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Abstract

The paper presents a morphodynamic model which can be coupled
with any wave model capable of producing time/spectral averaged wave
quantities. This model based on a wave energy minimization principle
highlights the morphodynamic phenomenology, such as the sandbar cre-
ation. Such a model can be used in solving engineering optimization
problems. It is also developed to illustrate the idea that beach sand
transport can be thought as a non-local phenomenon. We used wave
calculations from SWAN and XBeach in our model, and we compared
the morphodynamic results to LIP and SANDS hydro-morphodynamic
benchmark as well as open-sea simulations. Using supplementary math-
ematical development, we improved the minimization method using the
Hadamard derivative.
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1 Introduction

Morphodynamic models are generally very complex and highly parameterized.
They separately solve the physical equations of hydrodynamics and morpho-
dynamics at a very small scale of the order of second in time and of the wave
length in space. The OptiMorph model that we presented in Cook (2021) and
Dupont et al. (2023) proposes a more global approach based on an optimization
principle.

The optimization theory is the study of the evolution of a system while
searching systematically for the minimum of a function derived from some of
its physical properties. Using a certain number of mathematical optimization
developments devoted to coastal sciences (Isèbe et al. 2014; Isèbe et al. 2008b;
Isèbe et al. 2008a; Bouharguane et al. 2010; Mohammadi et al. 2014; Moham-
madi et al. 2011; Cook et al. 2021; Mohammadi 2017; Bouharguane et al. 2012;
Dupont et al. 2023), we have designed a model that describes the evolution of
the sea bottom elevation while taking into account the coupling between mor-
phodynamic and wave processes. This study is based on the assumption that
the sea bottom adapts in time to minimize a certain wave-related function.
The choice of this function determines the driving force behind the morpho-
logical evolution of the seabed. This optimization problem is subjected to a
limited number of constraints, allowing for a more accurate description of the
morphodynamic evolution.

The purpose of this study is to use the Hadamard (1914) derivative in order
to calculate the gradient of any cost function J with respect to the shape ψ,
which allows us to solve the optimization problem at the core of the model.
This strategy aims to create a generic morphodynamic model that can be used
with any wave model.

The paper starts with a description of the OptiMorph model. Then we
introduce Hadamard’s strategy by presenting the different ways to compute
the gradient with respect to the shape ψ. Hadamard’s strategy is verified
with analytical cases. Finally, applications are performed with OptiMorph
model using Hadamard strategy. We show that we can therefore use complex
wave models such as XBeach (D. J. Roelvink et al. 2009) and SWAN (Booij
et al. 1996). Part of the simulations are linked to the LIP and SANDS flume
experiments (JA Roelvink et al. 1995; Eichentopf et al. 2018). Another part
concerns simulations in open-sea configurations.

2 Presentation of a hydro-morphodynamic model
by minimization principle

In this section, we introduce the model presented in Cook (2021) and Dupont
et al. (2023), which uses the notations in Figure 1.

We consider a coordinate system composed of a horizontal axis x and a
vertical axis z. We denote Ω := [0, xmax] the domain of the cross-shore profile
of the active coastal zone, where x = 0 is a fixed point in deep water where
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Figure 1: Diagram of a cross-shore profile in the case of an experimental flume.

no significant change in bottom elevation can occur, and xmax is an arbitrary
point at the shore beyond the shoreline, as shown by Figure 1. The elevation
of the sea bottom is a one-dimensional positive function, defined by: ψ : Ω ×
[0, Tf ]×Ψ → R+ where [0, Tf ] is the duration of the simulation (s) and Ψ is the
set of physical parameters describing the characteristics of the beach profile.
In order to model the evolution over time of ψ and given the assumption that
ψ changes over time in response to the wave energy, a description of the surface
waves is needed.

2.1 Hypotheses

The model is based on the principle that nature seeks to minimize the energy it
expends. A cost function J governs the evolution of the seafloor and has been
developed according to EH, the total energy of the waves. This hypothesis is
inspired by minimal surfaces in nature, as for instance in soap bubbles surfaces
(Taylor 1976).

To illustrate this, 1) we run a simulation on XBeach with a LIP 11C profile
(JA Roelvink et al. 1995) with the parameters presented in the table A1: an
offshore significant water height Hs = 0.6 m, a wave period T0 = 8 s and
a simulation time of 13h. This forcing is constant over the duration of the
experiment. A more detailed description of the experiment can be found below
in the 5.1 section. 2) We use LIDAR DynaRev data (Blenkinsopp et al. 2021;
Schimmels et al. 2020; Martins et al. 2020) which requires no simulation, since
all data (including hydrodynamics) come from measurements. By calculating
the wave energy EH = 1

16ρwgH
2 distribution at the beginning and at the end

of the experiment, we obtained the figure 2.
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Figure 2: 1) LIP 1C experiment with H generated by XBeach. 2) DynaRev exper-
iment with H measured by LIDAR. a) Bottom profile and averaged water height at
the beginning of the experiment (grey), Bottom profile and averaged water height at
the end of the experiment (brown). b) Wave energies associated with water heights.
The energy is calculated on the black rectangle ΩA.

The quantity I =
∫
ΩA

EHdx corresponds to the integral of EH on the subdo-

main ΩA. Unsurprisingly, in this part of the domain ΩA (mainly the breaking
zone), the energy of the final profile is lower than the energy of the initial
profile (≈ 10%).

Other assumptions assess the behaviour of the sea bottom and originate
from general observations. In particular, the bed-load sediment transport is
controlled by the orbital displacement of water particles (Soulsby 1987); thus
a greater sediment mobility has to be considered in shallower waters. Another
natural observation concerns the slope of the seabed, which cannot be overly
steep without an avalanching process occurring (Reineck et al. 1973). Last, in
an experimental wave flume, the quantity of sand must remain constant over
time, with no inflow or outflow of sand to alter the sand stock.

2.2 Wave model

The time evolution of the sea bottom elevation is based on the assumption
that the bottom evolves to minimize a certain wave quantity. Thus, a wave
model providing a description of the surface wave state is essential. In this
study, we use the wave models XBeach (D. J. Roelvink et al. 2009), SWAN
(Booij et al. 1996) and an extended shoaling model presented in appendix D.

2.2.1 XBeach

The XBeach model is a process-based model developed by the Delft University
of Technology. It is a two-dimensional, depth-integrated numerical model that
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simulates the hydrodynamics, sediment transport, and morphological changes
of coastal systems. XBeach is a flexible model that can be used to simulate
a variety of coastal processes, including wave breaking, bedload transport,
and nearshore morphological changes. The model is based on the principles
of conservation of mass, momentum, and energy and uses a finite-difference
numerical scheme to solve the governing equations. XBeach has been widely
used in coastal studies due to its flexibility and accuracy, and it has been
applied to a wide range of coastal systems, including estuaries, beaches, and
coastal wetlands. The model can be used as a profile model in 1D (Pender et
al. 2013), or as an area model in 2D (McCall et al. 2010), and today, there are
three modes in which the hydrodynamics can be resolved in XBeach, being:

• Stationary – All wave group variations, and thereby all infragravity
motions, are neglected, and only the mean motions are included. This
type can be applied for modeling morphological changes under moderate
wave conditions;

• Surfbeat – This in-stationary, hydrostatic mode, is wave group resolv-
ing, and is hence also applicable when one is interested in the swash zone
processes;

• Non-hydrostatic – The non-linear Shallow-Water equations are solved,
and hence individual short wave propagation and transformation is re-
solved.

In our case, we use the Stationary mode.

2.2.2 SWAN

The SWAN model, also developed by the Delft University of Technology, is
a spectral numerical model designed to simulate waves evolving in coastal
regions, lakes, and estuaries under defined wind, bathymetry, and current con-
ditions. It is based on the Energy Density Balance equation linking the ad-
vection term to the source and sink terms. Therefore, the wave energy evolves
in both geographic and spectral space and changes its aspect due to the pres-
ence of wind at the surface, friction with the bottom, or during the breaking
of the waves. The SWAN model is a stable model based on unconditionally
stable numerical schemes (implicit schemes). SWAN, in its third version, is
in stationary mode (optionally non-stationary) and is formulated in Cartesian
or spherical coordinates. The unconditional numerical stability of the SWAN
model makes its application more effective in shallow water.

2.2.3 Extended Shoaling

This model is presented in appendix D. It was inspired by the former wave
model which was based on the linear wave theory (Dean et al. 2004). This
simple model determines the significant wave height, noted H along the cross-
shore profile. Let Ω = [0, xmax] be the domain of the cross-shore profile, where
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x = 0 is an arbitrary point in deep water, and xmax is an arbitrary point
beyond the coastline. The Ω domain is divided into two disjoint subsets: the
ΩS shoaling zone and the ΩB breaking zone. The wave height H on ΩS is
based on the shoaling equation (1), where H0 is the deep water wave height
and KS is a shoaling coefficient. This simple model is described as follows:

H(x, t) =

{
H0(t)Ks(x, h) for x ∈ ΩS

γh(x, t) for x ∈ ΩB

. (1)

For the breaking in the ΩB area, the model is essentially based on Munk’s
breaking criterion γ (Munk 1949).

2.3 Morphodynamic model based on Wave Energy Op-
timization

The evolution of the sea bottom is assumed to be driven by the minimization of
a cost function J (J.s.m−1). Recalling the hypotheses made in section 2.1, the
shape of the beach profile is determined by the minimization of the potential
energy of shoaling waves, for all t ∈ [0, Tf ]:

J (ψ, t) =
1

16

∫ t

t−Tcoupl

∫
Ω

ρwgH
2(ψ, x, τ)dxdτ, (2)

where H denotes the height of the waves over the cross-shore profile (m),
ρw is water density (kg.m−3), and g is the gravitational acceleration (m.s−2).
Tcoupl (s) defines the coupling time interval between wave and morphodynamic
models so that we have Tf/Tcoupl iterations between the two models involved.
Unlike the previous paper (Dupont et al. 2023), this time the functional is
calculated over the entire domain. Indeed, wave energy is transferred to other
contributions: bottom friction, current, turbulence, etc. These contributions
are shown in (Sous et al. 2020). In other words, minimizing J over Ω with such
models means that bed changes occur to maximize dissipation and transfer of
wave energy to current.

In order to describe the evolution of the beach profile, whose initial state is
given by ψ0, we assume that the sea bottom elevation ψ defined as a function
of x. In its effort to minimize J , the dynamic of ψ is described by:{

ψt = Υ Λ d
ψ(t = 0) = ψ0

, (3)

where ψt is the time derivative of ψ, that is the evolution of the bottom
elevation over time (m.s−1). Υ is a measure of the sand mobility expressed in
m.s.kg−1. This parameter is defined on the basis of an Exner-type flow model,
and its definition can be found in the appendix B. It has the same functionality
as XBeach’s morphological factor (J.A. Roelvink 2006) where it is possible to
divide simulation times by 18 as performed in (Shafiei et al. 2023; Marchesiello
et al. 2022) on the LIP-1B experiment. Λ is a local function which represents
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the influence of the relative water depth kh on the beach profile dynamics
and is defined after the term describing the vertical attenuation of the velocity
potential according to linear wave theory (Soulsby 1987):

Λ : Ω× [0, h0] −→ R+

(x, z) 7−→ cosh(k(x)(h(x)− (h0 − z)))

cosh(k(x)h(x))
.

(4)

And d is the direction of the descent (J.s.m−2), which indicates the manner in
which the sea bottom changes. Under unconstrained circumstances, we have

d = −∇ψJ . (5)

It is therefore important to know how to calculate this quantity; this will be
the subject of most of the developments in the sections 3 and 4.

Remark: This dynamic described (eq (3)), only modifies the bottom elevation
and does not account for lateral displacements. It permits, for instance, the
apparition of sedimentary bars but cannot predict their lateral displacements.
This will be discussed more thoroughly in the discussion section 6.2.

Constraints are added to the model to incorporate minimal physics required
to deliver realistic results. The first constraint concerns the local slope of the
bottom. Depending on the composition of the sediment, the bottom slope is
bounded by a grain-dependent threshold Mslope (Dean et al. 2004). This is
conveyed by the following equation involving the local bottom slope:∣∣∣∣∂ψ∂x

∣∣∣∣ ≤Mslope. (6)

The dimensionless parameter Mslope represents the critical angle of repose
of the sediment. This angle is based on observed angles in natural beach
environments, which are often between 0.01 and 0.2 (Bascom 1951; Vos et al.
2020; Short 1996). We have considered the observed critical angle of 0.2.

A second example concerns the sand stock in the case of an experimental
flume. In a flume, the quantity of sand must be constant over time, as given
by (7), contrarily to an open-sea configuration where sand can be transported
between the nearshore zone and a domain beyond the closure water depth
where sediment is definitely lost for beach morphodynamics (Hattori et al.
1980; Quick 1991). This constraint can be written as :∫

Ω

ψ(t, x)dx =

∫
Ω

ψ0(x)dx ∀t ∈ [0, Tf ] (7)

This constraint is necessary for verifying and validating the numerical model
with the wave flume experimental data.
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3 Gradient calculation with respect to the shape
∇ψJ

Calculation of∇ψJ is necessary to do shape optimization with descent method
equation (5). This quantity is not easy to compute since we do not differentiate
on an axis but on a shape ψ. J depends on wave height H; it is thus advisable
to have a very simple wave model in order to differentiate it easily. We assume
at first that J is of the form J (H(ψ(x))) involving dependencies with respect
to wave quantities H. This sensitivity is given by:

∇ψJ = ∇HJ ∇ψH,

= ∇H(
1

16
ρgH2)∇ψH,

=
1

8
ρgH∇ψH.

(8)

Calculating ∇ψJ reduces to that of ∇ψH. It can be done analytically using
the simple shoaling model described in equation (1) as described later in section
3.1. One can also use a heavy formalism like automatic differentiation (Hascoet
et al. 2004; Mohammadi et al. 2011). These strategies are described below and
in section 4, where we show how to obtain∇ψH whatever may be our functions
H and ψ. For example, we can directly calculate ∇ψJ only from J and ψ.

3.1 Analytical calculation of ∇ψH

The analytical method is the most precise (because it gives the exact value)
and the fastest in calculation time. To illustrate the purpose, we take equations
(1) of H and we differentiate them in the following way:

∇ψH =

{
H0(t)∇ψKs(x, h) for x ∈ ΩS

γ∇ψh(x, t) for x ∈ ΩB
. (9)

The problem is reduced to the calculation of ∇ψKS(x, t) and ∇ψh(x, t). The
relation h = h0 − ψ ensures that ∇ψh(x, t) = −1. Moreover, we have:

KS =

[
tanh(kh)

(
1 +

2kh

sinh(2kh)

)]−1/2

. (10)

Let U(X) = tanh(X)

(
1 +

2X

sinh(2X)

)
and X = kh. Introducing U in equa-

tion (10) and derivating ψ results in:

∇ψKS = −1

2
U−3/2∇ψU. (11)

By trigonometric transformation, we can demonstrate that:
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∇ψU = ∇ψX
2 cosh2(X)−X sinh(2X)

cosh4(X)
, (12)

we also have:
∇ψX = h∇ψk + k∇ψh = h∇ψk − k. (13)

Moreover, differentiating both sides of the dispersion equation σ2 = gk tanh(kh)
by ψ gives

∇ψk =
k2

cosh(kh) sinh(kh) + kh
. (14)

Combining (11),(12), and (14), we obtain ∇ψKS, and therefore ∇ψH, on ΩS .

This method is the most accurate and robust because it gives the analytical
solution directly. However, it is applicable to a very limited number of wave
models. Indeed, they must be very simple to be differentiated by hand. Our
ambition is to have a strategy that may allow to differentiate the mathematical
representation of any hydrodynamic.

3.2 Finite difference calculation of ∇ψH

Finite difference methods are based on the idea of approximating the derivative
of a function at a point by taking the difference between the values of the
function at two adjacent points. Considering the directional gradient formula
at ψ along direction l:

∇ψH(ψ) = lim
ε→0

H(ψ + εl)−H(ψ)

ε
. (15)

We could define a first order finite difference approximation of the gradient at
ψ ∈ RN taking for l the vectors ei=1,..N of the canonical basis of RN . The
ith evaluation provides the corresponding component of the gradient vector.
This method requires N + 1 evaluation of the wave model which makes the
method computationally expensive, as it can be classically of the order of
several thousand runs in practice.

3.3 Automatic differentiation (AD) method to calculate
∇ψH

Automatic differentiation (AD) of programs is an important tool for numerical
optimization and scientific computing. It is a technique for computing deriva-
tives of a given program by successive derivation of the lines of the code. AD
can be used to compute derivatives of functions with respect to both scalar
and vector variables (Griewank et al. 2008).

9



3.3.1 Direct and reverse modes of Automatic Differentiation

Direct AD uses the chain rule to compute derivatives of a program with re-
spect to the input parameters of the code. The direct AD method can be
used to compute derivatives of functions of any order, including higher-order
derivatives. This method is relatively simple to implement, and is often used
when the number of input variables is small. On the other hand, when the
size of input variables is large, the reverse mode of AD is used. The compu-
tation cost is independent of the size of the inputs. A typical AD tool is the
TAPENADE program (Hascoet et al. 2004) which provides Fortran or C codes
for the derivatives of programs in direct and reverse modes. This means that
we need to provide the source code. As a consequence, the main limitation
of this approach is that it cannot be applied to a commercial code when the
source code is not provided. Even when the code is provided (open source),
it is written in a modular way, which makes it very difficult to isolate the
variables to differentiate.

4 Using Hadamard for the calculation of ∇ψJ
In this section, we focus on the calculation of ∇ψH in order to obtain ∇ψJ (as
illustrated in section 3). This method can be applied to whatever may be the
variables: we can directly calculate ∇ψJ . However, in this case, the approx-
imation would be less good because the analytical derivative of J (equation
(8)) is always more accurate.

4.1 Principle

We use the approximation described in (Hadamard 1914; Mohammadi 2007;
Mohammadi 2010). We consider ∇ψH in the sense of Hadamard following the
definition:

∇ψH = lim
ε→0

H(ψ + εn)−H(ψ)

ε
, (16)

where n is the normal to the shape ψ. This can be seen as applying a Gâteaux
(1913) derivation in the direction normal to the shape. The principle is illus-
trated in figure 3.
Using the Taylor-Young formula at order 1, we consider the following approx-
imation:

∇ψH = lim
ε→0

H(ψ) + ε∇XH.n−H(ψ)

ε
,

≈ (∇XH).n,

(17)

with X = (x , z)
⊺
. This approximation is illustrated in the appendix C on

simple analytical examples; and also on the simple shoaling model in section
4.3.
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Figure 3: Representation of two sea bottom profiles ψ and ψ + εn. To calculate
the gradient, we need to calculate at all points the associated normal vector n.

4.2 Numerical validation

The approximation (17) can be verified by calculating numerically the solution
of the analytical example presented in the appendix C.2. We calculate the
error L2 named EL2 =||(∇ψH)exact − (∇ψH)numerical||L2 for points which
correspond to the spatial steps dx = [10−5, 10−4, 10−3, 10−2, 0.1, 1, 10, 100] for
a length L = 1000 m. We obtain the curves in figure 4.

Figure 4: A) Calculation of∇ψH using Hadamard approximation with the following
problem (see C.2): ψ = ax+ b, H = cos(ψ), with a = 0.02, b = −2. B) L2 error and
order of convergence for a comparison between the analytical solution of the simple
problem described in C.2 with H = cos(ψ).

We notice that the approximation becomes good very quickly. On the
figure 4.A, we see that an increment dx = 20 m is enough to reach an almost
perfect approximation. The figure 4.B shows that the error is very small and
converges to the order O(dx1/2). The sources of error for this calculation could
be a) the approximation in the calculation of the vector n (in this case, it is null
because ψ is linear), b) the computation of the gradient by finite differences
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(order 1).

4.3 Validating the Hadamard solution

Historically, the OptiMorph model used the shoaling equation (1) and was
based on the analytical differentiation of this equation (section 3.1). The
Hadamard strategy allows us to obtain a calculation of ∇ψH in a numeri-
cal way, as with finite differences. To implement this approach practically,

we simply need to use the equation (17) with: ∇XH =

(∂H
∂x
∂H
∂ψ

)
and n =

1√
dψ2+dx2

(
−dψ
dx

)
and we obtain:

∇ψH ≈ ∂H

∂x
nx +

∂H

∂ψ
nz, (18)

with nx and nz the x and z component of n. In OptiMorph, we implement
equation (18) and we compare the calculations of ∇ψH using the simple shoal-
ing model presented in (1). The figure 5 shows a comparison of the Hadamard
and exact solutions on a representative example: an offshore water levelH0 = 2
m, an offshore water depth h0 = 10 m, a wave period T0 = 10 s and a linear
bottom profile ψ. The figure 5.A corresponds to a simple case and the figure
5.B to a case with small scales perturbations of the sea bottom.

We notice that the approximation is very good. There is still one point that
has a defect in the non-linearity at x = 670 m. However, this does not alter the
morphodynamic results. To be sure of the robustness, we add non-linearity
with a random function that induces perturbations. These are composed of
sinusoidal functions and random translations between [−0.2, 0.2], on the entire
domain. We also set a hole at x = 650 m. We obtain the simulation figure
5.B. Even with all these perturbations, the Hadamard approximation remains
very robust.
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Figure 5: Comparison of numerical and analytical solution of ∇ψH using Opti-
Morph model. Configuration without (A) / with (B) perturbations, H0 = 2 m,
h0 = 10 m and the wave period T0 = 10 s. In dodgerblue, the wave height H, in
brown the bottom profile ψ, in red ∇ψH calculated analytically, in blue ∇ψH cal-
culated by Hadamard strategy.

5 Application of Hadamard Strategy

To go further, we can use the Hadamard strategy to couple any wave model to
the morphodynamic model based on the gradient descent equation presented
in (3). The figure 6 shows the detailed implementation of this coupling.

Figure 6: OptiMorph workflow coupled with wave model

In this section, we perform Hadamard morphodynamics simulations forced
by three distinct hydrostatic models: our extended shoaling model presented
in appendix D, SWAN and XBeach. Simulations are performed on 5 different
experimental data sets: (i) one configuration from the SANDS experience
(Eichentopf et al. 2018); (ii) one configuration from the LIP 11D experience
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flume experiment presented in table A1 (part of the XBeach benchmark (JA
Roelvink et al. 1995)); (iii) three from open-sea configurations with linear,
concave and convex bottom profiles.

5.1 Description of flumes experiments

In this section, we briefly present the LIP 11D (JA Roelvink et al. 1995)
and SANDS (Eichentopf et al. 2018) experiments. These morphodynamic
experiments are necessary to validate our model.

5.1.1 The SANDS experiments

The experimental setup for this study was conducted at the Canal d’Investigació
i Experimentació Maŕıtima (CIEM), a large-scale wave flume located within
the Universitat Politècnica de Catalunya (UPC) in Barcelona, Spain. The
CIEM is a large-scale wave flume of 100 m length, 3 m width and 4.5 m depth
with a working water depth of 2.47 m and 2.5 m. Waves were generated using
a hydraulic wave paddle positioned at the end of the deep-water section in
the wave flume. The initial beach profile was carefully crafted by hand using
well-sorted, commercial sand with a narrow grain size distribution (d50 = 0.25
mm, d10 = 0.154 mm, d90 = 0.372 mm), resulting in a measured sediment
fall velocity of ws = 0.034 m/s. The active portion of the beach profile fea-
tured a slope of 1/15. The experimental configuration of the SANDS project
in Barcelona was meticulously documented in (Alsina et al. 2011).

This experiment (Eichentopf et al. 2018) is composed of two parts, an
erosive part on a linear beach with slopes 1/15 with a forcing of Hs = 0.53
m and T0 = 4.14 s for an experiment duration of 23 hours and 30 minutes.
An accretionary section on the final beach profile of the erosive section, with
a forcing of Hs = 0.32 m and T0 = 5.44 s for an experiment duration of 20
hours and 25 minutes.

5.1.2 The LIP experiments

The Large Installations Plan (LIP) experiments were conducted in the Delta
Flume of Delft Hydraulics (now Deltares) (JA Roelvink et al. 1995), which
is a large-scale facility measuring 225 x 7 x 5 m. During these experiments,
various parameters such as water levels, wave-averaged velocity and suspended
concentration profiles, orbital velocities, and bed levels were measured.

Three types of experiments were carried out in LIP under different types
of irregular waves, resulting in three distinct beach states: stable (LIP 1A),
erosive (LIP 1B), and accretive (LIP 1C).

In LIP 1A, the initial profile was linear with a slope of 1/30 and a median
grain size of 0.22 mm. This part of the experiment represented a pre-storm
event with the creation of a sedimentary bar under moderate wave conditions
(Hs = 0.9 m, T0 = 5 s).
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The LIP 1B part of the experiment used the final profile from LIP 1A and
represented a storm event with larger waves (Hs = 1.4 m, T0 = 5 s). The
bar moves seaward under the action of large waves, highlighting the physical
process of erosion.

Finally, the LIP 1C part of the experiment used the final profile from LIP
1B and represented a post-storm event with smaller waves (Hs = 0.6 m, T0 =
8 s). The bar moved back towards the coast asymmetrically, highlighting the
physical process of accretion.

The bed profile was measured using a profile follower that used an auto-
mated sounding system. The LIP experiments provided valuable insights into
the morphodynamic behaviour of sandy beaches under different wave condi-
tions and have been widely used to validate numerical models of beach mor-
phodynamics.

5.2 Hydro-Morphodynamic results on Flume experiment

To begin, we perform hydro-morphodynamic simulations with our morpho-
dynamic approach using Hadamard’s calculation of ∇ψH. To highlight the
phenomenological aspect of our model, we start by performing simulations on
SANDS erosive experience (Eichentopf et al. 2018).

In this case, we set up the models as follows. We set a domain Ω of 53
m in length with a uniform subdivision of 530 cells. For XBeach and SWAN,
the incoming wave boundary condition is provided using a JONSWAP wave
spectrum (Hasselmann et al. 1973), with a significant wave height of Hs = 0.53
m and a peak frequency at fp = 4.14 s−1. For the extended shoaling model
(appendix D), we use directly Hs and a wave period T0 = 4.14 s. The breaker
model of XBeach uses the D. J. Roelvink (1993) formulation, with a breaker
coefficient of γ = 0.4, a power n = 15, and a wave dissipation coefficient of 0.5.
The breaker model of SWAN is based on the Battjes et al. (1978) breaking
parametrization and the extended Shoaling model is simply based on a Munk
breaking criterion γ = 0.4. The mobility parameter Υ of our morphodynamic
model has a value of 5 × 10−3 m.s.kg−1. The model is set to run 23.5 h
using a coupling time of 42.3 s. We compare the numerical results to those
experimental data. The hydro-morphodynamic results are presented in figure
7.A and the differences between the final bottom profile ψf and initial bottom
profile ψ0 are presented in figure 7.B. The reference is the experimental curve
in dark red.
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Figure 7: A) Hydro-Morphodynamic results obtained with OptiMorph model
using Hadamard strategy with wave models (Shoaling (green), SWAN (red) and
XBeach (blue)). Bottom profile configuration from the SANDS erosive experience.
Black: bottom profile, green: H and ψ from improved shoaling with Hadamard
strategy, red: H and ψ from SWAN with Hadamard strategy, blue: H and ψ
from XBeach with Hadamard strategy, dark red: ψ from experience. B) Mor-
phodynamic ecarts of ψf − ψi obtained with the Shoaling, SWAN, XBeach mod-
els and experiment. Bottom profile configuration from the SANDS channel experi-
ment. In green: morphodynamic differences from shoaling with Hadamard strategy
(ψRMSE = 11.7 cm), red: morphodynamic differences from SWAN with Hadamard
strategy (ψRMSE = 12.7 cm), blue: morphodynamic differences from XBeach with
Hadamard strategy (ψRMSE = 13.5 cm), dark red: morphodynamic differences from
the experiment.

In all three simulations and the experiment, a sedimentary bar is created
over time and a trough is formed between the sandbar and the shore. These
sedimentary bars are positioned below the breaking point of the wave. The
sedimentary bars from the simulations have one main hump, whereas in the
experiment there are two. In the simulations, the trough rises once the water
has touched the shore (x = 1 m), while in the experiment, the trough continues
afterwards (up to x = 7 m). The three simulations produce relatively similar
results.

The next simulation from LIP - 1C flume experiment (JA Roelvink et al.
1995). In this other case, we set a domain Ω of 180 m in length with a uniform
subdivision of 180 cells. For XBeach and SWAN, the incoming wave boundary
condition is provided using a JONSWAP wave spectrum (Hasselmann et al.
1973), with a significant wave height of Hs = 0.6 m and a peak frequency at
fp = 8 s−1. For the extended shoaling model (appendix D), we use directly
Hs and a wave period T0 = 8 s. The breaker model of XBeach, SWAN and
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extended Shoaling model are the same as in the previous simulation (still with
γ = 0.4). The mobility parameter Υ of our morphodynamic model has a value
of 5 × 10−3 m.s.kg−1. The model is set to run 13 h using a coupling time of
46.8 s.

We compare the numerical results to those experimental data. The hydro-
morphodynamic results are presented in figure 8.A and the differences between
the final bottom profile ψf and initial bottom profile ψ0 are presented in figure
8.B. The reference is the experimental curve in dark red.
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Figure 8: A) Hydro-Morphodynamic results obtained with OptiMorph model using
Hadamard strategy with wave models (Shoaling (green), SWAN (red) and XBeach
(blue)). Bottom profile configuration from the LIP 1C channel experiment. Red
points: measured HRMS, black: bottom profile, green: H and ψ from improved
shoaling with Hadamard strategy, red: H and ψ from SWAN with Hadamard strat-
egy, blue: H and ψ from XBeach with Hadamard strategy, dark red: ψ from expe-
rience. B) Morphodynamic ecarts of ψf − ψi obtained with the Shoaling, SWAN,
XBeach models and experiment. Bottom profile configuration from the LIP 1C chan-
nel experiment. In green: morphodynamic differences from shoaling with Hadamard
strategy, red: morphodynamic differences from SWAN with Hadamard strategy, blue:
morphodynamic differences from XBeach with Hadamard strategy, dark red: mor-
phodynamic differences from the experiment.

In this experiment, the outer sedimentary bar is moving towards the coast.
None of the simulations reproduces this behaviour: the outer bars remain in
the same place (x = 120 m). In the experiment, the inner sediment bar grows
(x = 140 m). Simulations show very similar behaviour. The three simulations
produce relatively similar results.
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5.3 Hydro-Morphodynamic results on Open-sea configu-
rations

In this section, we perform simulations in open-sea configurations. The bottom
profiles are linear, concave and convex shapes. These shapes are not directly
observable in nature but representative of several typical settings (dissipative,
reflexive). Forth, they allow to observe if the morphodynamic model is able to
reproduce the phenomenology of sedimentary evolution of sand beaches. For
these cases, we perform our morphodynamic model using waves from SWAN,
XBeach and extended Shoaling models.

In this configuration, we use the same model settings as before with the
exception of a Ω domain length resized at 1000 m with a uniform subdivision
in 1000 cells. The forcing is no longer uniform but represents a storm event of
4 days with a peak wave height Hs= 2 m. The waves have a period of T0 =
12 s and the water depth at x = 0 is h0 = 20 m. The coupling time is set to
345 s. The results of these simulations are presented in figure 9.

Figure 9: Evolution of ψ using Hadamard strategy with extended Shoaling (green),
SWAN (red) and XBeach (blue) models. Simulation on open-sea configuration with
linear, convex and concave configurations. Simulation parameters of H0 = 2 m,
T0 = 12 s, h0 = 20 m, Ω = 1000 m.

In all three cases, the simulations produce very similar results. Depending
on the angle of the slope, a sedimentary bar is observed more or less far from
the shore. For a steep angle (convex beach), the sediment bar is very close
to the shore; whereas for a slight angle (concave beach), the bar is further
from the shore. All these sedimentary bars are all followed by a trough and
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are positioned below the breaking point of the wave. In the case of a convex
profile, the sediment bar and the wave breaking, produced using SWAN, are
closer to shore than the other two simulations.

6 Discussion

6.1 Computation time

This section is devoted to the analysis of simulation times of the wave models
and our morphodynamic calculation. Table 1 corresponds to the computation
times for the LIP 11D - 1C simulations (section 5.2) with Hadamard strategy
using the SWAN, XBeach and extended Shoaling models. XBeach was used for
providing wave calculation only but this model also calculates the circulation.
Therefore, it was necessary to run it over a longer time than that required by
morphodynamics to get the right significant wave height Hs.

Hydrodynamic Morphodynamic by
gradient descentSimulation with 180 points Shoaling SWAN XBeach

Computation time for 1 iteration (s) 0.004 0.278 7.372 0.012
Total computation time for 1000 iterations (mins) 0.26 4.83 123.06 0.2

Table 1: Computation time with 180 points calculated: LIP - 1C with different
wave models. Simulations made with a 2.4 GHz computer using a single core on an
Intel Xeon E5-2680 processor.

We notice that the calculation time of the Shoaling model is very small
(direct calculation in python); it is at least 50 times smaller than that of
SWAN and XBeach. XBeach calculation times come from the circulation
model, which has the advantage of giving the current u (contrary to SWAN)
and could be used for another definition of J functional. The morphodynamic
calculation time is very small and negligible compared to the hydrodynamic
(except shoaling). By increasing the mesh size to 1000 points (5 times more),
we obtain the table 2.

Hydrodynamic Morphodynamic by
gradient descentSimulation with 1000 points Shoaling SWAN XBeach

Computation time for 1 iteration (s) 0.023 1.193 28.738 0.074
Total computation for with 1000 iterations (mins) 1.61 21.12 480.2 1.27

Table 2: Computation time with 1000 points calculated with different wave models.
Simulations made with a 2.4 GHz computer using a single core on an Intel Xeon E5-
2680 processor.

The calculation times are also multiplied by 5. To save computing time, we
could use some interpolation strategy between grid of the wave tool and that of
the morphodynamic model. This would allow performing wave computations
on grids with fewer points with the same final results.
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6.2 Flume simulation

This section is devoted to the morphodynamic behaviour of our model us-
ing the Hadamard strategy on flume configuration (JA Roelvink et al. 1995;
Eichentopf et al. 2018). The main question is to check whether the numeri-
cal model is capable of reproducing the morphodynamic behaviours measured
experimentally.

In the SANDS results shown in figure 7, we can see that a sediment bar is
created from a linear beach profile (1/15). Although the simulations do not
reproduce the sedimentary bar exactly like the experiment, they show very
similar results. The sedimentary bar in the simulations is much shorter (in
the sense of x) than in the experiment. In the simulations, the pattern of
troughs between the sediment bar and the shoreline is very similar to that
in the experiment. However, in the experiment, the trough goes beyond the
water level. This result cannot be observed in our model (except with a tide)
as there is currently no mechanism to model this erosion beyond the water
level. This induces errors in our model, which conserves the quantity of sand.
This lack of sand could explain why our sedimentary bar is shorter than the
experimental one.

In the LIP 1C results shown in figure 8, we notice that two main sandbars
are observed. The inner one (x= 140 m) seems to grow. The outer one (x=
120 m) moves to the shore. The 3 simulations based on Hadamard strategy
succeeded in reproducing the behaviour of the inner bar (x = 140 m). XBeach
model coupled to OptiMorph (blue) overestimates this sandbar and SWAN
model coupled to OptiMorph (red) underestimates it. On this bar, there is a
consequent loss of energy which induces a strong gradient and allows the bar
to grow. However, none of the simulations has succeeded in reproducing the
behaviour of the outer bar (x = 120 m) moving towards the shore.

This is because, as mentioned in section 2.3, the parameterization of the sea
bottom ψ and equation (3) describing its dynamics only accounts for vertical
variations using the gradient of the functional with respect to the sea bottom
shape. Therefore, no lateral translation can be predicted by this model. To
be able to account for lateral displacements, we need to introduce transport
mechanisms, though, for instance, the following modification of the model:{

ψt = Υ Λ d− V∇sψ
ψ(t = 0) = ψ0

, (19)

where we have introduced a transport operator in the right-hand side. ∇sψ
is the spatial derivative of ψ along the mean slope of the sea bottom and V
the velocity along this direction. We show the behaviour of the model using
the following expression of V involving, the amplitude of orbital velocity at
bottom Ub (Wiberg et al. 2008), and the significant wave height H:

V = 0.01Ub

(
H

Hmax

)p
with Ub =

H π

T0 sinh (kh)
. (20)
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The dimensionless morphodynamic factor 0.01 has been chosen in order to
make the ranges of lateral and vertical variations comparable.

Figure 10.A illustrates the behaviour of this model for different p values.
The best choice appears to be p = 1 and as expected, the bar moves back
towards the coast (asymmetrically) under smaller waves which shows that
transport mechanisms were necessary. Velocity distribution figure 10.B shows
that the transport mechanisms are mainly located around the two sandbars.

To go farther, and to make the approach generic, we should express this
velocity V using the gradient of the functional as done for the vertical mo-
tion using the gradient of the functional with respect to the shape. But this
development is by far beyond the scope of this paper.
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Figure 10: A) Morphodynamic results by the OptiMorph model augmented by the
transport mechanisms for p = 0, 1, 2 and the XBeach wave model, for the LIP 1C
channel experiment. B) Velocity distribution for p = 1.

6.3 Open-Sea simulation

This section is devoted to the morphodynamic behaviour of our model using
the Hadamard strategy on open-sea configuration. The two simulations figures
7 and 9, show that there is a creation of the sandbar at the wave breaking point.
Figure 9 shows that a slight pit is created before the sandbar and a trough
one after. These observations are providing because they represent the major
morphologic features along a typical sand bar profiles. Indeed, it is common to
observe sedimentary bars at the wave breaking point. Moreover, the steeper
the slope (convex), the later the breaking, the closer the sandbar is to the
shore (x = 950 m). Conversely, the gentler the slope (concave), the farther
the breaking point, the farther the sandbar is from shore (x = 650 m). These
types of beach profiles are usually observed in nature (Wright et al. 1984).
It highlights the fact that even with an unrealistic initial beach profiles, the
model can produce a realistic beach profile without any need in pre-nucleation
of the bottom perturbation. Forth, whatever the physics behind the waves,
the model is able to produce very similar morphodynamic results.
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6.4 Gamma sensibility

To highlight the creation of sandbars at the wave breaking point, we artificially
change the breaking point by varying the Munk (1949) criterion γ on hydro-
morphodynamic simulations using Hadamard strategy. These simulations are
performed with the SWAN wave model and the same wave parameters as the
simulation 5.3 (T0 = 12 s and H0 = 2m). By taking the Munk (1949) criteria
at the values 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, we obtain the figure 11.

Figure 11: Hydro-morphodynamic results with different breaking criterion γ - Sim-
ulation with OptiMorph (Hadamard strategy) using SWAN model - H0 = 2 m,
T0 = 12 s, h0 = 20 m.

The figure 11 shows that the sandbars are formed systematically at the
wave breaking point. The higher the coefficient γ, the closer to the coast the
waves break and the closer the sandbar is to the coast. Moreover, troughs
at the lee side of the sandbar like observed in the nature are systematically
nucleated (Wright et al. 1984).

7 Conclusion

In this paper, we recall what is OptiMorph model and we have highlighted
its limitations. Using Hadamard’s approach, we calculate an approximation
of the gradient ∇ψJ of the functional J with respect to the shape ψ with-
out any additional wave calculation. This study allows us to differentiate any
functional J according to any input variable and relating to any wave model.
The analytical and numerical comparisons performed prove that Hadamard
strategy is accurate and robust. We applied this tool to realistic and ide-
alized hydro-morphodynamic simulations. The morphodynamic results with
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SANDS (Eichentopf et al. 2018) are very encouraging because they succeed
in reproducing the dynamics of the dominant sedimentary bar. However, the
initial results on LIP 1C (JA Roelvink et al. 1995) failed to reproduce the dis-
placement of the outer sedimentary bar, although the behaviour of the inner
was well reproduced. The model still needs to be improved in order to fix
the lateral displacement and erosion above the water level. Nevertheless, our
model is of low-complexity and reproduces the phenomenology as shown by
the open-sea and SANDS results where it creates a bar at the breaking point
without the need of a priori nucleation or pre-location of the bar.
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Appendix

A LIP data

Experiment Initial Geometry HS [ m] Tp[ s] Duration [h]

LIP-1A Initial beach profile 0.9 5
LIP-1B Result of 1A 1.4 5 18
LIP-1C Result of 1B 0.6 8 13

Table A1: LIP flume experiment parameters
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B Link with morphodynamic flux-based mod-
els and sediment characteristics Υ

In this section, we show how to link the bed receptivity coefficient in minimization-
based to the bed porosity in classical flux-based morphodynamic models. The
literature on morphodynamic models is vast (Nielsen 1992; Nielsen 2002; Rooi-
jen et al. 2012; Chen et al. 2023). Modern numerical implementations rely on
models which are in a divergence form. For instance, the Exner equation (Paola
et al. 2005; Yang et al. 1996) describes the conservation of mass between sedi-
ment in the bed of a channel and sediment that is being transported. It states
that bed elevation increases (the bed aggregates) proportionally to the amount
of sediment that drops out of transport, and conversely decreases (the bed de-
grades) proportionally to the amount of sediment that becomes entrained by
the flow. The model involves the local porosity of the bed λp(x) ∈ [0, 1[, a
function in space x, but not in time. The model writes:

ψt +
1

1− λp(x)
div (q(x, t)) = 0,

completed with initial and boundary conditions.
In the literature, the expression of q is diverse. But our discussion remains

the same whatever may be the formulation of q. For the sake of simplicity, we
consider qx a flux in one dimension of space. Now, let us write the flux-based
model and link it to our approach presented through the steepest descent
formulation for simplicity:

ψt = − 1

1− λp(x)
qx = −Υ(x)Λ(x)∇ψJ (x, t). (B1)

There is no explicit boundary condition in the minimization model. In this
case, we consider Λ(x) = 1, the maximum disturbance. As we saw, global sand
conservation, can be evaluated through a constraint. In the same way, the
local maximum slope is expressed as a constraint. ∇ψJ (x, t) corresponds to
the direction of the descent without constraint and d with. The bed receptivity
Υ(x) is a positive function which we link to the couple bed porosity λp(x) and
flux q as follows.
Locally integrating in space equation (B1) over a small interval ]x − ε, x + ε[
around x we have:∫ x+ε

x−ε
Υ(s)∇ψJ (s, t)ds =

∫ x+ε

x−ε

1

1− λp(s)
qs(s, t)ds.

Assuming Υ and λp constant over this small interval, which is physically real-
istic, we have:

Υ(x)

∫ x+ε

x−ε
∇ψJ (s, t)ds =

1

1− λp(x)

∫ x+ε

x−ε
qs(s, t)ds.

24



This leads to:

Υ(x)

∫ x+ε

x−ε
∇ψJ (s, t)ds =

1

1− λp(x)
(q(x+ ε, t)− q(x− ε, t))

which we write as:

Υ(x) = F (x, t)
1

1− λp(x)
,

where factor F (x, t):

F (x, t) =
q(x+ ε, t)− q(x− ε, t)

2ε∇ψJ |
(x,t)

represents the ratio between the local flux difference and the local average
shape gradient ∇ψJ |

(x,t)
= (1/(2ε))

∫ x+ε
x−ε ∇ψJ (s, t)ds at point x.

If the bed porosity does not change in time, this evaluation is made only
once at t = 0 and hence, given a flux and a bed porosity, the corresponding
minimization-based procedure can receive an equivalent pointwise initializa-
tion (at the first iteration in an iterative time integration procedure).

In operational conditions, however, it is very unlikely to have a pointwise,
even inaccurate, estimation of λp(x). It is more reasonable to look for an
’equivalent’ constant bed porosity for a given site knowing that what is impor-
tant in coastal engineering is not the knowledge of the pointwise bed porosity,
but the prediction of beach future behaviour based on this site macroscopic
characteristics. Also, in homogeneous bed, as it is often the case in sandy
beaches, λp(x) is a constant. We therefore look for a constant bed receptivity
Υ = F 1

1−λp
over the domain of interest ]xL, xR[ (L, R indicating Left and

Right) given constant bed porosity λp and flux q with

F =
q(xR, 0)− q(xL, 0)∫ x

R

x
L

∇ψJ (s, 0)ds
, (B2)

which is a scalar, and the ratio between flux variation over ]xL, xR[ and the
average of local shape gradients. Here we have defined xL and xR as the
Left and Right extremities of the domain. So we have q(xR, 0) and q(xL, 0)
the boundary conditions of the flux-based model. F is a measure of how the
evaluation of local-based and optimization-based fluxes differs.

B.1 Illustration using a simple model

Assuming that we are on a configuration of bed load transportation without
suspended transport, we can calculate q(xR, 0) and q(xL, 0) by using a formula
of the bed load transport rate q with (Fredsøe et al. 1992):

q = 10
π

6
d50pU

′
f [1− 0.7

√
θc/θ′] (B3)
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with d50 the grain diameter, p the fraction of bed surface particles in motion,
U ′
f the skin friction velocity, θc the critical Shields parameter and θ′ the Shields

parameter. This formula has been chosen as one of the simplest. However,
we can choose to take suspended sediment transport into account, simply by
changing the expression of q in our model. Combining the equations (B2) and
(B3), we obtain the following expression of F :

F = πd50[10− 7
√
θc/θ′]

p(xL)Uf
′(xL)− p(xR)Uf

′(xR)

6
∫ x

R

x
L

∇ψ(s, 0)ds
.

We have shown how a conjunct giving of a bed porosity and a flux permits
the initialization of a minimization model according to the parameters of the
chosen local flux-based model which is comforting for users familiar with such a
more traditional approach. However, a same initialization does not mean that
the two models will follow the same path, as the minimization-based approach
introduces more physics. Indeed, in previous works, we have already shown
how our minimization-based formulation can be seen as an Exner equation with
a non-local flux (Mohammadi et al. 2011; Bouharguane et al. 2012) with terms
similar to those encountered in Fowler-like models (Fowler 2001; Kouakou et
al. 2006). Those terms bring the contribution of some non-local physics to the
morphodynamics.

This formulation also permits the comparison of the bed ψ evolution pre-
dicted minimizing different physical functionals J . It is thus a very efficient
exploratory model as defined by Murray (Murray 2007). However, it is not
possible to find the functional J associated to a given flux q because this re-
quires the mathematical concept of integration with respect to the shape to
give sense to:

J =
Υ

1− λp

∫
ψ

∇.q dψ.

Unfortunately, unlike differentiation with respect to the shape (Mohammadi
et al. 2009), the concept of integration with respect to the shape does not exist
as of today.

C Analytical examples of Hadamard derivative

In this section, we illustrate analytical examples of derivation of ψ on a quan-
tity A; concretely, we calculate ∇ψA.

C.1 Flat form

We consider the relation A = ψ2. We set in a general way ψ = {(x, y) ∈
R2| y−fψ(x) = 0} the space of ψ with fψ the function describing the bottom.
The flat form ψ = {(x, y) ∈ R2| y − c = 0} deformed from εn is given by
ψ+ εn = {(x, y) ∈ R2| y− c− ε = 0}. It could be illustrated by the figure C1.
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Figure C1: Illustration of ψ and ψ + εn with the function ψ : x→ c

Here we have:
ψ = {(x, y) ∈ R2| y − c = 0} and
A = ψ2 = {(x, y) ∈ R2| y − c2 = 0},

then, we have, thank to the definition, on the one hand:

∇ψA = lim
ε→0

(
1

ε
[A(ψ + εn)−A(ψ)]

)
,

= lim
ε→0

1

ε
[@@ψ

2 + 2ψε+ ε2︸︷︷︸
→0

−@@ψ
2]

 because A(ψ + εn) = (ψ + ε)2,

= 2ψ,

on the other hand:

∇XA.n = 2ψ∇X(ψ).n = 2ψ

(
0
1

)(
0
1

)
= 2ψ, (C1)

and therefore
∇XA.n = ∇ψA. (C2)

C.2 Linear form

The linear form {ψ = (x, y) ∈ R2| y − ax − b = 0} deformed by εn is given
by ψ + εn. We consider the relation A = cos(ψ). We set in a general way
ψ = {(x, y) ∈ R2| y−fψ(x) = 0} the space of ψ with fψ the function describing
the bottom. It could be illustrated by the figure C2.

We know the point P (0, b) is contained on the line. The point P ′ = P + εn
is therefore contained on the new translated line. We deduce the equation
rapidly:

ψ + εn = ax+ ε
√
a2 + 1 + b. (C3)

27



x

y

ψ

A

ψ + εn

t = 1√
a2+1

(
1
a

)
n = 1√

a2+1

(
−a
1

)

P = (0, b)

P ′ = P + εn b

a

Figure C2: Illustration of ψ, ψ + εn and A with the function ψ : x → ax + b and
A = cos(ψ)

Let us check the equation (17) for A = cos(ψ). On the one hand, we have:

∇ψA = lim
ε→0

(
1

ε
[A(ψ + εn)−A(ψ)]

)
,

= lim
ε→0

(
1

ε
[cos(ax+ ε

√
a2 + 1 + b)− cos(ax+ b)]

)
,

= lim
ε→0

1

ε
[cos(ax+ b)[cos(ε

√
a2 + 1)︸ ︷︷ ︸

→1−ε2(a2+1)

−1]− sin(ax+ b) sin(ε
√
a2 + 1)︸ ︷︷ ︸

→ε
√
a2+1)

]

 ,

= lim
ε→0

− cos(ax+ b)ε(a2 + 1)︸ ︷︷ ︸
→0

− sin(ax+ b)
√
a2 + 1

 ,

= − sin(ψ)
√
a2 + 1.

On the other hand, we have:

∇XA = − sin(ψ)∇Xψ = − sin(ψ)

(
−a
1

)
, (C4)

and therefore:

∇XA.n = − sin(ψ)√
a2 + 1

(
−a
1

)(
−a
1

)
= − sin(ψ)

(a2 + 1)√
a2 + 1

= − sin(ψ)
√
a2 + 1.

(C5)
The equality: ∇ψA = ∇XA.n is still verified.
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D Extended Shoaling model

The last Shoaling model presented in Cook (2021) and Dupont et al. (2023)
had certain limitations. This model was therefore improved to give birth to
the extended model below:

H(x, t) =

{
H0(x, t)KS(x, t) for x ∈ ΩS

F (γh(x, t)) for x ∈ ΩB

, (D1)

where F is a numerical parameterization function of the breaking defines below
(D2):

F (γh(x, t)) = H(xstart)+[H(xstop)−H(xstart)]·f(
x− xstart

xstop − xstart
)·g( hmax − h

hmax − hmin
),

(D2)
with x ∈ ΩB = [xstart, xstop], h ∈ [hmin, hmax] and the notations on figure D1.
Hstart and Hstop are the wave heights at the beginning and the end of the surf
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Figure D1: Illustration of notations.

zone on the domain ΩB = [xstart, xstop]. The first function f gives an account
of breaking without taking into account the bed shape. It simply gives the
appearance of breaking. The second function g takes into account the seabed
and interacts with it. Note that if f and g are the identity functions, we find
the linear breaking γh(x, t) illustrated on figure D1. We can present in figure
D2 some of these functions that set the breaking.

x

y f1

f2

g

Figure D2: Illustration of f1, f2 and g defined in [0, 1] −→ [0, 1].

These functions were chosen to try to capture a natural breaking. They
have no physical meaning. It is necessary to stipulate that the model first
locate all the ΩB domains and then apply the equation (D2) on each of them.
This type of model gives us the LIP - 1C simulation figure D3,
which gives very similar results to those produced by SWAN and XBeach.
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Figure D3: Wave results obtained with the Shoaling, SWAN and XBeach mod-
els. Sea bottom configuration from the LIP 1C channel experiment. Black points,
measured HRMS, black bottom profile, green H from extended shoaling (HRMSE =
0.045 m), red H from SWAN (HRMSE = 0.033 m), blue H from XBeach (HRMSE

= 0.028 m).

References
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Kouakou, Kouamé Kan Jacques and Pierre-Yves Lagrée (2006). “Evolution
of a model dune in a shear flow”. In: European Journal of Mechanics
- B/Fluids 25.3, pp. 348–359. doi: https : / / doi . org / 10 . 1016 / j .

euromechflu.2005.09.002.

Marchesiello, Patrick, Julien Chauchat, Hassan Shafiei, Rafael Almar, Rachid
Benshila, Franck Dumas, and Laurent Debreu (2022). “3D wave-resolving
simulation of sandbar migration”. In: Ocean Modelling 180, p. 102127. doi:
https://doi.org/10.1016/j.ocemod.2022.102127.
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