆pmq and ∆p1qpmq are respectively given by:

∆pmq “

ż

|u|ď
?
ρm
p1`

u2

λ2
q2du “

ˆ

?
ρm`

2

3λ2
p
?
ρmq3 `

p
?
ρmq5

5λ4

˙

and

∆p1qpmq “
´

1`
ρm

λ2

¯2
.

‚ The super smooth case. Take a Gaussian noise with density:

fεpxq “
1

?
2πσ

e´x
2{2σ2

ε , f˚ε pxq “ e´σ
2
εx

2{2, σ2
ε “ 1{10.

The variance is defined in (19) with

∆pmq “ 2
?
ρm

ˆ
ż 1

0
eu

2σ2
ερmdu

˙

, ∆p1qpmq “ eσ
2
ερm,

where
ş1
0 e

u2σ2
ερmdu is computed by a Riemann sum discretized in 100 points.

The adaptive method is described in three steps:

‚ For any m P Mn, compute pApmq “ supm1PMn

"

´

ppθm1pfq ´ pθm^m1pfqq
2 ´ κ1Vapm1q

¯

`

*

, where

pθmpfq is defined in (12) and Vapmq corresponds to the variance term which is specified above.

‚ Choose pmn via pmn “ arg minmPMn

!

pApmq ` κ2Vapmq
)

,

‚ Compute pθ
pmnpfq “

ř

pmn´1
j“0

{a2
j pfq, with {a2

j pfq given by (12).
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Let us mention that the coefficient p{a2
j pfqq0ďjďm´1 is computed by Riemann’s approximation in the inverse

problem case.
Calibration of κ1 and κ2. Following the idea developed by Lacour and Massart (2016), we set κ2 “ 2κ1

and κ1 “ 10´3 in the direct case, κ1 “ 3 ˆ 10´3 in the Laplace noise case, and κ1 “ 8 ˆ 10´4 in the
Gaussian noise case.

5.2. Numerical results. In Table 2, we present simulation results. The first line corresponds to the
values of the MSE with standard deviation in parentheses, multiplied by 1000, computed over 200 inde-
pendent simulations. In the second line, we provide the average of pmn selected by the method, and in

the last line, we give the average of pθ
pmn for each density. The true unknown parameter θpfq, represented

in bold is provided in the first column of Table 2. We observe that increasing the value of n leads to a
smaller MSE, thereby improving the estimation. In addition, we note that the MSE obtained in the case
of ε “ 0 is smaller than that in the indirect cases. In particular, the MSE obtained in the Laplace noise
case is smaller than in the Gaussian noise case. This observation is consistent with theoretical results.

n “ 100 n “ 500

θpfq
Noise

ε “ 0 Lap. Gauss. ε “ 0 Lap. Gauss.

0.489p0.655q 1.411p2.185q 2.378p6.365q 0.092p0.123q 0.529p0.496q 0.616p0.512q

6.455 3.050 4.730 2.350 1.440 1.615
0.282... 0.283 0.306 0.308 0.282 0.302 0.301

0.259p0.461q 0.751p0.915q 1.237p1.172q 0.037p0.053q 0.061p0.078q 0.225pp0.237q

21.425 9.635 8.49 26.090 13.125 10.975
0.156... 0.154 0.141 0.130 0.154 0.156 0.145

1.700p2.343q 3.322p6.592q 4.009p9.443q 0.314p0.475q 0.633p0.833q 0.780p1.189q

9.005 4.095 5.085 12.295 5.260 5.54
0.354... 0.351 0.375 0.367 0.351 0.366 0.368

0.594p0.814q 0.939p1.459q 0.993p1.833q 0.100p0.118q 0.351p0.437q 0.309p0.383q

4.995 2.390 3.755 6.605 1.440 3.715
0.159... 0.160 0.174 0.175 0.158 0.173 0.173

Table 2. First line: empirical MSE 1000 ˆ Erppθ
pmnpfq ´ θpfqq2s (with 1000ˆsd); second

line: mean of pmn; third line: mean of pθ
pmnpfq computed over 200 independent simulations.

6. Concluding remarks

In this paper, we propose a new estimation procedure of a quadratic functional of a density based on
the expansion of f into Hermite basis from Model (1). We demonstrate that our estimator achieves
the optimal rate obtained in Butucea (2007). An adaptive procedure to select the relevant dimension
is proposed, and we establish non asymptotic oracle inequality for the resulting estimator. Numerical
experiments illustrate the convergence and good performance of our methodology.

To conclude, we outline some perspectives for future work:

‚ In this study, we consider that pXiqiP1,...,n are i.i.d. One possible extension is to investigate the case
of dependent Xi. For instance, we can replace Assumption pH1q by: pXiqiě1 is strictly stationary
and β-mixing.

‚ We can also account for uncertainty in the noise distribution, i.e., study the case where the density
fε is unknown but estimated through an additional sample.
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‚ One of the motivations for this work is the issue of goodness-of-fit testing. We can investigate
whether our results extend to this framework.

These points will be studied in future work.

7. Proofs

7.1. Proof of Proposition 3.1.

7.1.1. Proof of Part (i). We have

Erppθmpfq ´ θpfqq2s “ }f ´ fm}4 `Varppθmpfqq.(23)

Let us bound Varppθmpfqq. By definition of pθmpfq given in (12), it holds

Varppθmpfqq “
m´1
ÿ

j,k“0

Covp{a2
j pfq,

{a2
kpfqq “

m´1
ÿ

j,k“0

E
”´

{a2
j pfq ´ Er{a2

j pfqs
¯´

{a2
kpfq ´ Er{a2

kpfqs
¯ ı

.(24)

The following decomposition holds:

´

{a2
j pfq ´ Er{a2

j pfqs
¯

“
1

npn´ 1q

n
ÿ

`‰`1“1

1

4π2
x
ei¨Y`

f˚ε
, ϕ˚j yx

ei¨Y`1

f˚ε
, ϕ˚j y ´ a

2
j pfq

“
1

npn´ 1q

n
ÿ

`‰`1“1

´

U˚ϕj pY`q ´ ErU˚ϕj pY`qs
¯´

U˚ϕj pY`1q ´ ErU˚ϕj pY`1qs
¯

`
2

n
ajpfq

n
ÿ

`“1

´

U˚ϕj pY`q ´ ErU˚ϕj pY`qs
¯

“ T1,j ` T2,j .(25)

It follows that

Varppθmpfqq “
m´1
ÿ

j,k“0

CovpT1,j , T1,kq ` 2
m´1
ÿ

j,k“0

CovpT1,j , T2,kq `

m´1
ÿ

j,k“0

CovpT2,j , T2,kq.

We state the following Lemma.

Lemma 7.1. Let j and k be two positive integers. Let Ut be defined in (11). It yields

CovpT1,j , T1,kq “ ErT1,jT1,ks “
2

npn´ 1q

´

Cov
´

U˚ϕj pY1q, U
˚
ϕk
pY1q

¯¯2
,

CovpT1,j , T2,kq “ ErT1,jT2,ks “ 0,

CovpT2,j , T2,kq “ ErT2,jT2,ks “
4

n
ajpfqakpfqCovpU˚ϕj pY1q, U

˚
ϕk
pY1qq.

Applying Lemma 7.1, we derive that

Varppθmpfqq “
2

npn´ 1q

m´1
ÿ

j,k“0

´

Cov
´

U˚ϕj pY1q, U
˚
ϕk
pY1q

¯¯2
`

4

n
VarpU˚fmpY1qq.(26)
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We bound the
řm´1
j,k“0

´

Cov
´

U˚ϕj pY1q, U
˚
ϕk
pY1q

¯¯2
. Let us write

m´1
ÿ

j,k“0

´

Cov
´

U˚ϕj pY1q, U
˚
ϕk
pY1q

¯¯2
ď 2

m´1
ÿ

j,k“0

ˇ

ˇ

ˇ
E
”

U˚ϕj pY1qU
˚
ϕk
pY1q

ıˇ

ˇ

ˇ

2
` 2}f}4.

Moreover, by definition of U˚t given (11) and from (5), we have

2
m´1
ÿ

j,k“0

ˇ

ˇ

ˇ
E
”

U˚ϕj pY1qU
˚
ϕk
pY1q

ıˇ

ˇ

ˇ

2
“

1

π2

m´1
ÿ

j,k“0

ˇ

ˇ

ˇ

ˇ

ĳ

ϕjpxq

f˚ε pxq

ϕkpyq

f˚ε pyq
f˚Y px` yqdxdy

ˇ

ˇ

ˇ

ˇ

2

.

We decompose the integrals in 3 pieces:

2
m´1
ÿ

j,k“0

ˇ

ˇ

ˇ
E
”

U˚ϕj pY1qU
˚
ϕk
pY1q

ıˇ

ˇ

ˇ

2
“

1

π

m´1
ÿ

j,k“0

ˇ

ˇ

ˇ

ˇ

ĳ

ϕjpxq

f˚ε pxq

ϕkpyq

f˚ε pyq
f˚Y px` yq1|x|,|y|ď

?
ρmdxdy

ˇ

ˇ

ˇ

ˇ

2

“ S1

`
2

π

m´1
ÿ

j,k“0

ˇ

ˇ

ˇ

ˇ

ĳ

ϕjpxq

f˚ε pxq

ϕkpyq

f˚ε pyq
f˚Y px` yq1|x|ą

?
ρm1|y|ď

?
ρmdxdy

ˇ

ˇ

ˇ

ˇ

2

“ S2

`
1

π

m´1
ÿ

j,k“0

ˇ

ˇ

ˇ

ˇ

ĳ

ϕjpxq

f˚ε pxq

ϕkpyq

f˚ε pyq
f˚Y px` yq1|x|,|y|ą

?
ρmdxdy

ˇ

ˇ

ˇ

ˇ

2

“ S3

“ S1 ` S2 ` S3.

We bound successively these above terms. Let

Ψkpxq “

ż

f˚Y px` yq

f˚ε pyq
ϕkpyq1|y|ď?ρmdy “

B

τ´xf
˚
Y

f˚ε
1|¨|ď

?
ρm, ϕk

F

,

where pτxhqpyq “ hpy ´ xq. Through Bessel’s inequality (applied twice), it holds for the first term

S1 “
1

π

m´1
ÿ

j,k“0

ˇ

ˇ

ˇ

ˇ

B

Ψk

f˚ε
1|¨|ď

?
ρm, ϕj

Fˇ

ˇ

ˇ

ˇ

2

ď

m´1
ÿ

k“0

ż

|Ψkpxq|
2

|f˚ε pxq|
2
1|x|ď

?
ρmdx

ď
1

π

ĳ

|f˚Y px` yq|
2

|f˚ε pxq|
2|f˚ε pyq|

2
1|x|,|y|ď

?
ρmdxdy.

Let us remark that by the Cauchy-Schwarz inequality and Parseval’s theorem, we have
ş

|f˚Y pzq|dz ď

2π}f}}fε} ď 2π}f}
1
2
8}fε}. Thus, with the substitution u “ x` y and v “ x, we obtain for S1:

S1 ď
∆p1qpmq

π

ĳ

|f˚Y puq|
2

|f˚ε pvq|
2
1|v|,|u´v|ď

?
ρmdudv ď 2}f}

1
2
8}fε}∆

p1qpmq∆pmq.



14 O. SACKO

Let Φjpxq “
A

τ´xf
˚
Y

f˚ε
1|¨|ą

?
ρm, ϕk

E

. Using the Bessel and Cauchy-Schwarz inequalities, it yields for S2

S2 “
2

π

m´1
ÿ

j,k“0

ˇ

ˇ

ˇ

ˇ

B

Φj

f˚ε
1|¨|ď

?
ρm, ϕj

Fˇ

ˇ

ˇ

ˇ

2

ď
2

π

m´1
ÿ

j“0

ż

|y|ď
?
ρm

1

|f˚ε pyq|
2

ˇ

ˇ

ˇ

ˇ

ˇ

ż

|x|ą
?
ρm
f˚Y px` yq

ϕjpxq

f˚ε pxq
dx

ˇ

ˇ

ˇ

ˇ

ˇ

2

dy

ď
2

π

m´1
ÿ

j“0

ż

|y|ď
?
ρm

1

|f˚ε pyq|
2

˜

ż

|f˚Y px` yq|
2dx

ż

|x|ą
?
ρm

|ϕjpxq|
2

|f˚ε pxq|
2
dx

¸

dy

ď 4}f}
1
2
8}fε}∆pmqΛpmq,

where we use in the last line
ş

|f˚Y px ` yq|2dx ď
ş

|f˚Y pzq|dz ď 2π}f}
1
2
8}fε}. Finally, by making the

substitution u “ x ` y and v “ x, and as
ş

|f˚Y pzq|dz ď 2π}f}
1
2
8}fε}, we have from the Cauchy-Schwarz

inequality,

S3 ď
1

π

m´1
ÿ

j,k“0

ˆ
ĳ

|f˚Y px` yq|
|ϕjpxq|

2

|f˚ε pxq|
2
1|x|,|y|ą

?
ρmdxdy

˙

ˆ

ˆ
ĳ

|f˚Y px` yq|
|ϕjpyq|

2

|f˚ε pyq|
2
1|x|,|y|ą

?
ρmdxdy

˙

“
1

π

˜

m´1
ÿ

j“0

ĳ

|f˚Y px` yq|
|ϕjpxq|

2

|f˚ε pxq|
2
dxdy1|x|,|y|ą?ρm

¸2

ď 4π}f}8}fε}
2Λ2pmq.

Therefore, we get

2

npn´ 1q

m´1
ÿ

j,k“0

´

Cov
´

U˚ϕj pY1q, U
˚
ϕk
pY1q

¯¯2
ď

C0

npn´ 1q
∆pmq

´

∆p1qpmq ` Λpmq
¯

`
C2

0

npn´ 1q
Λ2pmq

`
4}f}28
npn´ 1q

.(27)

Injecting (27) in (26), we deduce

Varppθmpfqq ď
C0

npn´ 1q
∆pmq

´

∆p1qpmq ` Λpmq
¯

`
C2

0

npn´ 1q
Λ2pmq

`
4}f}28
npn´ 1q

`
4

n
VarpU˚fmpY1qq.(28)

Plugging (28) in (23) completes the proof of Part (i).

7.1.2. Proof of Part (ii). It is a consequence of Part (i). It is based on the fact that Λpmq is bounded
uniformly in m. Indeed, we have from (4)-(7) and ρ ě 2 that (see also Proposition 3.1 (ii) given in Sacko
(2020))

Λpmq “
m´1
ÿ

j“0

ż

|u|ą
?
ρm

|ϕjpuq|
2

|f˚ε puq|
2
du ď C2e´ξρm

m´1
ÿ

j“0

ż

|u|ą
?
ρm
p1` u2qγeµ|u|

δ
e´ξu

2
du.
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Since
ş

|u|ą
?
ρmp1` u

2qγeµ|u|
δ
e´ξu

2
du ă 8 if δ ă 2 or δ “ 2 and ξ ď µ, it follows that

Λpmq À me´ξm À 1.

This implies Part (ii) and concludes the proof.

7.1.3. Proof of Lemma 7.1. Let rY
pjq
k be a real random variable defined as:

rY
pjq
k “ U˚ϕj pYkq ´ ErU˚ϕj pYkqs,

where Ut is defined in (11). The variables prY
pjq
k qkPt1,...,nu are i.i.d with ErrY pjqk s “ 0 and ErprY pjqk q2s “

VarprY
pjq
k q. By definition of T1,j given (25), we have

CovpT1,j , T1,j1q “ ErT1,jT1,j1s “
1

n2pn´ 1q2

n
ÿ

k‰`“1,k1‰l1“1

E
”

rY
pjq
k

rY
pjq
`

rY
pj1q
k1

rY
pj1q
`1

ı

“
1

n2pn´ 1q2
p

n
ÿ

k‰`“1,k1‰l1“1,k“k1,k‰`1

ErrY pjqk
rY
pjq
`

rY
pj1q
k1

rY
pj1q
`1 s `

n
ÿ

k‰`“1,k1‰l1“1,k‰k1,k“`1

ErrY pjqk
rY
pjq
`

rY
pj1q
k1

rY
pj1q
`1 sq

“
2

n2pn´ 1q2

n
ÿ

k‰`“1,k1‰l1“1,k‰`1

ErrY pjqk
rY
pjq
`

rY
pj1q
k

rY
pj1q
`1 s

“
2

n2pn´ 1q2

n
ÿ

k‰`“1,k1‰l1“1,k‰`1,`“`1

E
”

rY
pjq
k

rY
pjq
`

rY
pj1q
k

rY
pj1q
`1

ı

“
2

n2pn´ 1q2

n
ÿ

k‰`“1

ErrY pjqk
rY
pj1q
k sE

”

rY
pjq
`

rY
pj1q
`

ı

“
2

n2pn´ 1q2

n
ÿ

k‰`“1

ErrY pjq1
rY
pj1q

1 sErrY pjq1
rY
pj1q

1 s

“
2

npn´ 1q

´

E
”´

U˚ϕj pY1q ´ ErU˚ϕj pY1qs

¯´

U˚ϕj1 pY1q ´ ErU˚ϕj1 pY1qs

¯ı¯2

“
2

npn´ 1q

´

CovpU˚ϕj pY1q, U
˚
ϕj1
pY1qq

¯2

By remembering that ErrY pjqk s “ ajpfq by construction, we get

ErT1,jT2,j1s “
2

n2pn´ 1q
aj1pfq

n
ÿ

k‰`“1,l1“1

E
”

rY
pjq
k

rY
pjq
`

rY
pj1q
`1

ı

“
2

n2pn´ 1q
aj1pfq

¨

˝

n
ÿ

k‰`“1,`1“1,`“`1

E
”

rY
pjq
k

rY
pjq
`

rY
pj1q
`1

ı

`

n
ÿ

k‰`“1,`1“1,`‰`1

E
”

rY
pjq
k

rY
pjq
`

rY
pj1q
`1

ı

˛

‚“ 0.

Besides, we have

ErT2,jT2,j1s “
4

n2
ajpfqaj1pfq

n
ÿ

k“1,`“1

E
”

rY
pjq
k

rY
pj1q
`

ı

“
4

n2
ajpfqaj1pfq

n
ÿ

k“1

E
”

rY
pjq
k

rY
pj1q
k

ı

“
4

n
ajpfqaj1pfqE

”´

U˚ϕj pY1q ´ ErU˚ϕj pY1qs

¯´

U˚ϕj1 pY1q ´ ErU˚ϕj1 pY1qs

¯ı

“
4

n
ajpfqaj1pfqCovpU˚ϕj pY1q, U

˚
ϕj1
pY1qq.

Lemma 7.1 is therefore proved.
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7.2. Proof of Lemma 3.1. Let us begin by Part (ii). By Plancherel-Parseval Equality, we have

Er|U˚fmpY1q|
2s “

ż

|U˚fmpzq|
2fY pzqdy ď }fY }8

1

2π

ż

|f˚mp´uq|
2

|f˚ε puq|
2
du

“ }fY }8

˜

1

2π

ż

|u|ď
?
ρm

|f˚mp´uq|
2

|f˚ε puq|
2
du`

1

2π

ż

|u|ą
?
ρm

|f˚mp´uq|
2

|f˚ε puq|
2
du

¸

.(29)

Using the Cauchy Schwarz inequality on the sum, (5) and as }f}2 ď }f}8, we have for the second integral

ż

|u|ą
?
ρm

|f˚mp´uq|
2

|f˚ε puq|
2
du ď 2π

m´1
ÿ

j“0

a2
j pfq

m´1
ÿ

j“0

ż

|u|ą
?
ρm

|ϕjpuq|
2

|f˚ε puq|
2
du ď 2π}f}8Λpmq.(30)

Parseval’s equality and }f}2 ď }f}8 imply that
ż

|u|ď
?
ρm

|f˚mp´uq|
2

|f˚ε puq|
2
du ď 2π∆p1qpmq}f}8.

It follows that

Er|U˚fmpY1q|
2s ď }f}8}fY }8

´

∆p1qpmq ` Λpmq
¯

“ C 10

´

∆p1qpmq ` Λpmq
¯

,(31)

where C 10 “ }f}8}fY }8. This gives Part (ii).
Now, we demonstrate Part (i). The difference with Part (i) is related to the study of the first integral
given in (29). We have

ż

|u|ď
?
ρm

|f˚mp´uq|
2

|f˚ε puq|
2
du ď 2

ż

|u|ď
?
ρm

|pfm ´ fq
˚p´uq|2

|f˚ε puq|
2

du` 2

ż

|u|ď
?
ρm

|f˚p´uq|2

|f˚ε puq|
2
du

ď 4π∆p1qpmq}f ´ fm}
2 ` 2

ż

|u|ď
?
ρm

|f˚p´uq|2

|f˚ε puq|
2
du.

Injecting this and (30) in (29), we get Part (i) and then the announced result.

7.3. Proof of Proposition 3.2. We only prove the ordinary smooth case. The super smooth is handled
in the same way using Part (ii) of Lemma 3.1. By Proposition 3.1 (ii) and (16), it yields

Erppθmpfq ´ θpfqq2s ď2}f ´ fm}
4 `

C1 ` 16}fY }
2
8

npn´ 1q
∆pmq∆p1qpmq

`
4}fY }8
πn

ż

|u|ď
?
ρm

|f˚p´uq|2

|f˚ε puq|
2
du`

C

n
,

where C is an absolute constant. We evaluate the order of each term. For f P W s
HpLq, we recall that

}f´fm}
4 “

´

ř

jěm a
2
j pfq

¯2
ď L2m´2s. From Lemma 1 in Comte and Lacour (2011) p.586 and elementary

computation, it yields under (7):

∆pmq — mγ` 1´δ
2 eµρ

δ
2m

δ
2 , ∆p1qpmq ď c1p1` ρmq

γeµpρmq
δ
2 .(32)

As f PW s
HpLq ĂW spL1q (see Section 2.1.3) and fε is ordinary smooth, it holds

ż

|u|ď
?
ρm

ˇ

ˇ

ˇ

ˇ

f˚p´uq

f˚ε puq

ˇ

ˇ

ˇ

ˇ

2

du ď c1

ż

|u|ď
?
ρm
p1` u2qs|f˚p´uq|2p1` u2q´ps´γqdu ď L1c1

´

1sěγ ` p1` ρmq
´ps´γq1săγ

¯

,
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where c1 is given in (7). Denote by C ą 0 the maximum among constants that appear in the previous

upper bound of Erppθmpfq ´ θpfqq2s, obtained by computing the order of each term. Setting δ “ 0 in the
above bounds, we get f PW s

HpLq and (7)

Erppθmpfq ´ θpfqq2s ď 2L2m´2s ` C

ˆ

1

npn´ 1q
m2γ` 1

2 `
1

n
m´ps´γq1săγ `

1

n

˙

.

Hence the result for the ordinary smooth case.

7.4. Proof of Theorem 3.3 and 3.4. The ideas is to replace m by mopt in Proposition 3.2. We
distinguish two cases: ordinary smooth and super smooth cases.

‚ The ordinary smooth case. Plugging the value mopt “ rn
4

4s`4γ`1 s in the bound given in
Proposition 3.2 (i), it yields

Erppθmoptpfq ´ θpfqq2s À
´

n
´ 8s

4s`4γ`1 ` n
´ 8s`1

4s`4γ`1 ` n´1
¯

À

´

n
´ 8s

4s`4γ`1 _ n´1
¯

.

The result is proven for ordinary smooth noise.

‚ The super smooth case. Injecting mopt “
1
ρp

logn
4µ q

2
δ s in Proposition 3.2 (ii), one obtains

Erppθmpfq ´ θpfqq2s À plogpnq´
4s
δ q.

This concludes the proof of Theorem 3.3 and 3.4.

7.5. Proof of Theorem 4.1. For the sake of simplicity, we set pθmpfq “ pθm. By definition of pApmq given
in (18) and pmn in (21) and @m PMn, we have the following decomposition:

ppθ
pmn ´ θq

2 ď 3ppθ
pmn ´

pθ
pmn^mq

2 ` 3ppθ
pmn^m ´

pθmq
2 ` 3ppθm ´ θq

2

ď 3p pAppmnq ` κ1V ppmnqq ` 3p pApmq ` κ1V pmqq ` 3ppθm ´ θq
2

ď 6 pApmq ` 6κ2V pmq ` 3ppθm ´ θq
2.

By taking the expectation, one obtains

E
”

ppθ
pmnpfq ´ θpfqq

2
ı

ď 6Er pApmqs ` 6κ2V pmq ` 3Erppθmpfq ´ θpfqq2s.(33)

We bound Er pApmqs. Decompose ppθm1^m ´ pθm1q
2 as follows:

ppθm1^m ´ pθm1q
2 ď 3ppθm1^m ´ Erpθm1^msq2 ` 3pErpθm1^ms ´ Erpθm1sq2 ` 3ppθm1 ´ Erpθm1sq2.(34)

Consequently, it yields

pApmq ď3 sup
m1PMn

"

´

ppθm1^m ´ Erpθm1^msq2 ´
κ1

6
V pm1q

¯

`

*

` 3 sup
m1PMn

"

´

ppθm1 ´ Erpθm1sq2 ´
κ1

6
V pm1q

¯

`

*

` 3 sup
m1PMn

!

pErpθm1^ms ´ Erpθm1sq2
)

.

Observe that, if m1 ď m, the last term is equal to zero. So, by definition of pθm given in (12), we have

sup
m1PMn

!

pErpθm1^ms ´ Erpθm1sq2
)

“ sup
m1PMn,măm1

!

pErpθm1s ´ Erpθmsq2
)

“ sup
m1PMn,măm1

 

p}fm1}
2 ´ }fm}

2q2
(

ď sup
m1PMn,măm1

 

p}f}2 ´ }fm}
2q2

(

“ }f ´ fm}
4,
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where the last inequality is obtained by using the Pythagorean theorem. It comes that:

pApmq ď3 sup
m1PMn

"

´

ppθm1 ´ Erpθm1sq2 ´
κ1

6
V pm1q

¯

`

*

` 3 sup
m1PMn

"

´

ppθm1^m ´ Erpθm1^msq2 ´
κ1

6
V pm1q

¯

`

*

` 3}f ´ fm}
4.

As

sup
m1PMn

"

´

ppθm1^m ´ Erpθm1^msq2 ´
κ1

6
V pm1q

¯

`

*

ď max

˜

sup
m1PMn,m1ěm

"

´

ppθm ´ Erpθmsq2 ´
κ1

6
V pm1q

¯

`

*

, sup
m1PMn,m1ăm

"

´

ppθm1 ´ Erpθm1sq2 ´
κ1

6
V pm1q

¯

`

*

¸

ď sup
m1PMn,m1ăm

"

´

ppθm1 ´ Erpθm1sq2 ´
κ1

6
V pm1q

¯

`

*

` ppθm ´ Erpθmsq2,

we deduce that

Er pApmqs ď3}f ´ fm}
4 ` 6E

«

sup
m1PMn,m1ăm

"

´

ppθm1 ´ Erpθm1sq2 ´
κ1

6
V pm1q

¯

`

*

ff

` 3Varppθmq.

By (28), (15), it holds

Varppθmq ď C1V pmq `
4

n
Er|U˚fmpY1q|

2s `
C2

n
,

where C1 and C2 are constant appearing in Proposition 3.1 (ii) and Ut is given in (11). This implies

Er pApmqs ď3}f ´ fm}
4 ` 6C1V pmq `

24

n
Er|U˚fmpY1q|

2s `
6C2

n

` 6E
„

sup
m1PMn

"

´

ppθm1 ´ Erpθm1sq2 ´
κ1

6
V pm1q

¯

`

*

.

Now, we need the following result which leads to control the last term of the above bound.

Proposition 7.1. Under the assumptions of Theorem 4.1, there exists a constant κ1 ě κ0 such that

E
„

sup
m1PMn

"

´

ppθm1 ´ Erpθm1sq2 ´
κ1

6
V pm1q

¯

`

*

ď
Cp0q

n
,

where Cp0q depends on fε, }f}8 and }fY }8.

Mainly, the constant κ0 depends on }f}8, }fY }8, and the density fε. Proposition 7.1 and 3.1 (ii) and
(33) imply that

E
”

ppθ
pmnpfq ´ θpfqq

2
ı

ď 21}f ´ fm}
2 ` p6κ2 ` 9C1qV pmq `

36

n
E
“

|U˚fmpY1q|
2
‰

`
36Cp0q ` 9C2

n
,

where Ut is defined in (11).

Choosing C “ max p36, p6κ2 ` 3C1qq and C 1 “ 36Cp0q`3C2 and then taking the infimum on Mn completes
the proof.
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7.6. Proof of Proposition 7.1. Define a degenerate U-statistic of order 2 by:

UnpHmq “
1

npn´ 1q

n
ÿ

k‰`“1

HmpYk, Y`q, Hmpx, yq “
m´1
ÿ

j“0

pU˚ϕj pxq ´ ajqpU
˚
ϕj pyq ´ ajq(35)

where aj “ ajpfq “
ş

fϕj and Ut is defined in (11) and the empirical measure by

Pnptq :“
1

n

n
ÿ

i“1

U˚t pYiq ´

ż

R
tf.(36)

When Xk are available, that is εk “ 0 almost surely Pnptq is equal to the classical process 1
n

řn
i“1 tpXiq ´

ş

R tf . From (25), we have:

pθm ´ Erpθms “ UnpHmq ` Pnp2fmq.

This implies that

E
„

sup
mPMn

"

´

ppθm ´ Erpθmsq2 ´
κ1

6
V pmq

¯

`

*

ď 2E
„

sup
mPMn

"

´

U2
npHmq ´

κ1

12
V pmq

¯

`

*

` 2E
„

sup
mPMn

"

´

P 2
np2fmq ´

κ1

12
V pmq

¯

`

*

.(37)

We bound successively the two terms in the right hand side of (37).

Bounding of E
”

supmPMn

!

`

U2
npHmq ´

κ1
12V pmq

˘

`

)ı

. First, we decompose the UnpHmq given by (35) in

three processes by splitting the integrals. By Plancherel-Parseval’s formula, it holds

HmpYk, Y`q “
m´1
ÿ

j“0

ˆ

1

2π

ż

R
eiuYk

ϕ˚j p´uq

f˚ε puq
du´ Er

1

2π

ż

R
eiuYk

ϕ˚j p´uq

f˚ε puq
dus

˙

ˆ

ˆ

1

2π

ż

R
eiuY`

ϕ˚j p´uq

f˚ε puq
du´ Er

1

2π

ż

R
eiuY`

ϕ˚j p´uq

f˚ε puq
dus

˙

“

m´1
ÿ

j“0

$

&

%

¨

˝

1
2π

ş

|u|ď
?
ρm e

iuYk
ϕ˚j p´uq

f˚ε puq
du´ Er 1

2π

ş

|u|ď
?
ρm e

iuYk
ϕ˚j p´uq

f˚ε puq
dus

` 1
2π

ş

|u|ě
?
ρm e

iuYk
ϕ˚j p´uq

f˚ε puq
du´ Er 1

2π

ş

|u|ě
?
ρm e

iuYk
ϕ˚j p´uq

f˚ε puq
dus

˛

‚

,

.

-

ˆ

$

&

%

¨

˝

1
2π

ş

|u|ď
?
ρm e

iuY`
ϕ˚j p´uq

f˚ε puq
du´ Er 1

2π

ş

|u|ď
?
ρm e

iuY`
ϕ˚j p´uq

f˚ε puq
dus

` 1
2π

ş

|u|ě
?
ρm e

iuY`
ϕ˚j p´uq

f˚ε puq
du´ Er 1

2π

ş

|u|ě
?
ρm e

iuY`
ϕ˚j p´uq

f˚ε puq
dus

˛

‚

,

.

-

.

Define

vϕj pxq “
1

2π

ż

|u|ď
?
ρm
eiux

ϕ˚j p´uq

f˚ε puq
du.(38)

and

Ψϕj pY`q “
1

2π

ż

|u|ě
?
ρm

`

eiuY` ´ EreiuY`s
˘ ϕ˚j p´uq

f˚ε puq
du.(39)

Thanks to (38) and (39), we get
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HmpYk, Y`q “
m´1
ÿ

j“0

pvϕj pYkq ´ Ervϕj pYkqsqpvϕj pY`q ´ Ervϕj pY`qsq `
m´1
ÿ

j“0

pvϕj pY`q ´ Ervϕj pY`qsqΨϕj pYkq

`

m´1
ÿ

j“0

pvϕj pYkq ´ Ervϕj pYkqsqΨϕj pY`q `
m´1
ÿ

j“0

Ψϕj pYkqΨϕj pY`q.

Introduce:

UnpImq “
1

npn´ 1q

n
ÿ

k‰`“1

ImpYk, Y`q,(40)

Impx, yq “
m´1
ÿ

j“0

pvϕj pxq ´ Ervϕj pYkqsqpvϕj pyq ´ Ervϕj pY`qsq,

νn,1pϕjq “
2

npn´ 1q

n
ÿ

k‰`“1

m´1
ÿ

j“0

pvϕj pYkq ´ Ervϕj pYkqsqΨϕj pY`q,(41)

and

νn,2pϕjq “
1

npn´ 1q

n
ÿ

k‰`“1

m´1
ÿ

j“0

Ψϕj pYkqΨϕj pY`q.(42)

We rewrite

UnpHmq “ UnpImq ` νn,1pϕjq ` νn,2pϕjq,

and

E
„

sup
mPMn

"

´

U2
npHmq ´

κ1

12
V pmq

¯

`

*

ď 3E
„

sup
mPMn

"

´

U2
npImq ´

κ1

36
V pmq

¯

`

*

` 3E
„

sup
mPMn

ν2
n,1pϕjq



` 3E
„

sup
mPMn

ν2
n,2pϕjq



.

We establish the following result.

Proposition 7.2. Let UnpImq be defined in (40), νn,1pϕjq in (41) and νn,2pϕjq in (42).

(i) Then, we have for κ1 large enough, depending only on fε.

E
„

sup
mPMn

"

´

U2
npImq ´

κ1

36
V pmq

¯

`

*

ď 4ρ
p1_ 4}f}8q

2

n
.

(ii) There exist two constants Cfε,1 and Cfε,2 depending on fε such that

E
„

sup
mPMn

ν2
n,1pϕjq



ď
Cfε,1
n

, E
„

sup
mPMn

ν2
n,2pϕjq



ď
Cfε,2
n

.

Proposition 7.2 implies

E
„

sup
mPMn

"

´

U2
npHmq ´

κ1

12
V pmq

¯

`

*

ď 12ρ
p1_ 4}f}8q

2

n
` 3

Cfε,1 ` Cfε,2
n

,(43)
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Bounding of E
”

supmPMn

!

`

P 2
np2fmq ´

κ1
12V pmq

˘

`

)ı

. To control the deviation of Pnp2fmq, we apply

Bernstein inequality. Let us first decompose the process Pnptq defined in (36) as follows: for any t P Sm,
we have using the Plancherel Parseval identity

Pnptq “
1

n

n
ÿ

k“1

pU˚t pYkq ´ xt, fyq

“
1

n

n
ÿ

k“1

˜

1

2π

ż

|u|ď
?
ρm

t˚p´uq

f˚ε puq
eiuYkdu´ E

«

1

2π

ż

|u|ď
?
ρm

t˚p´uq

f˚ε puq
eiuYkdu

ff¸

`
1

n

n
ÿ

k“1

˜

1

2π

ż

|u|ą
?
ρm

t˚p´uq

f˚ε puq
eiuYkdu´ E

«

1

2π

ż

|u|ą
?
ρm

t˚p´uq

f˚ε puq
eiuYkdu

ff¸

“
1

n

n
ÿ

k“1

pvtpYkq ´ E rvtpYkqsq `
1

2π

ż

|u|ą
?
ρm

t˚p´uq

f˚ε puq
p pf˚Y puq ´ f

˚
Y puqqdu,(44)

with vt is given (38) and pf˚Y is defined in (10). Therefore, we write Pnptq “ Pn,1ptq ` Pn,2ptq where

Pn,1ptq “
1

n

n
ÿ

k“1

pvtpYkq ´ E rvtpYkqsq

and

Pn,2ptq “
1

2π

ż

|u|ą
?
ρm

t˚p´uq

f˚ε puq
p pf˚Y puq ´ f

˚
Y puqqdu.

It follows that

E
„

sup
mPMn

"

´

P 2
np2fmq ´

κ1

12
V pmq

¯

`

*

ď 2E
„

sup
mPMn

"

´

P 2
n,1p2fmq ´

κ1

24
V pmq

¯

`

*

` 2Er sup
mPMn

P 2
n,2p2fmqs.(45)

Proposition 7.3. Under the assumptions of Theorem 4.1, the following hold.

(i) There exists a constant Cfε,3 such that for κ1 ě maxp384}fY }8p, 384}f}8p
2{pα2c11qq with p an

integer (p “ 4 suits) and α Pq0, 1p

E
„

sup
mPMn

"

´

P 2
n,1p2fmq ´

κ1

24
V pmq

¯

`

*

ď
Cfε,3
n

.

(ii) There exists a constant Cfε,4 such that

Er sup
mPMn

P 2
n,2p2fmqs ď

Cfε,4
n

.

From Proposition 7.3 and (45), we obtain

E
„

sup
mPMn

"

´

P 2
np2fmq ´

κ1

12
V pmq

¯

`

*

ď 2
Cfε,4 ` Cfε,3

n
.
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Finally, injecting this and (43) in (37), we derive that for κ1 large enough

E
„

sup
mPMn

"

´

ppθm ´ Erpθmsq2 ´
κ1

6
V pmq

¯

`

*

ď
Cp0q

n
,

where Cp0q “ 24ρp1_ 4}f}8q
2 ` 6pCfε,1 ` Cfε,2 ` Cfε,3 ` Cfε,4q. Hence the announced result.

7.7. Proof of Proposition 7.2.

7.7.1. Proof of Part (i). We use the following Lemma, which is proved in the sequel.

Lemma 7.2. Let UnpImq be defined in (40). Assume that }f}8 ă 8, pH5q and fε is square integrable.
There exists a constant C‹ ą 0 depending on }f}8, }fY }8, such that for any x ą 0,

P
"

|UnpImq| ą
C‹
n´ 1

ˆ

b

∆p1qpmq∆pmqx`

ˆ

b

∆p1qpmq∆pmq `∆p1qpmq

˙

x`
∆pmqx2

n

˙*

ď 5.54 expp´xq,(46)

where ∆pmq is defined in (13) and ∆p1qpmq in (14).

In the sequel, we choose x “ 4 logpnq and set

Ω1pmq :“

#

|UnpImq| ď
C‹
n´ 1

˜
a

∆p1qpmq∆pmq4 logpnq `
´

a

∆p1qpmq∆pmq `∆p1qpmq
¯

4 logpnq

`
∆pmq16 log2pnq

n

+

.

Let us write that

E
„

sup
mPMn

"

´

U2
npImq ´

κ1

36
V pmq

¯

`

*

ď E
„

sup
mPMn

"

´

U2
npImq ´

κ1

36
V1pmq

¯

`

*

1Ω1pmq



“ E1

` E
„

sup
mPMn

"

´

U2
npImq ´

κ1

36
V1pmq

¯

`

*

1Ωc1pmq



“ E2 .

On Ω1pmq and as m PMn, we have for C 1‹ ą 0 a numerical constant U2
npImq ď C 1‹V1pmq, where V1pmq is

defined in (19). Indeed, it is easy to check @m PMn

∆pmq2 log4pnq

n2pn´ 1q2
ď 4ρm

∆p1qpmq2 log4pnq

n2pn´ 1q2
À

log2pnq

npn´ 1q
,

and
ˆ

b

∆p1qpmq∆pmq4 logpnq `

ˆ

b

∆p1qpmq∆pmq `∆p1qpmq

˙

4 logpnq

˙2 1

pn´ 1q2

À ∆p1qpmq∆pmq
log2pnq

npn´ 1q
.

Thus, for κ1 ě 36C 1‹, it yields
`

U2
npImq ´

κ1
36V1pmq

˘

ď 0 and E1 is equal to zero.
For the other term, it holds

E2 ď
ÿ

mPMn

E
”

U2
npImq1Ωc1pmq

ı

.(47)

By definition of UnpImq given in (40) and the Cauchy-Schwarz inequality, we have

|UnpImq| ď
1

npn´ 1q

n
ÿ

k‰`“1

g

f

f

e

m´1
ÿ

j“0

|vϕj pYkq ´ Ervϕj pYkqs|2

g

f

f

e

m´1
ÿ

j“0

|vϕj pY`q ´ Ervϕj pY`qs|2,



ADAPTIVE ESTIMATION OF A QUADRATIC FUNCTIONAL FROM INDIRECT OBSERVATIONS 23

where vt is given in (38) for t P Sm. Furthermore, it yields by Bessel’s inequality

m´1
ÿ

j“0

ˇ

ˇvϕj pYkq
ˇ

ˇ

2
ď

∆pmq

2π
(48)

and by the orthonormality of pϕjqjě0 and }f}8 ă 8:
ˇ

ˇErvϕj pYkqs
ˇ

ˇ

2
“ 1

4π2

ş

|f˚puq|2du
ş

|ϕ˚j puq|
2du ď }f}8.

It comes that

|UnpImq| ď 2

ˆ

∆pmq

2π
` }f}8

˙

ď p1_ 4}f}8q∆pmq.

Injecting this in (47), using ∆pmq ď 2
?
ρm∆p1qpmq and by taking x “ 4 logpnq in (46), we deduce that

E2 ď 4ρp1_ 4}f}8q
2 n2

log2pnq

ÿ

mPMn

P pΩc
1q ď 4ρ

p1_ 4}f}8q
2

n
,

since m ď
?
n by assumption on Mn. Part (i) of Lemma 7.2 is therefore proven.

7.7.2. Proof of Part (ii). Let us start by the centered process νn,1pϕjq defined in (36). By the Cauchy-
Schwarz inequality, it holds

E
„

sup
mPMn

ν2
n,1pϕjq



ď
ÿ

mPMn

Varpνn,1pϕjqq

“
4

n2pn´ 1q2

ÿ

mPMn

n
ÿ

k‰`“1

Var

˜

m´1
ÿ

j“0

pvϕj pYkq ´ Ervϕj pYkqsqΨϕj pY`q

¸

“
1

n2pn´ 1q2

ÿ

mPMn

n
ÿ

k‰`“1

E

»

–

ˇ

ˇ

ˇ

ˇ

ˇ

m´1
ÿ

j“0

pvϕj pYkq ´ Ervϕj pYkqsqΨϕj pY`q

ˇ

ˇ

ˇ

ˇ

ˇ

2
fi

fl

ď
1

n2pn´ 1q2

ÿ

mPMn

n
ÿ

k‰`“1

m´1
ÿ

j“0

E
”

ˇ

ˇvϕj pYkq ´ Ervϕj pYkqs
ˇ

ˇ

2
ı

m´1
ÿ

j“0

E
”

ˇ

ˇΨϕj pY`q
ˇ

ˇ

2
ı

.

Thanks to (48), it yields

m´1
ÿ

j“0

E
”

ˇ

ˇvϕj pYkq ´ Ervϕj pYkqs
ˇ

ˇ

2
ı

ď

m´1
ÿ

j“0

E
“

|vϕj pYkq|
2
‰

ď
∆pmq

2π
.

As the integral
ş

|u|ą
?
ρm

e´ξu
2

|f˚ε puq|2
du is convergent if fε is ordinary smooth or super smooth if δ ă 2 or δ “ 2

with µ ď ξ and, by definition of Ψϕj pY`q given (39) and (4), it follows that

E
”

ˇ

ˇΨϕj pY`q
ˇ

ˇ

2
ı

ď E

»

–

ˇ

ˇ

ˇ

ˇ

ˇ

ż

|u|ą
?
ρm
eiuY`

ϕjpuq

f˚ε puq
du

ˇ

ˇ

ˇ

ˇ

ˇ

2
fi

fl

ď C8 E

«

ż

|u|ą
?
ρm

e´ξu
2

|f˚ε puq|
2
du

ż

|u|ą
?
ρm
e´ξu

2
du

ff

À e´ξm
ż

|u|ą
?
ρm

e´ξu
2

|f˚ε puq|
2
du À e´ξm.(49)
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Consequently, we get,

E
„

sup
mPMn

ν2
n,1pϕjq



À
1

npn´ 1q

ÿ

mPMn

m2∆pmqe´ξm À
1

n

`8
ÿ

m“1

e´
ξm
2 À

1

n
,

because ∆pmq ď 2
?
ρm∆p1qpmq ď

2
?
ρm
n by definition of Mn.

Let us now turn to the control of E
“

supmPMn
ν2
n,2pϕjq

‰

ď
ř

mPMn
Varpνn,2pϕjqq with νn,2pϕjq defined in

(42). Similarly to the study of νn,1pϕjq, we have

E
„

sup
mPMn

ν2
n,1pϕjq



ď
1

n2pn´ 1q2

ÿ

mPMn

n
ÿ

k‰`“1

m´1
ÿ

j“0

E
”

ˇ

ˇΨϕj pYkq
ˇ

ˇ

2
ı

m´1
ÿ

j“0

E
”

ˇ

ˇΨϕj pY`q
ˇ

ˇ

2
ı

.

Equation (49) imply that

E
„

sup
mPMn

ν2
n,1pϕjq



ď
1

n2pn´ 1q2
À

1

npn´ 1q

`8
ÿ

m“1

e´ξm À
1

npn´ 1q
.

Hence the proof of Part (ii) and therefore Proposition 7.2 is proven.

7.8. Proof of Lemma 7.2. Let x ą 0. Applying Theorem 3.4.8 given in Giné and Nickl (2016) (see
Section A.2), we have

P
!

npn´ 1q|UnpImq| ą C
´

A1

?
x`A2x`A3x

3
2 `A4x

2
¯)

ď 5.54e´x,

where the constants pAiqiP1,...,4 are given by:

A2
1 “

n
ÿ

j“2

j´1
ÿ

i“1

E
“

I2
mpYi, Yjq

‰

A2 “ sup

#

E

«

n
ÿ

j“2

j´1
ÿ

i“1

ImpYi, YjqαipYiqβjpYjq

ff

,Er
n´1
ÿ

i“1

α2
i pYiqs ď 1,Er

n
ÿ

j“2

β2
j pYjqs ď 1

+

,

A2
3 “ max

˜

max
j

sup
x

#

j´1
ÿ

i“1

EYirI
2
mpYi, xqs

+

,max
i

sup
x

#

n
ÿ

j“i`1

EYj rI
2
mpx, Yjqs

+

,

¸

A4 “ sup
x,y
|Impx, yq|,

with Im is given in (40). As the map px, yq ÞÑ Impx, yq is symetric in its entries (that is Impx, yq “
Impy, xqq) and the random variables Y1, . . . , Yn are i.i.d, the first three constants becomes (see also Giné
and Nickl (2016), Section 3.4.3, pp. 176):

A2
1 “

npn´ 1q

2
Er|ImpY1, Y2q|

2s,

A2 “
n

2
sup

 

E rImpY1, Y2qαpY1qβpY2qs ,Erα2pY1qs ď 1,Erβ2pY2qs ď 1
(

A2
3 “ pn´ 1q sup

x

 

EY1rI2
mpY1, xqs

(

“ pn´ 1q sup
x

 

EY2rI2
mpx, Y2qs

(

.

Let us now compute these terms.
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‚ Computing of A1. Notice that for any real-valued function t, the function x ÞÑ vtpxq (defined
in (38)) is also real-valued. By definition, we have

E
“

|ImpY1, Y2q|
2
‰

“

m´1
ÿ

j,k“0

!

E
”

`

vϕj pY1q ´ Ervϕj pY1qs
˘

´

vϕkpY1q ´ ErvϕkpY1qs

¯ı)2

ď 2
m´1
ÿ

j,k“0

ˇ

ˇE
“

vϕj pY1qvϕkpY1q
‰ˇ

ˇ

2
` 2

m´1
ÿ

j,k“0

ˇ

ˇErvϕj pY1qsErvϕkpY1qs
ˇ

ˇ

2

Using the definition of vt given in (38), as ϕ˚j “
?

2πpijqϕj (see (5)) and Bessel’s inequality

(applied twice), it yields

m´1
ÿ

j,k“0

ˇ

ˇE
“

vϕj pY1qvϕkpY1q
‰ˇ

ˇ

2
“

1

2π

m´1
ÿ

j,k“0

ˇ

ˇ

ˇ

ˇ

ż ż

EreiuY1`ivY1s
ϕjpuq

f˚ε puq

ϕjpvq

f˚ε pvq
1|u,v|ď

?
ρmdudv

ˇ

ˇ

ˇ

ˇ

2

ď
1

2π

ż ż

|f˚Y pu` vq|
2

|f˚ε puqf
˚
ε pvq|

2
1|u,v|ď

?
ρmdudv.

Since
ş

|f˚Y puq|du ď 2π}f}}fε} and |f˚Y puq| ď 1, we get

m´1
ÿ

j,k“0

ˇ

ˇE
“

vϕj pY1qvϕkpY1q
‰ˇ

ˇ

2
ď }f}

1
2
8}fε}∆pmq∆

p1qpmq.

Again, with the Bessel inequality and (5), we have

m´1
ÿ

j“0

|Ervϕj pY1qs|
2 “

1

2π

m´1
ÿ

j“0

|

ż

|u|ď
?
ρm
f˚p´uqϕjpuqdu|

2 ď
}f˚}2

2π
ď }f}8

Therefore, we deduce E
“

|ImpY1, Y2q|
2
‰

ď 2}f}
1
2
8}fε}∆pmq∆

p1qpmq ` 2}f}28 and

A1 ď 2np}f}8 _ }f}
1
4
8}fε}

1
2 q

b

∆pmq∆p1qpmq.

‚ Computing of A2. We have by the Cauchy Schwarz inequatily, Erα2
i pY1qs ď 1 and Erβ2

j pY2qs ď 1

E rImpY1, Y2qαipY1qβjpY2qs “

ĳ

Impu, vqαipuqβjpvqfY puqfY pvqdudv

ď

d

ĳ

|Impu, vq|2fY puqfY pvqdudv

d

ĳ

α2
i puqβ

2
j pvqfY puqfY pvqdudv

ď
a

E r|ImpY1, Y2q|
2s.

Following the computation of A1, we derive

A2 ď np}f}8 _ }f}
1
4
8}fε}

1
2 q

b

∆pmq∆p1qpmq.
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‚ Computing of A3. Let fixed x. Set raj “
1

2π

ş

|u|ď
?
ρm f

˚puqϕ˚j p´uqdu. By remarking that vt is

real-value and raj is a real number, we write

EY2r|Impx, Y2q|
2s “

m´1
ÿ

j,k“0

pvϕj pxq ´ rajqpvϕkpxq ´ rakqEY2
”

pvϕj pY2q ´ rajqpvϕkpY2q ´ rakq
ı

“

m´1
ÿ

j,k“0

pvϕj pxq ´ rajqpvϕkpxq ´ rakq

ˆ
ż

vϕjvϕkfY ´ rak

ż

vϕjfY ´ raj

ż

vϕkfY ` rajrak

˙

.

Let us recall that Ervϕj pY1qs “ raj by definition of vt given in (38). Thus, Plancherel Equality and
the orthogonality of pϕjq imply

EY2r|Impx, Y2q|
2s ď

m´1
ÿ

j,k“0

pvϕj pxq ´ rajqpvϕkpxq ´ rakq

ż

vϕjvϕkfY “

ż

ˇ

ˇ

ˇ

ˇ

ˇ

m´1
ÿ

j“0

pvϕj pxq ´ rajqvϕj pyq

ˇ

ˇ

ˇ

ˇ

ˇ

2

fY pyqdy

ď }fY }8

ż

ˇ

ˇ

ˇ

ˇ

ˇ

m´1
ÿ

j“0

pvϕj pxq ´ rajqvϕj pyq

ˇ

ˇ

ˇ

ˇ

ˇ

2

dy

“ }fY }8

ż

ˇ

ˇ

ˇ

ˇ

ˇ

˜

z ÞÑ
m´1
ÿ

j“0

pvϕj pxq ´ rajq
1

2π

ϕ˚j p´zq

f˚ε pzq
1|z|ď

?
ρm

¸˚

pyq

ˇ

ˇ

ˇ

ˇ

ˇ

2

dy

“ }fY }8

ż

|z|ď
?
ρm

ˇ

ˇ

ˇ

ˇ

ˇ

m´1
ÿ

j“0

pvϕj pxq ´ rajq
ϕjpzq

f˚ε pzq

ˇ

ˇ

ˇ

ˇ

ˇ

2

dz “ }fY }8∆p1qpmq
m´1
ÿ

j“0

pvϕj pxq ´ rajq
2.

It comes that

EY2r|Impx, Y2q|
2s ď }fY }8∆p1qpmq

m´1
ÿ

j“0

pvϕj pxq ´ rajq
2.

The Bessel and Plancherel equalities give (see (48))

m´1
ÿ

j“0

|vϕj pxq ´ raj |
2 ď 2

˜

m´1
ÿ

j“0

|vϕj pxq|
2 `

m´1
ÿ

j“0

ra2
j

¸

ď 4p}f}8 _ 1q∆pmq.

We derive that

EY2r|Impx, Y2q|
2s ď 4p}f}8 _ 1q}fY }8∆pmq∆p1qpmq,

and

A3 ď 2
a

p}f}8 _ 1q}fY }8

b

n∆pmq∆p1qpmq.

‚ Computing of A4. Let us write

|Impx, yq| ď
m´1
ÿ

j“0

|pvϕj pxq ´ rajqpvϕj pyq ´ rajq|.
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We bound successively the terms. By the Cauchy Schwarz inequality and (48), it holds

m´1
ÿ

j“0

|vϕj pxqvϕj pyq| ď

g

f

f

e

m´1
ÿ

j“0

|vϕj pxq|
2

g

f

f

e

m´1
ÿ

j“0

|vϕj pyq|
2 ď

∆pmq

2π
,

and

m´1
ÿ

j“0

|vϕj pxqraj | ď

g

f

f

e

m´1
ÿ

j“0

|vϕj pxq|
2

g

f

f

e

m´1
ÿ

j“0

ra2
j ď

c

}f}8
2

∆pmq,

since
řm´1
j“0 ra2

j ď }f}8. This implies |Impx, yq| ď 4p 1
2π _

b

}f}8
2 _ }f}8q∆pmq and

A4 ď 12

˜

1

2π
_

c

}f}8
2

_ }f}8

¸

∆pmq.

Collecting the above evaluations, it yields @x ą 0

P

#

|UnpImq| ą
C‹
n´ 1

˜

b

∆p1qpmq∆pmqx`

b

∆p1qpmq∆pmqx`

a

∆pmq∆p1qpmqx
3
2

?
n

`
∆pmqx2

n

¸+

ď 5.54 expp´xq,

where C‹ ą 0 depending on fε, }f}8 and }fY }8. Since 2

?
∆pmq∆p1qpmqx

3
2

?
n

ď x∆p1qpmq ` ∆pmqx2

n , it follows

that

P
"

|UnpImq| ą
C‹
n´ 1

ˆ

b

∆p1qpmq∆pmqx`

ˆ

b

∆p1qpmq∆pmq `∆p1qpmq

˙

x`
∆pmqx2

n

˙*

ď 5.54 expp´xq.

Hence the announced result.

7.9. Proof of Proposition 7.3. We only proof Part (i). The proof of Part (ii) can be found in Sacko
(2020) (see Proof of Lemma 7.3, p. 23). Notice that

E
„

sup
mPMn

"

´

P 2
n,1p2fmq ´

κ1

24
V pmq

¯

`

*

ď
ÿ

mPMn

ż

R`
P
"

´

P 2
n,1p2fmq ´

κ1

24
V pmq

¯

`
ą x

*

dx

ď
ÿ

mPMn

ż

R`
P
"

|Pn,1p2fmq| ě

c

κ1

24
V pmq ` x

*

dx.

Now, we apply Bernstein inequality given in Appendix A.1. We need to evaluate two quantities b and v.
We distinguish two cases.
The ordinary smooth case. By the Cauchy-Schwarz inequality, it holds

|v2fmpYkq| “
1

2π

ˇ

ˇ

ˇ

ˇ

ˇ

ż

|u|ď
?
ρm
eiuYk

p2fmq
˚p´uq

f˚ε puq
du

ˇ

ˇ

ˇ

ˇ

ˇ

ď
1

π

d

}f˚m}
2

ż

|u|ď
?
ρm

1

|fεpuq|2
du

ď
a

2}f}8∆pmq “ b.

By the Plancherel theorem and under pH5q, we take (see (20))

E
“

|v2fmpYkq|
2
‰

ď 4}fY }8

ż

|u|ď
?
ρm

|fmpuq|
2

|f˚ε puq|
2
du “ 4}fY }8V2pmq

n

logpnq
“ v.
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Applying Bernstein inequality leads to have for any α Pq0, 1p

P
"

|Pn,1p2fmq| ě

c

κ1

24
V pmq ` x

*

ď 2

"

exp
´

´
n

4v

´κ1

24
V pmq ` x

¯¯

_ exp

ˆ

´
n

4b

c

κ1

24
V pmq ` x

˙*

ď 2

"

exp
´

´
n

4v

´κ1

24
V pmq ` x

¯¯

_ exp

ˆ

´
nα

4b

c

κ1

24
V pmq

˙

exp

ˆ

´
np1´ αq

4b

?
x

˙*

.

Moreover, for any κ1 ě 384}fY }8p, we have

n

4v

κ1

24
V pmq ě

V2pmq

384}fY }8V2pmq
logpnq ě p logpnq,

where p is an integer which shall be specified in the sequel. It also holds for any m P Mn and κ1 ě

384}f}8p
2{pα2c11q

nα

4b

c

κ1

24
V pmq ě

nα

4b

c

κ1

24
V1pmq

nα

4
a

2}f}8∆pmq

d

κ1

24
∆pmq∆p1qpmq

log2pnq

n2
ě p logpnq,

since V pmq “ V1pmq ` V2pmq ě V1pmq “ ∆p1qpmq∆pmq log2pnq
n2 and ∆p1qpmq ě c11 (see (7)). Therefore, we

obtain for κ1 large enough

P
"

|Pn,1p2fmq| ě

c

κ1

24
V pmq ` x

*

ď 2n´p
"

exp
´

´
n

4v
x
¯

_ exp

ˆ

´
np1´ αq

4b

?
x

˙*

.(50)

The super smooth case. We take an upper bound of
ş

|u|ď
?
ρm

|fmpuq|2

|f˚ε puq|2
du in such a way as to set

v “ 4}f}8}fY }8∆p1qpmq and b does not chance. Again with V pmq “ V1pmq ` V2pmq ě V2pmq “

∆p1qpmq logpnq{n, it holds for κ1 ě 384}f}8}fY }8 that n
4v
κ1
24V pmq ě p logpnq. Thanks to V pmq ě

∆p1qpmq∆pmq log2pnq
n2 and κ1 ě 384}f}8p

2{pα2c11q, we get nα
4b

a

κ1
24V pmq ě p log n. We derive that (50)

holds for the super smooth case.
By choosing p “ 3 with some changes variables, we deduce

E
„

sup
mPMn

"

´

P 2
n,1p2fmq ´

κ1

24
V pmq

¯

`

*

ď 2n´p
ÿ

mPMn

ż

R`

"

exp
´

´
n

4v
x
¯

_ exp

ˆ

´
np1´ αq

4b

?
x

˙*

dx

ď 2n´p
ÿ

mPMn

˜

4}fY }8}f}8∆p1qpmq

n
_ 32}f}8

∆pmq

n2p1´ αq2

¸

ď
C˚1
n
,

where C˚1 is a constant depending on }f}8, }fY }8 and fε via (7). This concludes the proof.

Appendix A. Concentration inequalities

A.1. Bernstein inequality. Let Y1, . . . , Yn be n independent real random variables and Sn “
řn
i“1pYi´

ErYisq. Assume there exist two constants s2 and b, such that VarpYiq ď s2 and |Yi| ď b. Then, for all
x ą 0, we have

P p|Sn| ě nxq ď 2 max

ˆ

exp
´

´
nx

4v2

¯

, exp

ˆ

´
nx2

4b

˙˙

.



ADAPTIVE ESTIMATION OF A QUADRATIC FUNCTIONAL FROM INDIRECT OBSERVATIONS 29

Moreover, it holds

P
ˆ

|Sn| ě
?

2ns2x`
bx

3

˙

ď 2e´x.

A proof of Bernstein inequality can be found in Birgé and Massart (1998), p. 366.

A.2. Exponential inequalities for U-statistics of order two. Let Y1, . . . , Yn be n independent ran-
dom variables defined on a Polish space S and let us consider the degenerate (or canonical) U-statistic of
order 2: Unphq “

řn
i‰j“1 hpYi, Yjq, where the function h : S2 ÞÑ R is such that Er|hpYi, Yjq|s ă 8 for any

1 ď i, j ď n. Let A1, A2, A3 and A4 be defined as follows:

A2
1 “

n
ÿ

j“2

j´1
ÿ

i“1

E
“

h2pYi, Yjq
‰

A2 “ sup

#

E

«

n
ÿ

j“2

j´1
ÿ

i“1

hpYi, YjqαipYiqβjpYjq

ff

,Er
n´1
ÿ

i“1

α2
i pYiqs ď 1,Er

n
ÿ

j“2

β2
j pYjqs ď 1

+

,

A2
3 “ max

˜

max
j

sup
x

#

j´1
ÿ

i“1

EYirh
2pYi, xqs

+

,max
i

sup
x

#

n
ÿ

j“i`1

EYj rh
2px, Yjqs

+

,

¸

A4 “ sup
x,y
|hpx, yq|,

where EY rXs denotes the conditional expectation of X given Y . Then, there exists an absolute constant
C ą 0 such that for any x ą 0,

P
!

|Unphq| ě C
´

A1

?
x`A2x`A3x

3
2 `A4x

2
¯)

ď 5.54e´x.

The Bernstein-type inequality for canonical U-statistics of order 2 is proven in Houdré and Reynaud-
Bouret (2003) for real variables. The above result is a simplified version of Theorem 3.4.8 given in Giné
and Nickl (2016).
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