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ABSTRACT
With the emergence of federated learning (FL) and its promise
of privacy-preserving knowledge sharing, the field of intrusion
detection systems (IDSs) has seen a renewed interest in the develop-
ment of collaborative models. However, the distributed nature of FL
makes it vulnerable to malicious contributions from its participants,
including data poisoning attacks. The specific case of label-flipping
attacks, where the labels of a subset of the training data are flipped,
has been overlooked in the context of IDSs that leverage FL primi-
tives. This study aims to close this gap by providing a systematic
and comprehensive analysis of the impact of label-flipping attacks
on FL for IDSs. We show that such attacks can still have a significant
impact on the performance of FL models, especially targeted ones,
depending on parameters and dataset characteristics. Additionally,
the provided tools and methodology can be used to extend our find-
ings to other models and datasets, and benchmark the efficiency of
existing countermeasures.

CCS CONCEPTS
• Security and privacy→ Intrusion detection systems; Dis-
tributed systems security; Software and application security.
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1 INTRODUCTION
The interconnection of heterogeneous networks and the prolifera-
tion of internet of things (IoT) devices have led to an increase in the
complexity and scale of intrusion detection systems (IDSs). In this
context, collaborative IDSs (CIDSs) leverage collective knowledge
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to detect andmitigate threats [36], but require sharing sensitive data
across the network. The promise of federated learning (FL) being a
privacy-preserving distributed learning paradigm has renewed the
interest in CIDS, as it allows training a global model without sharing
local data [20]. Since 2018, numerous works have proposed applying
FL to different subdomains of IDS, such as IoT [23] or Vehicle-to-
Everything (V2X) [19]. Surveys on FL for IDSs [2, 3, 8, 11, 13, 17]
have also been published, highlighting the community’s interest.

Because of its distributed nature, FL is highly susceptible to vari-
ous types of threats, such as poisoning and privacy attacks [29]. Ex-
tensive analyses of poisoning attacks in FL have been conducted [6,
35] and have shown significant impact on performance. However,
in critical applications such as IDSs, the performance of the learning
algorithm is of utmost importance, as it directly impacts the security
of the monitored system. Consequently, the impact of poisoning
attacks on FL for IDSs is a critical concern.

While robust approaches have already been proposed [37, 40, 43],
few studies focus on understanding and quantifying the impact
of poisoning attacks on FL for IDSs. In particular, the effects of
label-flipping attacks has been overlooked, as no systematic study
has been conducted to understand their impact on FL for IDSs to
the best of our knowledge.

This work aims at filling this gap by conducting a systematic
and quantitative assessment of the impact of label-flipping attacks
on FL for IDSs. While simple in nature, label-flipping attacks are
particularly interesting as they are easy to implement, even in
a black-boxed system, and can have a significant impact on the
trained global model. Specifically, this study aims at answering the
following research questions:

RQ1. Is the behavior of poisoning attacks predictable?
RQ2. Are there beneficial or harmful combinations of hyperpa-

rameter under poisoning attacks?
RQ3. Can FL heal itself from poisoning attacks?
RQ4. Are IDS backdoors realistic using label-flipping attacks?
RQ5. Is there a critical threshold where label-flipping attacks begin

to impact performance?

In summary, our contributions are threefold:

• We conduct the first systematic analysis of the impact of
label-flipping attacks on CIDSs leveraging FL, answering a
set of well-defined research questions.
• We provide a comprehensive understanding of the impact of
these attacks on the performance of the learning algorithm.
• We introduce a reusable methodology to assess the impact of
poisoning attacks on FL, with experiments that can be easily
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replicated and extended to other datasets, attack types, and
mitigation strategies.

The remainder of this paper is structured as follows. After a
brief overview of poisoning attacks in FL in Section 2, Section 3
details the methodology used to conduct the experiments, with an
emphasis on reproducibility. Section 4 presents the results of the
experiments, answering the research questions. Section 5 presents
the related work, especially the existing analyses on the impact of
poisoning attacks on FL. Finally, Section 6 discusses the implications
of the results and concludes the paper.

2 PRELIMINARIES
2.1 Federated Learning for Intrusion Detection
FL is a distributed learning paradigm which enables training a
global model without sharing local data [20]. Model training is
structured in rounds, where an orchestrating server 𝑆 randomly
tasks 𝑛 participants 𝑝𝑖 , 𝑖 ∈ ⟦1, 𝑛⟧ from a pool of participants 𝑃 to
train a model𝑤𝑟

𝑖
at each round 𝑟 . The round ends by the aggrega-

tion of the collected models into a new global model𝑊𝑟 , which is
redistributed to the clients as a starting point for the next round
(𝑟 + 1). Depending on the scale of the federation – i.e., cross-silo
or cross-device [15] –, the fraction 𝐶 of selected participants per
round can vary. The model architecture and hyperparameters are
the same across the federation, but each participant owns a local
dataset 𝑑𝑖 that is not shared with the others.

In the context of IDSs, participants usually seek to classify net-
work flows into two classes (benign and malicious), which is a
binary classification task. Consequently, each dataset 𝑑𝑖 is a set of
data points representing flows, and it associates each flow ®𝑥 𝑗 to
its label ®𝑦 𝑗 . We refer to the elements of a dataset as samples. The
distribution of each dataset 𝑑𝑖 depends on the collected traffic, and
therefore varies depending on the devices or services active on the
network. Various degrees of similarity between clients exist, from
purely independent and identically distributed (IID) partitioning to
pathological non-IID (NIID) settings, where all clients have unique
data-distributions without class overlap [14].

To train their model, the participants use a stochastic gradient
descent (SGD)-based optimizer to minimize a loss function

L(𝑤, ®𝑥 𝑗 , 𝑦 𝑗 ), 𝑗 ∈ ⟦1, |𝑑𝑖 |⟧, (1)

where ®𝑥 𝑗 and 𝑦 𝑗 are the sample and its label, respectively. After
computing the gradients ∇L(𝑤, ®𝑥 𝑗 , 𝑦 𝑗 ), they update their model as

𝑤𝑟+1
𝑖 ← 𝑤 − 𝜂∇L(𝑤𝑖 , 𝑑𝑖 ), (2)

where 𝜂 is the learning rate, or upload the gradients to the server
which will update the global model𝑊𝑟 as a function of the gradients
{∇L(𝑤𝑖 , 𝑑𝑖 ) | 𝑖 ∈ ⟦1, 𝑛⟧} (e.g., FedSGD) [20]. Whether the model
is updated locally or globally, the server aggregates the uploaded
parameters and broadcasts the new global model to the participants.

2.2 Poisoning Attacks in Federated Learning
The attack surface of FL is broad, and includes various types of
threats, such as poisoning and privacy attacks [29]. Authors often
refer to poisoning attacks in FL as Byzantine attacks, as they are
analogous to the Byzantine Generals’ Problem [16] in distributed

systems. Likewise, the term Sybil attacks [9] is frequently used to
refer to the problem of colluding attackers [12].

Poisoning attacks can be categorized into two main categories
depending on the phase in which they are perpetrated: model-
poisoning [6] or data-poisoning [35]. Model-poisoning attacks aim
at manipulating the model’s parameters, usually during or after
training, to deviate the aggregated model from the global opti-
mum [10]. Data-poisoning attacks, on the other hand, happen be-
fore the training phase, and manipulate data samples to degrade
performance, cause misclassification, or introduce backdoors [29].

Data poisoning attacks can be categorized into clean-label and
label-flipping attacks. Clean-label attacks manipulate the samples to
be misclassified, either by adding new samples [42] or by modifying
existing ones [21]. Label-flipping attacks, on the other hand, change
the labels of the samples by flipping them to a different class [35].

Additionally, most poisoning attacks can be further separated
into untargeted and targeted attacks. Untargeted attacks randomly
select samples to be manipulated, and are usually easier to detect
as they have a higher impact on the model’s performance. Tar-
geted attacks, on the other hand, select samples based on a specific
criterion, such as the class to be targeted. In a CIDS context, tar-
geted attacks can be used to introduce backdoors – i.e., making a
specific attack class be misclassified as benign – or cause targeted
misclassification.

Algorithmic solutions tomitigate these attacks exist in distributed
learning, such as Krum [7] or Trimmed Mean [41], and are often
used as comparison for works in Byzantine-robust FL. In addition
to the algorithmic countermeasures, various strategies have been
proposed to detect and mitigate poisoning attacks in FL specifically,
ranging from clustering [24, 32] and similarity-analysis [4, 12] to
client-side evaluation [44].

3 METHODOLOGY
Assessing the impact of data-poisoning over FL implies reviewing a
consequent amount of parameters and configurations. To optimize
our work and make it easily reproducible, the results presented in
Section 4 have been generated using a purposely designed evalu-
ation framework based on Flower [5] and Hydra [39]. We follow
the ACM’s guidelines and terminology [1], and take measures to
ensure the reusability of our artifacts, the reproducibility of our
results, and the replicability of our experiments. Specifically:

1. We provide the methodology and all parameters necessary
to reimplement and replicate the experiments;

2. Dependencies are pinned using Poetry for Python andNix for
system, allowing the entire software pipeline to be executed
in the same conditions;

3. All experiments are seeded where possible, which makes the
results reproducible within a three decimal precision;

4. The results and the code to generate them are available in
open access1, as are the datasets2.

The results presented in this paper amount to 4940 unique runs,
and close to 685 cumulated computing hours on two NixOS servers
with 96 cores, 768 GB of RAM and 2 Nvidia Tesla T4 each.

1https://github.com/phdcybersec/ares_2024
2https://staff.itee.uq.edu.au/marius/NIDS_datasets/
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3.1 Dataset and Pre-processing
Due to the scale of the required experiments, we select a dataset
that is both representative of the problem and small enough to be
processed in a reasonable amount of time. Recent works on FL and
IDS [30] proposed a standardized feature set (NF-V2) making cross-
dataset FL setups easier, which uses nProbe [26] and its NetFlow V9
format to extract features. The authors notably provide converted
versions of known datasets, including CSE-CIC-IDS2018 [31] which
is the most recent generic network dataset of the list. CSE-CIC-
IDS2018 is a larger scale version of the CIC-IDS2017 [31] dataset,
generated using AWS. It contains 14 attacks labels grouped in 6
classes: DDoS, DoS, Bot, Brute Force, Infiltration, and Injection.

The same authors also proposed sampled versions of the same
datasets [18] to reduce the computational cost of experiments. Con-
sequently, we use the sampled NF-V2 version of CSE-CIC-IDS2018,
which is composed of 1,000,000 data points. We remove the port
and IP addresses for both source and destination, as they are rather
a representation of the network topology and device configurations
than of traffic patterns. The categorical features are then one-hot
encoded3, and we normalize the numerical features using min-max
normalization. This pre-processing step produces 39 features for
each sample. Finally, we evenly split the dataset for the experiments,
ensuring the same class distribution in the training and testing sets.
80% of the dataset is used for training, and 20% for testing.

To assess the representativity of the datasets sampling, we com-
pare the projections in two dimensions of the two datasets us-
ing principal component analysis (PCA). Figure 1 presents cross-
projections results, depending on the datasets used to generate
the projection frame. There are consequent overlaps between the
classes in this projection, implying that either 2 dimensions are
not enough to separate the classes, or there are features that are
not relevant to the classification task. Yet, the projected patterns
are identical between the two datasets, which indicates that the
sampling process does not introduce significant bias in the dataset.
Therefore, experiments performed over the sampled datasets should
be representative of observed the behaviors in the original dataset.

3.2 Local and Federated Training
We use a simple multilayer perceptron (MLP) model with two hid-
den layers, as implemented by Popoola et al. [28] who use the same
datasets; a summary of the model’s parameters is available in Ta-
ble 1. Trained centrally, this model reaches an F1-score of 0.966 and
an accuracy of 0.992 on our sampled testing set. These values can
be considered as baselines for the FL experiments.

We focus on the impact of data-poisoning specifically, and there-
fore omit other factors that could hurt the performance of themodel,
such as client heterogeneity or disconnections. We also specifically
concentrate our efforts on a collaborative cross-silo setting, where
all clients are available at each round and 𝐶 = 1. Consequently,
the dataset is partitioned into 10 IID shards of 80,000 data points,
and each client is assigned with one shard. On the server, the up-
loaded models are aggregated using FedAvg – which, since the local
datasets are of similar size, is equivalent to a simple average of the
weights.

3Binary representation of categorical variables used in machine learning (ML), where
each category is represented by a binary vector.

(a) ’sampled’ to ’sampled’ (b) ’sampled’ to ’full’

(c) ’full’ to ’sampled’ (d) ’full’ to ’full’

1
Figure 1: Cross-projections of the malicious traffic from two
datasets in two dimensions using PCA. On top, the frame
of reference is computed using the sampled dataset, and on
the bottom the full dataset. The sampled dataset is then pro-
jected on the left, the full dataset on the right.

Table 1: Hyperparameters.

Hyperparameter Value

Learning rate 0.0001
Hidden layers activation ReLU
Output layer activation Sigmoid
Input shape 49
Number of hidden layers 2
Size of the hidden layers 128
Optimizer Adam
Loss function Log loss
Aggregation FedAvg

Table 2: Distribution of the two datasets.

Class Sampled Full

Benign 880,623 16,635,567
DDoS 73,558 1,390,270
DoS 25,574 483,999
Bot 7,595 143,097
Brute Force 6,525 123,982
Infiltration 6,108 116,361
Injection 17 432
Total 1,000,000 18,893,708

3.3 Attack Model and Implementation
We consider data-poisoning attacks where malicious participants
can alter their local datasets before training. This definition covers
both, participants that have been compromised and those that are
deliberately modifying their data. Further, this scenario will always
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be available, even with a secure and immutable FL client software.
Specifically, we implement data-poisoning using label-flipping at-
tacks, where the attacker changes the label 𝑦 of a sample to a new
label 𝑦𝑝 ; i.e., 𝑦𝑝 = ¬𝑦 in a binary-classification problem.

3.3.1 Attacker’s Objective. We consider two types of objectives
for the attacker depending on the type of attack leveraged. With
targeted attacks, the attacker aims to make a specific attack pattern
undetectable. This is implemented by labeling a randomly selected
fraction of a specific attack class (e.g., DDoS) as benign. With un-
targeted attacks, on the other hand, his goal is to produce high
false positives rate (FPR) and false negative rate (FNR), which can
overwhelm human operators or other security systems. Here, a
random fraction of the entire dataset is altered, where the label of
each sample is flipped from benign to attack and vice versa. The
proportion of samples that are altered is controlled by the data
poisoning rate (DPR), which is the ratio of samples matching the
target that are altered by each attacker on a specific round. We note
the DPR, or local poisoning rate, as 𝛼 .

3.3.2 Attacker’s Knowledge and Capabilities. We consider attackers
to be gray-box adversaries, i.e., they have the same knowledge as
benign clients, but are unable to modify the system’s behavior,
neither locally nor on the server. Further, we consider that multiple
attackers can be present in the system, and that they can act in
concert. This scenario is referred to as colluding attackers. In this
case, the attackers share the same target and DPR. The proportion
of attackers can vary from one single malicious client to a majority
of them being malicious, and is expressed as 𝜌 , or model poisoning
rate (MPR) [21]. Note that in the context of IID partitioning, the
overall poisoning rate could be regarded as 𝛼×𝜌 . This simplification
is however not accurate in other partitioning strategies.

3.4 Experiments
We design a set of experiments to answer the research questions
laid out in Section 1. All experiments share a common set of con-
stants, which are complemented by a set of variable parameters.
Table 3 summaries the available parameters for the experiments.
Each combination is tested 10 times using a set of 10 different seeds
to study the predictability of the results. Specifically, the seed im-
pacts data-partitioning operations (both between the training and
testing sets, and among clients afterward), the sample selection in
poisoning attacks, and the random weights of the initial model. It
also impacts all the random operations (such as data shuffling) done
during model training.

The epochs parameter controls the aggregation frequency, i.e.,
the number of local epochs per round 𝜀, as well as the number of
rounds 𝑅. The global number of local epochs per client is kept to
100 or 300 to preserve comparability. The distribution represents
the number of legitimate and malicious clients in the system, and
consequently the proportion of attackers. The key scenario repre-
sents the attackers’ behavior. Scenarios defined as continuous-𝛼
represent a constant poisoning rate of 𝛼 over the entire training
process. Scenarios named late-𝑟 and redemption-𝑟 produce an
attack with 𝛼 = 100 that starts or ends at round 𝑟 , respectively.
Parameter target represents the target of the attack as defined in
Section 3.3; each attack class is made available as a target.

3.5 Metrics
To quantify how the experiment parameters impact the global
model, we define a set of metrics to measure the attack success rate
(ASR) of poisoning attacks. The definition of the ASR differs de-
pending on the type of attack, according to the attacker’s objective
defined in Section 3.3. Because the ASR is based on performance
and that no perfect model exists, we distinguish the absolute attack
success rate (AASR) measured on the attack scenario, from the rel-
ative attack success rate (RASR) which also considers the nominal
performance without attacks. Formally, the RASR is defined as:

RASR =
max(AASR𝑏𝑒𝑛𝑖𝑔𝑛,AASR𝑎𝑡𝑡𝑎𝑐𝑘 ) − AASR𝑏𝑒𝑛𝑖𝑔𝑛

1 − AASR𝑏𝑒𝑛𝑖𝑔𝑛
, (3)

where AASR𝑏𝑒𝑛𝑖𝑔𝑛 and AASR𝑎𝑡𝑡𝑎𝑐𝑘 are the AASR of the benign
and attack scenarios respectively, under the same set of parameters.
This is made possible thanks to the framework’s reproducibility,
which ensures two experiments started with the same seed will run
under the same conditions. Following the definitions in Section 3.3,
we then defined two variations of the AASR depending on the
attacker’s objective. Both are computed based on the confusion
matrix of the model: true positives (TP), true negative (TN), false
positives (FP), and TN.
Targeted attacks: Malicious participants leverage targeted attacks

to make a specific attack pattern undetectable. Therefore, a
successful attack forces classification of the relevant attack
samples as benign. The AASR is then defined as the miss
rate of the targeted attack, i.e.

AASR =
FN𝑐

TP𝑐 + FN𝑐
, (4)

where 𝑐 is a specific attack class of the dataset.
Untargeted Attacks: Untargeted attacks aim at degrading the over-

all classification rate of the model. Consequently, the AASR
is defined as the miss-classification rate of the model, i.e.

AASR =
FP + FN

TP + TN + FP + FN = 1 − 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦. (5)

Additionally, we use traditional binary classification metrics to
observe the performance of the model under various conditions, as
identified in existing surveys [8, 17] These metrics include accuracy,
F1-score, andmiss rate. Notably, we consider the main-task accuracy
(MTA), defined as the accuracy of the benign scenario, to measure
the impact of the attacks on the model’s nominal performance. All
metrics are aggregated over the 10 runs of each experiment, and the
mean and standard deviation are reported for the selected metric.

4 RESULTS
The results presented in this section aim at answering the research
questions defined in Section 1. Figure 2 presents the performance
of the global model without malicious participants to serve as a
baseline to compare with. Notably, the recall values of each of the
six available attack classes indicates suboptimal performance for the
“Infiltration” class, which never exceeds 0.2, and the “Injection” class,
which stays around 0.86 (see Figure 2b). The feeble representation
of the “Injection” class in the dataset (around 0.0017%, see Table 2)

4



Label-flipping Attacks on FL-based IDSs ARES 2024, July 30-August 2, 2024, Vienna, Austria

Table 3: Experimental parameters. Default parameters are highlighted in bold and are used if not specified otherwise.

Parameter Values Description

batch_size 32, 128, 512 Batch size (𝛽)
epochs 100_10x10, 100_4x25, 100_1x100, 300_10x30, 300_4x75, 300_1x300 Local epochs per round (𝜀)
distribution 10-0, 9-1, 7-3, 5-5, 3-7 Proportion of attackers (𝜌)
scenario continuous-{10,30,60,70,80,90,95,99}, continuous-100, late-3, redemption-3 Poisoning rate per round (𝛼 )
target untargeted, bot, dos, ddos, bruteforce, infiltration, injection Attack type and target
seed 1313, 1977, 327, 5555, 501, 421, 3263827, 2187, 1138, 6567 Seed for pseudo-random num-

ber generators (PRNGs)

0 20 40 60 80 100

Epochs

0.85

0.90

0.95

1.00

(a) Baseline performance

accuracy
f1
recall

0 20 40 60 80 100

Epochs

0.00

0.25

0.50

0.75

1.00

(b) Recall per attack class

Bot
DoS
DDoS

Brute Force
Infiltration
Injection

1
Figure 2: Performance of the global model without malicious
participants. The accuracy, F1-score, and recall illustrate the
performance that can be expected from the global model
under the conditions selected for this study (𝜀 = 10, 𝛽 = 512).
The recall of the six available attack classes shall serve as a
reference for the RASR of targeted attacks.

prevents the model from learning from it, provoking this absence
of evolution over time. The “Infiltration” class is more represented
in the dataset (0.6108%, approximately the same as the “Brute Force”
and “Bot” classes), but remains difficult to learn because of its
apparent similarity with benign traffic.

4.1 Impact Predictability
A preliminary question to answer before quantifying the effects
of label-flipping is whether the behavior of poisoning attacks is
predictable. This is a requirement for generalizing our results to
other datasets and models, and comparing the findings with current
and future studies. Due to space constraints, we focus in this part on
the parameters that have the most significant impact on the results,
to assess the predictability of poisoning attacks. Specifically, the

Table 4: Experiment parameters for RQ1.

Is the behavior of poisoning attacks predictable?

batch_size 32, 512
epochs 300_10x30, 300_4x75, 300_1x300
distribution 5-5

selected distribution contains 50% of malicious participants, which
roughly equates to 50% of the training data being poisoned. The
experiments are performed during 300 epochs, with three different
aggregation frequencies (10, 4, and 1) and two different batch sizes
(32 and 512). Table 4 summarizes the parameters used for this
experiment.

Figure 3 present various metrics observing the performance
of the global model over time, with different seeds. The results
in Figures 3a and 3b exhibit consequent dispersion of the global
accuracy between runs. Using the same parameters, the accuracy of
the global model varies from 0.2 to 0.7 after 100 epochs (10 rounds
under these conditions), with a standard deviation close to 0.2. This
dispersion is consistent across different aggregation frequencies, as
illustrated by Figures 3c and 3d.

However, the dispersion decreases over time given a big enough
batch size, as shown in Figure 3d. After 100 to 120 epochs depend-
ing on the seed, the standard deviation of the accuracy stabilizes
around 0.1. The absolute accuracy differences in Figure 3f indeed
decrease over the first epochs, before plateauing. It can be inter-
preted as a consequence of the complexity of the learning tasks,
which becomes harder as clients contain different labels for similar
samples. Therefore, the problem probably admits a high number
of local minima, which are reached depending on the seed. On the
contrary, the difference between rounds using 𝜀 = 32 (see Figure 3e)
tends to increase over time, illustrating the difficulty for each run
to converge to a stable state.

Answering RQ1
The behavior of poisoning attacks is not predictable, as the
dispersion between results is too important, although only the
seed varies. However, the dispersion decreases over time given
a big enough batch size, as the models tend to converge to a
stable state. In practice, this makes the impact difficult to predict
for a specific attack instance, even though general tendencies
can be extrapolated.
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(a) Accuracy per Seed (epochs=10, batch_size=32)
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(b) Accuracy per Seed (epochs=10, batch_size=512)
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(d) Accuracy σ-envelope (batch_size=512)
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Figure 3: Studying attack impact predictability over time, with 50% attackers. The 𝑥-axis represents the number of local epochs.
Figure 3a illustrates each seed’s accuracy over time using a rolling mean with a window of 5. Figures 3b and 3c display envelopes
with the mean values and the standard deviation of each experiment (over the ten seeds).
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Figure 4: Mean loss over time, 50% attackers.

4.2 Hyperparameters Impact
To understand the impact of hyperparameters on the behavior of
poisoning attacks, we study the impact of different batch sizes
(𝛽) and aggregation frequencies (𝜀). We reuse the conditions from
Section 4.1 but limit the number of epochs to 100, as most scenarios
do not show significant changes after this point (see Section 4.1).
Additionally, we evaluate the hyperparameters on the late poisoning
scenario, where the attackers only start after a 3-rounds bootstrap
period. The experiment parameters are summarized in Table 5.

Figure 5 presents the impact of the hyperparameters on the
accuracy of the global model, with and without poisoning. The
differences are shown on a bi-symmetric logarithmic scale [38],
defined as 𝑥 ′ ↦→ sgn(𝑥) · log10 (1 + | 𝑥

10−4 |), to make up for the con-
sequent differences in scale between combinations. Note that there
is close to no dispersion in the accuracy of the benign scenario,
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Table 5: Experiment parameters for RQ2.

Are there beneficial or harmful combinations of hyperparam-
eter under poisoning attacks?

batch_size 32, 128, 512
epochs 100_10x10, 100_4x25, 100_1x100
distribution 10-0, 5-5
scenario continuous-100, late-3

Mean accuracy Mean σ difference (r − r
−1)

Mean accuracy difference (r − r
−1)
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Figure 5: Impact of hyperparameters on the accuracy of the
globalmodelwith andwithout poisoning. Themean accuracy
over 10 seeds is displayed for different combinations of batch
size and aggregation frequency.

as depicted in Figure 5b, confirming that the attack is indeed re-
sponsible for the dispersion observed in Section 4.1. The different
combinations present no significant impact of the selected hyper-
parameters on the global model’s accuracy. Under poisoning, all
tested parameters lead to between 0.4 and 0.5 accuracy, while they
all exceed 0.95 without poisoning. This is critically low for intru-
sion detection: 0.5 is the score of a random classifier on a balanced
binary-classification task. Tossing a coin would yield better results.

Still, some differences can be observed, notably in terms of dis-
persion. In addition to the accuracy of each parameter combination,
Figure 5 also presents the average change in standard deviation, or

1
𝑅 − 1

𝑅∑︁
𝑟=2

𝜎𝑟 − 𝜎𝑟−1, (6)

where 𝑅 is the number of rounds and 𝜎𝑟 is the standard deviation
of the accuracy at round 𝑟 between the different seeds. The average
change accuracy is also displayed. For these metrics, a positive
value indicates an increase in the observed metric over time.

The results indicate that their dispersion is highly dependent on
the hyperparameters. Most combinations present a slight decrease
in the dispersion of the results over time, which seems to be corre-
lated with the number of local epochs 𝜀, except for (𝛽 = 128, 𝜀 = 10).
Yet, some combinations present negative accuracy differences, indi-
cating a decrease in the accuracy over time, the most significant
being the tuple (𝛽 = 512, 𝜀 = 10). Additionally, Figure 4 presents
a clear correlation between the selected hyperparameters and the
mean loss of the participants’ datasets. In particular, runs with 𝜀 ≤ 4
and 𝛽 ≤ 128 have an increasing loss, while their mean accuracy
differences are close to zero, indicating greater difficulty for the
participants to converge to a stable state.

However, when clients have been given the time to converge
before the attack, the impact of the hyperparameters becomes more
visible, particularly for the batch size as depicted in Figure 6. While
the impact is instantaneous when 𝛽 = 32, it takes around 20 epochs
with 𝛽 = 512 to reach the same accuracy. The dispersion of the
results is significantly lower in the latter, as is the reached accuracy,
which goes down to 0.25 after 60 epochs. A bigger batch size thus
leads to a greater inertia and a lower dispersion of the results when
the attack starts, but also to a lower accuracy afterward.

Answering RQ2
While the hyperparameters have an impact on the poisoning
effect, no combination prevents it: on average, the performance
remains the same. The results’ dispersion can vary significantly
depending on parameter combinations, especially when the
attack occurs after the clients have converged. Then, a smaller
batch size leads to a swifter effect, while a bigger batch size
leads to a greater ASR. Therefore, in performance-constrained
use cases (such as the IoT), defense mechanisms might need
to react faster to mitigate the attack’s impact. Round-based
defenses should be less affected, but history-based defenses
could be significantly impacted.

4.3 After-attack Recovery
The previous experiments allow understanding the behavior of the
worst-case scenario described in Section 4.1. Notably, the attack’s
propagation is highly dependent on the batch size, when the attack
occurs after the clients have converged. This experiment aims to
understand the impact of label-poisoning after the attack ends. We
consider a various attack distribution and a redemption scenario,
where the attackers stop their operation at the third round. Table 6
summarizes the parameters used for this experiment.
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Figure 6: Impact of hyperparameters on the accuracy of the
globalmodel under late poisoning. The data is aligned to start
at the last benign round before the attack, and the impact
is measured over the next 60 epochs (i.e., 6, 24 or 60 rounds
depending on the aggregation frequency).

Table 6: Experiment parameters for RQ3.

Can FL recover from poisoning attacks?

distribution 10-0, 9-1, 7-3, 5-5, 3-7
echo 100_10x10, 100_4x25
scenario redemption-3

Figure 7 displays the accuracy of the global over time. Similar
to Figure 6, the data is aligned: the 𝑥-axis starts at the last epochs
before the attack ends, and the impact is measured over the next
40 epochs. The results show a quasi-instantaneous recovery of the
global model’s accuracy after the attack ends. Both values of 𝜀 dis-
play the global model reaching close to 1.0 accuracy after one round,
regardless of the number of attackers and the associated accuracy
during the attack. This is expected, as Figure 2a indicates that the
global model’s accuracy already exceeds 0.95 at the first round, in
spite of the randomly initialized model parameters provided by
the server before the first round. This is also consistent with the
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Figure 7: Accuracy of the global model after a label-flipping
attack. The data is aligned to start at the last epochs before
the attack ends, and the impact is measured over the next 40
epochs (i.e., 4 or 10 rounds depending on 𝜀).

Table 7: Experiment parameters for RQ4.

Are IDS backdoors realistic using label-flipping attacks?

distribution 10-0, 7-3, 5-5, 3-7
target dos, ddos, bot, infiltration, injection
scenario continuous-100

results of Zhang et al. [42] on NSL-KDD [34] and UNSW-NB15 [22].
These results are consistent with the benign scenario, allowing us
to infer generally that swift recovery would also be the same for
other hyperparameters.

Answering RQ3
The global model recovers almost instantaneously after the at-
tack ends. This is expected, as the global model’s accuracy
already reaches high values in the first round, regardless of
the initial parameters.

4.4 IDS Backdoors using Label-flipping
One of the main concerns with poisoning attacks is the perspective
of backdoors in the IDS, allowing attackers to bypass the system’s
detection capabilities afterward. To assess this risk, we study the
impact of label-flipping attacks with different targets. We consider
𝛼 = 100% and various values of 𝜌 to assess whether a ASR of 1.0
can be achieved. Table 7 summarizes the parameters used for this
experiment.

Figure 8 presents the impact of label-flipping attacks on the
accuracy of the global model for different attack targets. The AASR
of the benign scenario is provided as a reference (cf . Figure 2b).
While 30% of attackers are not enough to permanently impact the
global model’s accuracy, half of the targeted classes reach RASRs
close to 1.0 before the end of the experiment. Additionally, the
MTA of the different classes and distributions is also displayed, and
generally stays close to 1.0, except for the “DDoS” class (Figure 8b),
where the MTA with 70% of attackers is slightly lower. Indeed, the
“DDoS” class is the most represented in the dataset, with 5.29% of
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Figure 8: RASR of targeted label-flipping attacks over time, with 𝛽 = 512, 𝜀 = 10, and 𝛼 = 100%. The 𝑥-axis represents the number
of local epochs. The AASR of the benign scenario is provided as a reference for each targeted class.

the samples. Therefore, the misclassification of roughly 70% of the
samples of this class leads to a more significant impact on the global
model’s accuracy.

“Injection” is the only class unaffected by the attack (cf . Fig-
ure 8f), as attackers possess too few samples to effectively impact
the global model’s accuracy. Conversely, the “Infiltration” is mod-
erately affected by the attack, even though it is already difficult
to detect in the absence of malicious participants in the benign
scenario. (cf . Figure 8e). Additionally, with the lowest proportion
of attackers (i.e., 30%), some targets suffer a temporary spike in
RASR that can reach 1.0, before the effect of the attack fades away.
This is specifically visible for “Bot” and “Infiltration” in Figures 8a
and 8e respectively, as well as for “Brute Force” to a lesser extent
in Figure 8d. This behavior is probably due to the similarity of traf-
fic patterns between attack classes, as the models learns the right
associations using samples from unaffected classes.

Answering RQ4
This type of attack has less impact on the global model’s MTA,
i.e., that they are more likely to remain undetected. Although
not all classes are equally impacted, IDS backdoors are pos-
sible using label-flipping attacks, given a sufficient number of
attackers and a well-represented target. Colluding attackers can
realistically create a backdoor that may later be leveraged to
evade detection, raising the question of the minimum DPR
and MPR necessary for such attacks to be effective.

4.5 Threshold for Effective Attacks
Previous experiments have highlighted the impact of the number
of attackers on the global model’s accuracy. Section 4.4 suggests
that the number of attackers is a critical factor in the effectiveness
of targeted attacks. This experiment aims to understand the critical
threshold where label-flipping attacks begin to impact the global
model’s accuracy by studying both the DPR (𝛼) and the MPR (𝜌).
Table 8 summarizes the parameters used for this experiment.

Figure 9 presents the RASR of considered label-flipping attacks
over time, both for untargeted and targeted attacks. The entire
figure emphasizes on the importance of the number of attackers in
the effectiveness of the attack. With untargeted attacks especially,
the RASR is insignificant (< 0.03) until the number of attackers
reaches 50% (Figures 9a and 9b). With 50% attackers, clear threshold
effects appear when 𝛼 < 100. 𝜌 = 70% offers more granular results,
but requires 𝛼 ≥ 99% to maintain a RASR close to 1.0 over the
entire duration of the experiment. The behavior of targeted attacks
is similar, although the RASR is higher for the corresponding values
of 𝜌 and 𝛼 . The RASR with 50% of attackers (Figure 9g) reaches 0.8
in average for 𝛼 = 100, and close to 0.7 for 𝛼 = 99. With 𝜌 = 70%,
𝛼 ≥ 90 is enough for the RASR to reach 1.0. Below these values, the
RASR quickly decreases. Further, the spikes observed in Figure 8
are visible in Figure 9f, and Figures 9g and 9h to a lesser extent.

More importantly, we can infer from Γ = 𝜌 × 𝛼 the overall
quantity of poisoned data due to our IID partitioning. For untargeted
attacks, the RASR exceeds 0.5 for Γ ≥ 50%, and approach 1.0 for
Γ > 67%. For targeted attacks, the RASR exceeds 0.5 for Γ > 49% and
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Figure 9: Evolution of the RASR of poisoning attacks over time, depending on the local poisoning rate (𝛼), the proportion of
attackers (𝜌), and the type of attack. The 𝑥-axis represents the number of rounds. The value for targeted attacks is the mean of
the four most effective targets: “DDoS”, “DoS”, “Bot”, and “Brute Force” (see Figure 8). The FL round is used as the time unit.

Table 8: Experiment parameters for RQ5.

Is there a critical threshold where label-flipping attacks begin
to impact performance?

distribution 10-0, 9-1, 7-3, 5-5, 3-7
scenario continuous-{10,30,60,70,80,90,95,99,100}
target untargeted, dos, ddos, bot, infiltration

approaches 1.0 for Γ > 56%. Thus, RASR and (𝛼, 𝜌) exhibit fairly
similar variations, albeit not linear: the higher are the DPR and
MPR, the higher is the RASR. However, poisoning the entire local
dataset seems more powerful than instantiating more attackers:
𝛼 = 100 and 𝜌 = 50 yield higher RASR than 𝛼 = 80 and 𝜌 = 70,
although the latter represents more affected data overall.

Answering RQ5
The number of attackers is a critical factor in the effectiveness
of label-flipping attacks, where 50% of attackers are required to
effectively impact the global model’s performance. The local
poisoning rate is also a critical factor: the higher the local
poisoning rate, the higher the RASR. However, this relation is
not linear, and it exists significant threshold effects as soon as
𝛼 is below 100%. FL suffers from the same caveat as numerous
other distributed systems, where the majority of participants
must be honest to ensure the system’s security.

5 RELATEDWORK
The literature on the impact of poisoning attacks on FL is exten-
sive [6, 27, 33, 35], and provides insights on the behavior of poi-
soning attacks on generic ML tasks, such as image classification or
natural language processing. Nuding and Mayer [27] focus specifi-
cally on backdoor attacks, and emphasize on the importance of the
choice of the trigger pattern. Fang et al. [10], Sun et al. [33] rather
study model-poisoning attacks. While often more effective than
data-poisoning attacks, they are more complex to implement, as
they require access to the uploaded models and knowledge of their
functioning. The work of Tolpegin et al. [35] is the closest to ours,
as it focuses only on label-flipping attacks. Among the most notable
outcomes, the authors exhibit that targeted attacks are especially
effective, having small to no impact outside the targeted class. The
specificities of the IDS use case, and notably the overlap between
classes, slightly contradict these conclusions.

In the context of IDSs, the literature on the impact of poison-
ing attacks on FL is scarcer. Zhang et al. [42] provide a systematic
analysis of clean-label data-poisoning attacks, where they use gen-
erative adversarial networks (GANs) to generate poisoned samples.
Other works discuss clean-label attacks to a lesser extent [25, 37].
Meanwhile, Merzouk et al. [21] provide a comprehensive analysis
on data-poisoning attacks in FL for IDSs, but focus only on trigger
backdoor attacks. ML backdoors work by manipulating samples to
associate a specific trigger pattern with a given class so that the
model misclassifies samples containing the trigger pattern. Com-
pared with the results of Section 4.4, these attacks appear to be
more effective at permanently introducing IDS backdoors. Finally,
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Yang et al. [40] discuss the specific aspects of label-flipping attacks
in the context of FL for IDSs, using two different datasets, NSL-
KDD [34] and UNSW-NB15 [22]. However, they only implement
label-flipping as a random selection of malicious samples to be
flipped, which makes the results less comparable.

6 CONCLUSION
The literature on the impact of poisoning attacks on FL in the con-
text of IDSs is scarce, and in it, label-flipping attacks have been
overlooked. This study filled this gap by providing a comprehensive
analysis of the impact of label-flipping attacks on FL for IDSs. We
evaluated the impact of untargeted and targeted label-flipping at-
tacks on the performance of FLmodels trained on CSE-CIC-IDS2018
using a standardized feature set to enable the extension of this work.

Our results highlight that (i) label-flipping attacks can have a
significant impact on the performance of FL models, especially
targeted ones; (ii) the ASR is closely related to the number of flipped
samples overall, which can be approximated in IID settings by
the product of DPR (𝛼) and MPR (𝜌); (iii) targeted label-flipping
attacks strive on well-detected targets, but can be significantly
mitigated by the model’s generalization capabilities; and finally
(iv) mitigation strategiesmust be adapted to the use case specificities
(e.g., constrained environments).

Yet, we hope that this work will inspire and fuel further research,
as there are still many open questions to address. First, our results
can easily be extended with more granular experiments and testing
targeted attack combinations. On the other hand, while the com-
parison with existing works seems to corroborate our results, this
study calls to be extended to other datasets. Finally, the provided
evaluation framework can be used to evaluate the efficiency of
existing countermeasures, or to develop new ones.
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