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Abstract

In this paper, we address the problem of adaptive scheduling of data stream processing and analytics (DSPA) applications
in a shared edge fog cloud (EFC) continuumwith response time constraints. The focus is on handling the dynamic workload
of DSPA applications caused by the variability of their input data stream rates generated bymobile IoT devices, and the dy-
namically available resource capacity in the EFC continuum. To address these challenges, we characterise the different types
of resources in theEFCcontinuum, aswell as the operators thatmakeup aDSPAapplication. Based on this characterisation,
we propose models to evaluate the response time and the cost of using the resources in the always dynamic EFC continuum.
We then formulate the problem of adaptive scheduling of a DSPA application in the EFC continuum with the objective of
minimising the cost of using the shared resources subject to the constraints of the response time and the available capacity
of the EFC resources. We propose a heuristic algorithm that dynamically computes a new scheduling of the DSPA applica-
tion, taking into account its current deployment state and the current state of the shared resources in the EFC continuum.
Experimental results, using simulation, show the effectiveness of our proposed algorithm against algorithms of related work.
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1. Introduction

The Internet of Things (IoT) is a prominent technology
that connects an increasing number of physical devices
that produce large amounts of data. Following this trend,
several use cases are emerging that collect and process
these volumes of IoT data in real time to support many
application domains such as urban mobility, smart cities,
healthcare, augmented reality, etc.

In particular, we consider the class of applications
known as Data Stream Processing and Analytics (DSPA)
applications, which are used to process unbounded data
streams in order to extract valuable information in a timely
manner using a series of continuous operators such as
aggregation, filtering, joining, etc. [1]. The data stream
processing engine such as Apache Flink [2], Apache Kafka
[3], Nebullastream [4], etc., are the main frameworks used
to implement and deploy the DSPA applications and were
essentially designed to be deployed in the cloud [5].

Motivating example. Figure 1 shows a DSPA application
that analyses data streams (e.g., vehicle ID, GPS location,
driving speed) generated by connected vehicles. The DSPA
application consists of 4 operators, namely operator U ,
which merges the raw traffic data streams into a single
stream for further processing; operator J , which matches
the GPS location with the in-memory road network
database to find the road segment and area related to the
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vehicle location; operator Gby, which aggregates the input
data stream by road segment and calculates the average
speed and number of vehicles per road segment; and oper-
ator F , which filters the results of the previous operator to
obtain the overall traffic status by area, which is fed to the
sink node for Countrywide TrafficMonitoring (CTM). This
application is intended to provide the traffic monitoring
status in a timely manner, i.e., within the response time
constraint, to reflect the actual traffic conditions on the
roads. When deploying this application in the cloud, it
is assumed that the traffic data is transmitted from the
IoT devices to the cloud. With high variability in traffic
density, the bandwidth of the wide area network (WAN)
connecting to the cloud can become a limiting factor. This
is because the network can experience significant delays
due to the high volume of data streams and the changing
Internet traffic conditions over time [6].

Figure 1: DSPA App. for Countrywide Traffic Monitoring (CTM)

In this work, we adopt the Edge-Fog-Cloud (EFC)
computing paradigm as a solution for deploying the DSPA
applications. Specifically, EFC computing enables local
processing of IoT data near edge/fog nodes located at the
edge of the IoT network. This approach allows data to be
processed closer to the IoT devices before being sent to the
cloud. Therefore, it effectively reduces network latency and
congestion issues in the Cloud network compared to the tra-
ditional Cloud-based deployment paradigm[7]. As shown in
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Figure 2: DSPA application splits between Fog and Cloud for process-
ing IoT data streams

Figure 2, we distribute the DSPA application for country-
wide traffic monitoring between the EFC nodes. Each part
of the DSPA application is deployed at individual fog nodes,
providing local processing capacity to connected vehicles
within the IoT area covered by each specific fog node.

Challenges of Edge-Fog-Cloud paradigm. The EFC com-
puting comes with the following challenges to overcome
[8, 9]:

• Heterogeneous computational resource nodes (e.g.,
street antennas, base stations, small data centers,
routers, etc.) and heterogeneous network resources:
wan links with varying delays and bandwidth capac-
ities;

• Fluctuation of IoT application workload due to the
spatio-temporal dynamics of mobile IoT devices at
the Edge;

• Dynamic availability of capacities of computational
and network resource capacity in the EFC. This is
due to the fact that applications may be deployed
across EFC resources or release allocated resources
at different time scales, directly affecting the overall
available resource capacities.

Problem statement. High workload demands of IoT
application can lead to increased use of computational
resources and network bandwidth, potentially resulting
in increased network delays and processing latency, which
can drastically affect the application time constraint [9].
Given this problem, a dynamic scheduling mechanism of
the DSPA application within the EFC continuum becomes
essential. The key questions are twofold: (i) How to
dynamically split the DSPA application between the EFC
nodes with the goal to continuously ensure the efficient
use of both shared and dynamic resources, while satisfying

the response time constraint ? (ii) How to split the DSPA
application so that the resulting DSPA application satifies
the DSPA application semantic ?

In our previous work [10], we address the problem of
scheduling a DSPA application on dedicated fog and cloud
resources with the objective of simultaneously minimising
the computational resource capacities of the fog nodes and
the network resource capacities of using the WAN links to
reach the cloud, while satisfying the application response
time constraint. A static heuristic algorithm was proposed:
it required the scheduling solution to be computed from
scratch each time.

Contributions. In this paper, we go beyond existing work
by formulating a new cost model for the use of EFC re-
sources, which may be dynamic and shared, and therefore
require adaptive scheduling of the DSPA application. In
this respect, the main contribution of this work is as follows:

• A novel cost model is proposed to evaluate the cost
of using the computational and network resources in
an EFC continuum. This model takes into account
the dynamic available capacity of these two resources,
favors the use of resources with high relative availabil-
ity and weights the request to use a resource by the
resulting utilisation ratio of the resource if the request
is deployed on it;

• A response time model is introduced that takes into
account the constraints associated with windowing
the processing of IoT data streams by the continuous
operators. This helps to capture the time-sensitive
nature of data stream processing.

• Formal definition of the problem as a Time based
Single Objective Optimisation (TSOO) to partition
DSPA applications between the fog and the cloud
to jointly optimise the resource usage cost of the
computational and network resources. The TSOO
problem is constrained by the application response
time and the dynamically available capacities of the
computational and network resources.

• A heuristic algorithm called Adaptive TSOOHeuristic
(aTSOO-H) is proposed. aTSOO-H essentially adapts
a previously found scheduling solution of DSPA
application operators between the fog and cloud
nodes. This is achieved according to the evolution
of IoT data stream rates and the available resource
capacities. The goal is to continuously minimise the
combined cost of computational and network resource
usage and satisfies the response time constraint. We
assume that the DSPA application is not processed at
the edge, but only between the fog and cloud nodes.

• Simulation experiments: The proposed aTSOO-H
algorithm is evaluated through extensive simulations
based on real-world data sets. When compared with
the baseline solution [10] and the solutions from
related work [8], the results show that aTSOO-H
achieves a high dynamic deployment success rate of
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DSPA applications, i.e., the best trade-off between re-
source usage cost, response time satisfaction and lower
rescheduling cost. Rescheduling cost is defined as the
difference between the number of operators that a
DSPA application contains before after its scheduling.
In particular, aTSOO-H has 100% of success rate at
lower data stream rates, and the success rate decreases
with increasing IoT data stream rates up to 21%, while
the related work algorithms reach 0% in the latter case.

The remainder of this paper is organised as follows:
Section 2 positions our work with respect to the literature.
In Section 3, we present the cost model of using the
shareable resources across the EFC architecture and the
response time model of DSPA application. In Section 4,
we formulate the problem and in Section 5 we propose a
solution to the problem. Section 6 details the experimental
methodology while Section 6 presents the results. Then,
we conclude this work in Section 8.

2. Related work

The problem of scheduling tasks (operators) that con-
stitute an application across centralised or distributed
computing resources has been widely discussed in the
literature under different optimisation objectives and
constraints. The table 1 highlights the contributions of
this work with respect to the most relevant related works.

The first criterion to group related works is the execution
environment of DSPA applications. IoT data streams may
be processed exclusively at the network Edge in [11, 12], or
in a hierarchical or a peer to peer (P2P) networks of Edge
and Cloud nodes in [13, 14, 15, 16, 17, 18, 19, 20]. EFC
nodes are used in a P2P fashion in [8, 21, 22, 23] or in a
hybrid fashion combining P2P and hierarchical networks in
[24, 25, 26]. Our work focus on a hierarchical architecture
of EFC nodes that can be shared among several DSPA (or
other) applications as also studied in [8, 26].

Most of the works that rely on EFC (or Edge-Cloud)
architecture focus on optimising the network resource
usage and the DSPA response time by constraining only
the computational resource usage [19, 15, 13, 8, 26]. In our
work, a cost model is introduced to deal with the trade-offs
of minimising the joint usage of both computational and
network resources. The model allows to characterise the
usage cost of resources by distinguishing between abundant
and constrained shareable resources. Few works considers
in their optimisation goals the computational resources
usage [21, 27] or the response time constraint [8].

Different optimisation approaches are used for operator
scheduling, either using only the placement policy or both
the replication and placement policies. The works in
[28, 29, 30] rely on integer linear programming (ILP) to
model the problem of scheduling DSPA applications in
geo-distributedP2Pnetwork resources, with the aimofmin-
imising the response time and the network resource usage
and maximising the availability of DSPA applications. The
optimisation objective is constrained by the capacities of
the computational and network resources and solved using
the optimization software tool CPLEX. The works [13, 21]

exploit the Mixed Integer Linear Programming (MILP)
to model the problem of scheduling operators between the
edge and the cloud. The objective was to minimise the
response time of the DSPA application, the monetary cost
of using the computational and the network resources. The
constraint was to guarantee the throughput of the DSPA
application. TheMILPmodel was also solvedwithCPLEX.

Scheduling based on mathematical optimisation (ILP,
MILP, etc.) suffers from high execution costs and raises
serious scalability concerns. For these reasons, heuristic
algorithms have been proposed in the literature. For
instance, [31] dynamically schedules operators across
distributed fog nodes with the goal of maximising the
(maximum sustainable) throughput of a DSPA applica-
tion. Unlike our work, this solution neither optimises the
use of computational resources nor considers a hierarchical
EFC architecture. Moreover [15, 14] schedule operators
between edge nodes and federated Cloud nodes, with the
objective to minimise the DSPA application response time
along with network resource usage and monetary cost.
A heuristic method is first employed to find an initial
deployment (static scheduling). Then, dynamic scheduling
is modelled as a Markov Decision Process (MDP) which
is solved by using reinforcement learning (RL) techniques.
Unlike our work, this scheduler does not minimise the
computational resource usage of the edge nodes.

The work in [8] addresses on-the-fly scheduling of multi-
ple DSPA applications over shared EFC resources, but only
statically. The aim is to maximise the number of success-
fully deployed DSPA applications, while limiting the use
of network bandwidth for transmitting data streams over
the fog-to-cloud WAN links and making efficient use of fog
computing resources. The scheduling algorithms proposed
in [8] have the following goals: i) to limit the use of network
bandwidth for transmitting data streams over the fog-to-
cloud WAN links; ii) to use the fog computing resources
efficiently so that they can also serve other applications; and
iii) to save the fog computing resources for DSPA applica-
tions with strict latency requirements and use the cloud for
non-time-critical DSPA applications. In our work, we con-
sider a DSPA application whose sink is located in the cloud
(i.e., CTM in Figure 1). Therefore, among all the proposed
scheduling algorithms in [8], only the FogOnly algorithm
is relevant for deploying between the fog and the cloud
DSPA applications with fixed sinks in the cloud. However,
FogOnly attempts to maximise the use of fog computing
resources. When applying the other scheduling algorithms
of [8] to our problem, it falls that the whole DSPA appli-
cation is deployed entirely in the cloud. In this case, we
compare the solutions found aTSOO-H with a baseline
inspired by the goals of the algorithms proposed in [8].

3. Core model

In this section, we present the system architecture of
EFC computing and the DSPA application. We then
model the main cost factors of running DSPA applications
on EFC computing, which provides shared network and
computing resources. Finally, we model the response time
of DSPA applications.
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Table 1: Summary of related works

Our work Nardelli et al[28] Arkian et al[31] De souza et al[13] Da Silva et al[15] Rzepka et al[8]
Infrastructure
Cloud ✓✓✓ ✓ × ✓ ✓ ✓
Fog ✓✓✓ × ✓ × × ✓
Edge ✓✓✓ × × ✓ ✓ ×
Resource network
Hierarchical ✓✓✓ × × × × ×
Shareable ✓✓✓ × × × × ✓
Objective
Min. Net. usage. ✓✓✓ ✓ × ✓ ✓ ×
Min. Comp. usage. ✓✓✓ × × ✓ × ×
Constraint
Bandwidth ✓✓✓ ✓ ✓ ✓ ✓ ✓
CPU/RAM ✓✓✓ ✓ ✓ ✓ ✓ ✓
Response time ✓✓✓ ✓ ✓ × × ✓
Replicability ✓✓✓ × × × × ×
Strategy
Heuristic ✓✓✓ × × × ✓ ✓
Static ✓✓✓ ✓ ✓ ✓ ✓ ✓
Dynamic ✓✓✓ ✓ ✓ × ✓ ×
Policy
Placement ✓✓✓ ✓ ✓ ✓ ✓ ✓
Replication ✓✓✓ ✓ ✓ ✓ × ×

3.1. Edge-Fog-Cloud architecture

The terms Edge and Fog computing are often used
interchangeably [32]. However, in this work we consider
them as different layers where the boundary between the
two is tiny [33]. In particular, we consider that Edge/Fog
layers provide complementary computational and network
resources to the Cloud enabling IoT edge analytics in the
EFC continuum as depicted in Figure 3.

Figure 3: Hierarchical Edge-Fog-Cloud Architecture

We abstract an EFC architecture as a hierarchical
wide-area resource network defined by the set H={E,F,C}
[25]. The Edge (E) layer consists of M IoT devices
E={E1, ..., EM} moving in N geographic areas Aj ,
j={1...N}, the Fog (F) layer consists of N Fog nodes
F={F1, ..., FN} where each Fog node Fj provides nearby
computational service to the geographic area Aj . One
Cloud node C is considered at the top of the hierarchy.
In this respect, we consider Sj as the aggregation of
data streams arriving to a Fog node Fj and produced by
mj(t)≤M IoT devices moving at a time t in the geographic
area Aj . Given the above, the number ,M , of available IoT
devices at the Edge at a time is given by Formula (1)

M=

N∑
j=1

mj(t) (1)

In this architecture, we distinguish between the compu-
tational resources of the Edge/Fog/Cloud nodes in terms
of memory (i.e., RAM) for executing operators and the net-
work resources in terms of the bandwidth and delay of each
WAN link connecting two nodes through which data stream
are transmitted from an operator to another operator.

3.1.1. Computational resources

For each individual Edge/Fog/Cloud node, we consider
in terms of memory (i.e., RAM): (i) the maximum com-
putational resources cmEi , cmFj and cmC for respectively
the Edge node Ei, the Fog node Fj and the Cloud node
C; (ii) the available computational resource capacities at a
time t cmaEi , cmaFj and cmaC for respectively the Edge
node Ei, the Fog node Fj and the Cloud node C.

More specifically, a physical or virtual node may be
dedicated to a single DSPA application. For example, a
Raspberry pi at the Edge or a VM in the Cloud. In this case,
cmEi

is the maximum capacity of the physical node at the
Edge and cmC is the maximum reserved capacity of the VM
in the Cloud. Then, the available capacity cmaEi < cmEi

or cmaC < cmC may occur when some operators of the
DSPA application are already deployed on respectively
this Edge node or this Cloud node. In a different case, a
physical or virtual node may be shareable among multiple
DSPA applications and / or other processes. For example,
a gateway server at the edge or a VM in the Fog. In this
case, cmEi

is the maximum capacity of the physical node
at the Edge and cmFj is the maximum reserved capacity
of the virtual node in the Fog, shared among multiple
processes. Here, the available capacity cmaEi

< cmEi
or

cmaFj < cmFj may occur due to the DSPA application of
interest and / or due to other (DSPA) applications.
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3.1.2. Network resources
Let nbEiFj

be the maximum network bandwidth to reach
a Fog node Fj from the closest Edge nodes Ei and nbFjC

the maximum network bandwidth on the network link from
a Fog node Fj to the Cloud node C. While, nbaEiFj

is the
available network bandwidth capacity on the network links
from the Edge to the nearest Fog nodes Fj and nbaFjC is
the available network bandwidth on the network link from
the Fog node Fj to the Cloud node C.

Several techniques have been proposed to estimate
the available network bandwidth of a network link. The
interested reader can refer to [34]. Practically speaking, a
network link is a logical link dedicated to a DSPA appli-
cation, which however shares the same underlying physical
links with other (DSPA) applications. In this respect, if
nbFjC is themaximumbandwidth (best effort, not reserved)
of the logical link from the Fog node Fj to the Cloud C that
can be used by a DSPA application, the available network
bandwidth nbaFjC<nbFjC may occur due to the utilisation
of this network link by the DSPA application of interest but
also due to the utilisation by other (DSPA) applications.

The network delay on a network link is the time it takes
for the first byte to arrive to the destination. It depends
on the distance between the source and the destination of
this network link as well as on the network congestion due
for example on the available network bandwidth capacity,
the data size to transmit on this network link, etc. In this
respect, let ndEiFj

be the network delays of the network
link from an Edge node Ei to its nearest Fog node Fj and
ndFjC the network delay of the network link from a Fog
node Fj to the Cloud node C. Table 2 gives a summary of
the parameters we use to model a EFC architecture.

Table 2: List of symbols used to model the EFC architecture

Symbol Description
H Set of resource nodes in the EFC architecture
Ei, Fj , C Respectively Edge node, Fog node, Cloud node
ni, Abstracts a resource node at Edge, Fog or Cloud
Aj Geographical area of IoT devices
mj Number of IoT devices per geographical area Aj

cmEi
Max. computational resource capacity of node Ei

cmFj
Max. computational resource capacity of node Fi

cmC Max. computational resource capacity of node C
cmaEi

Avail. computational resource capacity of node Ei

cmaFj
Avail. computational resource capacity of node Fj

cmaC Avail. computational resource capacity of node C
cmuEi

Computational resource demand on node Ei

cmuFj
Computational resource demand on node Fj

cmuC Computational resource demand on node C
nbEiFj

Max. network bandwidth capacity from Ei to Fj

nbFjC Max. network bandwidth capacity from Fj to C

nbaEiFj
Avail. network bandwidth capacity from Ei to Fj

nbaFjC Avail. network bandwidth capacity from Fj to C

nbuEiFj
Network bandwidth demand from Ei to Fj

nbuFjC Network bandwidth demand from Fj to C

ndEiFj
Network delay of the link from Ei to Fj

ndFjC Network delay of the link from Fj to C

3.2. DSPA application

DSPA application relies on the principle of online com-
putation to mine data stream in near real time [29]. In this

respect, a DSPA application is constituted of operators that
process the data stream. Conversely to one shot operators
of snapshot-based queries in traditional databases, the
results of an operator are constantly updated each time
new data tuple of input data streams are processed [5].

We represent a DSPA application as a directed acyclic
graph (DAG) of operators (or simply application graph),
denoted by G, with VG as the set of vertices which represent
the operators Ox (where x∈N ) and EG as the set of edges
which represent the data stream (data flowing) from a
source node to an operator, between two operators (e.g., 01
to O2), and from an operator and a sink node. Note that,
G topology further includes the sources that produce the
raw data streams Sj , (j ∈N ) of rate |Sj | consumed by the
operators, and the sink fixed in the cloud that captures the
final results. For example in Figure 4, the application graph
G is constituted with the set of verticesO1,O2,O3,O4,O5,O6

and O7. S1 is the source and the sink nodes are sink1 and
sink2. The edges are the data flowing for example from Sj

to O1, from O1 to O2, or from O5 to Sink2.

Figure 4: Graph G modelling a DSPA application

To cope with the infinite nature of data streams, we
consider that operators are executed in time windows ωx to
process a finite set of data items dx arising within a time in-
terval. The application graphG is thus characterised by the
following parameters, which are summarised in the table 3

Operator selectivity (selx). defined the operator selectivity
as the ratio between the input and output data rate of an
operator Ox.

Operator cumulative selectivity (cselx). defined as the
product of operator selectivity from a source to a tar-
get operator Ox according to their topological order
in the application graph G. For example, in the Fig-
ure 4, the cumulative selectivity of the operator O6 is
csel6=sel1 ·sel2 ·sel3 ·sel4 ·sel6.

Edge data rate (λx,y). defined as the rate of data flowing
between two operators, from an source node x to an
operator y or from an operator x to a sink node y.

Operator cost (cx). defined in terms of memory demand
(e.g.,memory per megabyte of data) for an operator Ox to
process its data load Dx [35]. For example, if an operator
O1 has a cost c1=1.2, this supposes that O1 needs 20% of
additional memory to execute its current data load.

data load (Dx). defined as the aggregation of the input
data streams per time window ωx:

5



Dx=

I∑
i=1

ωx ·λi,x (2)

Where I is the number of upstream operators Oi produc-
ing data stream at rate λi,x towards the operator Ox.

Operator resource demand (reqx). defined as the compu-
tational resource (i.e., memory) required by an operator
Ox to process its data load Dx at a time t with respect to
its associated cost cx:

reqx=Dx ·cx (3)

For example, if an operator O1 has D1 = 5MB and
c1=1.2, then req1=7.5MB.

To replicate and migrate (place) a part of G on different
compute resources ni =Ei|Fj |C ∈H, we need to partition
G into disjoint subgraphs, denoted by Gmigi, according to
some workload criteria. Therefore, the resulting graph to
be deployed is defined as follows:

Gdep=
⋃

∀ni∈H

Gmigi (4)

To specify a replication and migration point in G, we
rely on the edge-cut algorithm [36] which partitions G in
two disjoint subgraphs. An edge-cut ecj contains the set of
edges having one endpoint in each subgraph of the partition.
Additionally, let |ecj | denotes the rate of an edge-cut ecj de-
fined as the sum of edge data rates crossing this edge-cut.

Table 3: List of symbols used to model DSPA application

Symbol Description
G Application graph
Ox Operator Ox∈G
exy Edge (link) for operators Ox to Oy

Sj Aggregation of data streams from IoT area j
|Sj | Rate of the aggregated data stream Sj

wx Window size of the operator Ox

selx Selectivity of the operator Ox

cselx Cumulated selectivity up to operator Ox

λxy Data rate flowing on the edge exy
Dx Data load of the operator Ox

cx Cost of the operator Ox to process its data load
reqx Resource demand (CPU/memory) of the operator Ox

Gmigi Subgraph of G to place on a node ni

Gdep Union of subgraphs to deploy across the EFC nodes
ecj An edge-cut in G
|ecj | Data rate of the edge-cut ecj

3.3. Usage costs of shared Edge-Fog-Cloud resources

Computational and network resources are heterogeneous
throughout the EFC architecture because they can be
constrained in very different degrees. Furthermore, in most
cases these resources can be shared by several (DSPA)
applications. It is therefore important to assess the cost
of using these resources in a representative way that can
ensure their most efficient use, whether for static (initial)
deployment or dynamic deployment of DSPA applications.

When statically deploying a DSPA application, its
current deployment state is not considered. However,

since EFC resources can be shared by multiple DSPA
applications, it is necessary to take into account the current
state of the EFC resources on which the DSPA application
is deployed. In the case of dynamic deployment, the actual
states of both the DSPA application deployment and the
EFC resourcesmust also be considered. To objectively eval-
uates the cost of request to use a resource, we need also to
take into account the state of the resource if it is selected to
be used. Therefore, unlike in [37, 10, 38], we introduce a new
weighting of the usage of the EFC resources based on which
we assess the cost of using this resource. Table 4 summarises
the parameters you use to model the resource usage cost.

3.3.1. Weighting the usage of a resource

We need to distinguish a resource node ni=Ei|Fj |C over
another with their underlying network links by weighting
the request of using both the computational and network
resources. In this respect, for any computational or
network resource, we consider:

Max. the maximum reserved resource capacity; that can
be either the maximum computational resource capacity
cmEi , cmFj or cmC for respectively the Edge node Ei,
Fog node Fj or Cloud node C. It can also be the maximum
network bandwidth nbEFj

or nbFjC on the network link
respectively from Edge to Fog node Fj or the Fog node Fj

to Cloud node C.

Avail. the available resource capacity; that can be either
the available computational resource capacity cmaEi

,
cmaFj

or cmaC for respectively the Edge node Ei, Fog
node Fj or Cloud node C. It can be also the available
network bandwidth capacity nbaEFj

or nbaFjC on the
network link respectively from Edge to Fog node Fj or the
Fog node Fj to Cloud node C.

Req. the resource usage requested, that can be either the
requested computational resource usage cmuEi , cmuFj

or cmuC for respectively deploying a subgraph Gmigi on
the Edge node Ei, Fog node Fj or Cloud node C. We use
Formula (5), to formally define the computational resource
usage request for deploying a subgraphGmigi on a resource
node ni=Ei|Fj |C.

cmuni
=

∑
Ox∈Gmigi

reqx (5)

Where reqx defined in Formula 3 is the resource usage
requested by each operators Ox∈Gmigi.
Req can be also the requested network bandwidth usage

nbuEFj or nbuFjC for transmitting data stream on the
network link respectively from the Edge to Fog node Fj

or the Fog node Fj to Cloud node C. We use Formula (6),
to formally define the network bandwidth usage request
for transmitting the data stream from the resource node
ni = Ei|Fj to the resource node nj = Fj |C assuming that
Gmigi is replicated at the edge cut ecj and deployed on the
resource node ni=Ei|Fj .

nbuninj
= |ecj | (6)
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In this respect, for a resource with the maximum
resource capacity Max and available resource capacity
Avail, the current state of this resource is the difference:
Max−Avail. If we want to deploy a DSPA application
that requires resource usageReq on this resource, the usage
ratio will be as following:

W =
(Max−Avail+Req)

Max

≡Max

Max
−Avail

Max
+

Req

Max

≡1−Avail

Max
+

Req

Max

(7)

Where W ≥0. The intuitive interpretation of Formula 7
is that: with the term (1− Avail

Max ), we favor using resources
with high relative available capacity; and with the term
Req
Max , we favor using resources with highmaximum capacity.
In order to calculate the computational (or network)

resource usage cost of a node ni (or a network link) across
the EFC architecture, we need to capture the fact that
this resource is limited and can be shared by several other
DSPA applications or processes at any time. Therefore,
we need to select the resource from which the resulting
W is the smallest in order to minimise the cost of using a
resource in the EFC architecture.

3.3.2. Computational resource usage cost
To assess the cost of using an Edge node Ei, a Fog node

Fj or a Cloud node C, we multiply the usage of each node
by the dynamic weight factor defined in Formula (7). In
this respect, we calculate the weights WEi

, WFj
and WC

of using respectively an Edge node Ei, a Fog node Fj and
a Cloud node C as following:

WEi
=1− cmaEi

cmEi

+
cmuEi

cmEi

(8)

WFj
=1−

cmaFj

cmFj

+
cmuFj

cmFj

(9)

WC=1− cmaC
cmC

+
cmuC

cmC
(10)

Given the above Formulas that weight dynamically)
respectively the request of using an Edge node Ei, a Fog
node Fj and a Cloud node C, the overall resource usage
cost is calculated as following:

cru=

M∑
i=1

(cmuEi
∗WEi

)+

N∑
j=1

(cmuFj
∗WFj

)+(cmuC ∗WC)

(11)
Where WEi

,WFj
,WC ≥ 0, M is the total number of the

Edge nodes Ei, N is the total number of the Fog nodes Fj ,
and C is the Cloud node.

3.3.3. Network resource usage cost
We consider that the network delays and the avail-

able network bandwidth capacities of each individual

Table 4: List of symbols used to model the resource usage cost

Symbol Description
WEi

Weight of using computational resources on Ei

WFj
Weight of using computational resources on Fj

WC Weight of using computational resources on C
WEiFj

Weight of using network bandwidth from Ei to Fj

WFjC Weight of using network bandwidth from Fj to C

cru Overall computational resource usage cost across EFC
CRU Normalised form of cru with cru∈ [0,1]
nru Overall network resource usage cost across EFC
NRU Normalised form of nru with nru∈ [0,1]
RU Overall resource usage cost across EFC

WAN links can be dynamic with regard to the network
conditions[6]. In the literature [39, 29], concerning peer
node networks, network delay is used as the only weight
factor for differentiating network links. We additionally
include network bandwidth as a weight factor: using
network links of limited capacity with parsimony allows an
efficient sharing among several DSPA applications.

In this respect, the cost of using a network link is cal-
culated by multiplying the requested network bandwidth
usage by the weight factor of using this link and its network
delay. To this end, to calculate the weight factor of using
each individual Edge to Fog network link (i.e., WEiFj ) or
each individual Fog to Cloud network link (i.e., WFjC), we
use Formula 7 as following:

WEiFj
=1−

nbaEiFj

nbEiFj

+
nbuEiFj

nbEiFj

(12)

WFjC=1−
nbaFjC

nbFjC
+
nbuFjC

nbFjC
(13)

Given the weight factor, the overall network resource
usage cost is formulated as following:

nru=

N∑
j=1

M∑
i=1

(nbuEiFj
·WEiFj

·ndEiFj
)+ (14)

N∑
j=1

(nbuFjC ·WFjC ·ndFjC)

Where WEiFj ,WFjC ≥ 0, M is the total number of the
Edge nodesEi andN is the total number of theFog nodesFj .

3.4. Response time model

According to the criteria of minimizing cru and nru, the
resulting Gdep defined in Formula (4) becomes the disjoint
partition in subgraphs Gmigi to deploy across the EFC
architecture. However, Gdep should also take into account
any time-constraint imposed to a DSPA application. In
this respect, we need to introduce the response time model
of DSPA application. Similarly to [29], we define the
response time T as the worst end-to-end latency among
all the end-to-end latency Lj of processing each individual
data stream Sj in Gdep.
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T =max
∀Sj

(Lj) (15)

Note that Sj can be processed through nπ > 0 operator
paths of Gdep, with i={1,...,nπ}. Therefore, Lj is the worst
end-to-end latency among the set of operator paths πij

through which Sj is processed before reaching a sink node.

Lj= max
∀πi∈πij

(
∑

exy∈πi

ndM(x),M(y)+
∑

Ox∈πi

lx) (16)

To calculate the end-to-end latency of an operator path
πi, we consider the network delay of each network link
traversed by this operator path along with the latency
of each operator Ox ∈ πi for processing its data load Dx.
Furthermore, M is the mapping function, that gives the
resource node ni=Ei|Fj |C on which a data source node, an
operator Ox or a sink node is (or can be) mapped to. Then,
ndM(x)M(y) is the network delay for transmitting data from
a resource node that hosts the data source x or the operator
Ox to the resource node that hosts the operator Oy or the
sink y. ndM(x),M(y) is negligible if the source x or the oper-
ator Ox and the operator Oy or the sink y are placed on the
same resource node (i.e., M(Ox) ==M(Oy)). Otherwise
it is not negligible. Furthermore, lx is the latency of the
operator Ox to process its input data load Dx.

3.4.1. Network link delay
In general, the network delay includes: (i) the propaga-

tion delay on the network link medium, which depends on
the distance between the connected nodes and includes the
processing and queuing delays of a packet at the intermedi-
ate routers; and (ii) the transmission delay of a packet. The
transmission delay depends on the available bandwidth on
the network link. Hence, the network delay can be defined
as the sum of the propagation and transmission delays [34]:

ndninj
=pdninj

+tdninj
(17)

Where pdninj is the propagation delay between two
resource nodes ni and nj and tdninj

is the transmission
delay between these two resource nodes.

Propagation delay. The propagation delay of a network
link nlninj

is the time it takes to transmit a single bit
between two resource nodes (i.e., Edge node Ei to Fog
node Fj or Fog node Fj to Cloud node C); it is independent
of the data size [40]. However, it depends on the type of
the network link medium and the distance between the
connected resource nodes; it is limited by the speed of the
light. It also depends on the link conditions, e.g., network
congestion. The Vivaldi algorithm is largely used in the
literature to approximate propagation delays between
peers in a network [41].

Transmission delay. The transmission delay is the time
for putting data on the wire by the source resource node
ni in order to be transmitted on the network link nlninj

for reaching the destination resource node nj . It depends
on the size of data to transmit and the available network

bandwidth nbaninj . The latter is impacted by several
factors, including the number of active sessions, the trans-
mission capacity of the link (nominal network bandwidth
capacity), the link conditions, e.g., network congestion. In
this respect, in order to estimate the transmission delays,
we need to know the available network bandwidth capacity.
However, estimating the available network bandwidth
capacity on a network link is a tedious task [34].

In this paper we proceed as follows, to estimate the
transmission delay of any data dxy of size |dxy| from the
operator Ox mapped on the node ni to the operator Oy

mapped on the node nj , where ni ̸= nj , we first measure
the network delay nd′ninj

of data d of considerable size |d|
between these two nodes. The transmission delay of data d
is td′ninj

=nd′ninj
−pd′ninj

, where pd′ninj
is the propagation

delay between these two resource nodes (previously esti-
mated) with the Vivaldi algorithm. Then, the transmission
delay of any data dxy is calculated as follows [40]:

tdninj
= td′ninj

· |dxy|
|d|

(18)

3.4.2. Operator latency
The latency of an operator Ox depends on its current

data load Dx, the type of operation it performs (e.g.,
filtering, projection, aggregation, etc.) and the available
computational resources in terms of CPU (cpuj) of the
hosting resource node. Thus, let µx be the rate at which
an operator Ox can process its data load Dx on a resource
node nj [42] and it is formulated as following:

µx=
cpuj

reqx
(19)

Where cpuj is the available resource capacity of node
nj in terms of MIPS and reqx the computational resource
demands of operatorOx in terms ofMIPS (see Formula (3)).

We assume that, the resource nodes use a time sharing
overbooking strategy in order to enable CPU allocation
even if the CPU demand is greater than the total CPU
capacity [35]. Thus, if MIPSj is the total CPU capacity
of a resource node nj , we calculate cpuj as follows [40]:

cpuj=min(MIPSj ,
MIPSj

qj
) (20)

where qj is the number of processes (including the
operators) running on the resource node nj .
Given the infinite nature of a data stream, let wtx be

the waiting time that data elements remain in the operator
queue if this operator is busy. However, the service rate
µx, the waiting time wtx and the number of data elements
in an operator queue (i.e., operator data load Dx) are
random variables over a continuous time parameter. For
this reason, to calculate the operator latency lx we model
each operator as a queuing system (see Figure 5) with one
server and following the first in first out policy [43].

Then, by modelling each operator as a queuing system,
the operator latency lx is approximated as follows:

E(lx)=E(wtx)+
1

µx
(21)
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Figure 5: Modeling operator as a queuing system

To approximate the waiting timeE(wtx), we need to con-
sider the characteristics of each operatorOx inG, in particu-
lar, whether it relies on count based or time based windows.

Time-based sliding window. This type of window is
characterised by the temporal extend of the window, called
window time ωx, and the progression temporal step, called
sliding time βx where ωx > βx [44]. In this respect, the
window contains the set of data that arrives within the
last ωx time units, and the window data are processed
every βx time units. The data size of each window Dx is
dynamic and dependent on the actual IoT data stream
rate. The data arrival rate λx to an operatorOx may follow
an exponential distribution [45].

However, given that the operator Ox always process
windows of finite data Dx received at each time interval
βx, thus we can consider the arrival rate λx of each window
is deterministic. Hence, as the service rate depends on the
size of the data to process, it also follows an exponential
distribution. Thus, we can model a time based sliding
window operator as a D/M/1 queuing system. The waiting
time is estimated as following:

E(wtx)=
1

µx
· γ

(1−γ)
(22)

Where γ is the root of the equation e−(µx·βx·(1−γ))

that should have the smallest absolute value. For further
reading, reader can referee to [46].

Count-based window. This window considers a fixed
number (K) of data to be processed. In this respect, it
starts at each specified time t, selects data by going steadily
backwards in time until the K data are collected. Then,
the operator is triggered to process the K data contained in
the window [44]. To estimate the waiting time wtx of data
element in the queue of Ox, each window is processed when
K data element have arrived in the window. If the arrival
rate of data follows an exponential distribution, the arrival
rate of windows can be also exponential as it needs to wait
until all K data items is reached. On the other hand, given
that each window contains a fixed size of data to process,
the service rate is deterministic. Hence, we model such an
operator as an M/D/1 queuing system, where the waiting
time is estimated as:

E(wtx)=
ρx

2·µx ·(1−ρx)
(23)

Where ρx=
λx

µx
is the utilization rate of an operator Ox.

Note that, we use Table 5 to summarise the parameters
we use to model the response time.

Table 5: List of symbols used for the response time model

Symbol Description
ni, Abstraction of a Edge, Fog or Cloud node
ndninj Network delay on the network link nlninj

tdninj Transmission delay on the network link nlninj

pdninj Propagation delay on the network link nlninj

πij Operator path i for processing data stream Sj

Lπij End-to-end latency of operator path
T Response time of the DSPA application
M Mapping function of operators on a node
lx Latency of an operator Ox for processing data
µx Service rate of an operator Ox

λx Arrival rate of data stream to operator Ox

ρx Utilisation rate of an operator Ox

wtx Waiting time of data in the queue of operator Ox

ωx Window size of of data in operator Ox

βx Sliding size of data in operator Ox

MIPSj Maximum CPU capacity of a resource node nj

cpuj CPU resource allocated to a process of a node nj

qj Total number of processes running on a node nj

4. Problem formulation

Before formally stating the problem of dynamically
scheduling DSPA applications over shared EFC resources,
we assume that the resources in the cloud are practically
unlimited (scalable) and can handle the evolution of the
data stream rate generated by the IoT devices. However,
the need to distribute the DSPA application at the edge
of the IoT network stems from the fact that at high data
rates, the DSPA application may experience high network
delay due to the cloud network condition, which may
affect the real-time constraints of the DSPA application.
Furthermore, we assume that we do not consider the
processing of data streams at the edge; instead, we leave
this aspect for future research. Finally, we assume that the
sink of the DSPA application is fixed in the cloud.

4.1. Problem statement

By assuming that the computational resources in the
Cloud are practically unlimited, we consider cmC→∞. WC

in Formula (10) can be written as WC = cmC−cmaC+cmuC

cmC
.

Therefore, the weight in the cloud is practically zero,
WC→0. The computational resources of Fog nodes are
limited as they can not be scaled on demand, thus the
weight in a Fog node is: WFj

∈]0,1]. Finally as data stream
produced by IoT devices are not processed by the Edge
nodes. Then, the focus of our work is to minimise the
Fog computational resource usage cost. In this respect,
the overall computational resource usage cost (i.e., cru)
defined in Formula (11) becomes:

cru=

N∑
j=1

cmuFj
·WFj

(24)

cmuFj
is the sum of the CPU/memory usage required by

each operator of the sub-graphGmigj ∈Gdep, which is repli-
cated on the Fog node Fj .

The Edge to the Fog network resource usage cost remains
constant, regardless of how the data stream from IoT de-
vices at the Edge reaches the Fog. We denote this fixed cost
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as ’c’, which represents a constant value in the overall net-
work resource cost (referred to as ’nru’) defined in Formula
(14). Our main focus then shifts towards minimizing the
Fog to Cloud network resource usage cost. This leads us to
the modified version of Formula (14), which now becomes:

nru=c+

N∑
j=1

nbuF jC ·WFjC ·ndFjC (25)

In this respect, the network bandwidth effectively used
on all the Fog-to-Cloud network links is defined as follows:

B=

N∑
j=1

nbuFjC (26)

While we considered Cloud computational resources
are practically infinite in our resource cost model, we opt
for considering Cloud network bandwidth as a resource
the usage of which incurs a cost that should be taken into
account. Indeed, Cloud providers rely on contracts with
ISPs for network bandwidth. For distributed data intensive
applications, the usage of the Cloud network bandwidth
can be a bottleneck when sending huge volumes of data
streams. Hence, for such applications the (monetary) cost
charged by Cloud providers for network bandwidth usage
can be much larger than the cost charged for computational
resource usage [47]. Thus, we assume an upper threshold
Bmax of B which is set for a specific DSPA application.

For the response time, as we assume that the data streams
are not processed at the Edge and Gdep is distributed only
between the Fog and Cloud nodes, the operator latency at
the Edge is zero and hence the end-to-end operator path
latency defined in Formula (16) becomes:

Lj= max
∀Ei∈Aj(t)

(ndEiFj)+

max
∀πi∈πij

(
∑

exy∈πi

ndM(x),M(y)+
∑

Ox∈πi

lx)
(27)

The first term in Formula 27 gives the maximum net-
work delay among all the network links connecting each
individual Edge nodes Ei of the IoT area Aj to the closest
Fog node Fj .
We formalize the problem of minimizing nru and cru as

a single-objective optimization (SOO) problem. The two
metrics have different units and scales, that why we first
normalize these two metrics by using the min-max scaling
technique. In this respect, cru is the non-normalized form
of the overall resource usage cost. Therefore, to normalize
cru we devise it by the sum of the maximum capacity of all
the Fog nodes Fj (i.e., cmFj

). Hence, the normalized form
of cru defined in Formula (24) becomes as following where
CRU will take values between 0 and 1:

CRU=
cru

crumax
where crumax=

N∑
j=1

cmFj (28)

To normalize the overall Fog to Cloud network resource
usage cost, we eliminate the constant value c, we divide

the network delay of each individual Fog to Cloud network
links by the maximum network delay among all the network
link in order to have nruwithout delay unit, let named nru′.
Then, wedividenru′ by the sumof themaximumcapacity of
all the Fog to Cloud bandwidth (i.e., nbFjC) and hence, the
normalized form of nru defined in Formula (25) becomes:

NRU=
nru′

nrumax
where nrumax=

N∑
j=1

nbFjC (29)

The SOO problem should take into account any response
time constraint imposed by a DSPA application, we then
formulate the problem as the Time based Single Objective
Optimization (TSOO) problem with the aim at minimizing
the overall resource usage cost RU defined as the weighted
sum of CRU and NRU :

minimise RU=wc ·CRU+wn ·NRU (30)

subject to: cmuFj
≤cmaFj

j={1,...,N}, (31)

B≤Bmax (32)

T ≤Tmax. (33)

Where wc ≥ 0 and wn ≥ 0 are respectively the weights
for computational and network resource usage cost, which
enable to specify a usage preference between the two
types of resources. Unlike in [38, 37] where we consider
maximum computational capacity constraint, Formula
(31) constrains the usage of each Fog node Fj by its
available resource capacities in order to take into account
the current state of the Fog node resources. Then Formula
(32) constrains the Fog to Cloud bandwidth usage by the
upper threshold Bmax defined by the application owner.
Finally the constraint (33) imposes that the response time
of each DSPA application should not exceed a threshold
Tmax, where Tmax is set by the application owner.

Problem complexity. To process a data stream, each
operator Ox ∈ G requires computational and network
resources to process and transmit the data stream with
a certain latency (lx). We can show that the edges in G
represent the precedence constraint between operators by
modelling G as a DAG of operators. Furthermore, by defin-
ing T as the maximum end-to-end latency Lj among all
individual operator paths πi, we can show that the critical
operator path is the path with the maximum end-to-end
latency Lj , where Lj >Tmax. So we need to deploy G (as
Gdep) between nodes ni=Fj |C to minimise the end-to-end
latency of the critical operator path πi below Tmax,
while ensuring fairness in resource usage [48]. Fairness in
resource usage is defined in terms of: (i) optimal trade-off
between CRU and NRU , (ii) resource usage constraints
(i.e., Formula (31) and Formula (32)), and (iii) operator
replicability constraints. This problem can be mapped onto
the Job Shop Scheduling (JSS) problem, which is known to
be NP-hard [48]. Its complexity increases as we increase the
number of EFC nodes (the number of EFC network links)
or the number of operators in the application graph G.
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Dynamic scheduling problem. Given that computa-
tional and network resources of H can be shared by several
DSPA (and others) applications, the resources’ availability
may vary in time as long as applications can be deployed
and/or terminate their execution on the fly. Moreover,
the number and the rate of IoT data streams Sj may also
vary according to the mobility patterns of IoT devices [49].
Under these conditions, at run-time a (optimal) placement
M previously calculated may not anymore be a feasible
solution to the TSOO problem. For this reason, we need
to dynamically reschedule an already deployed application
graph Gdep at run-time by identifying a new operator
placement M in order to continuously optimise RU and
satisfies the problem constraints.

Such dynamic scheduling of operators requires to take
into account the rescheduling cost that we define as the
number of operators that are: (i) instantiated, i.e., they are
replicated in the Fog or they are deployed for the first time
(like union operator) in the Fog or Cloud or (ii) deleted,
i.e., they are ’migrated’ back to the Cloud.

5. Proposed solution

In this section, we introduce our scheduling solution
called adaptive-time-based single objective optimization
heuristic (aTSOO-H) algorithm. aTSOO-H algorithm en-
compasses the initial scheduling that deploys from scratch
any DSPA application not yet deployed i.e., M== ∅, (see
Algorithm 1, lines 1-2). At run-time, if at least one of
the TSOO problem constraints is not satisfied or RU is
under/over optimised, aTSOO-H algorithm is triggered
at run-time to search for a new operator placement M by
taking into account the current operator placement M as
M̸=∅ (see Algorithm 28 lines 3-27).
Prior to describing in detail both the initial and adaptive

scheduling mechanisms of aTSOO-H algorithm, we first
introduce how to partition the DSPA application between
the Fog and Cloud nodes. This is to ensure that the
semantic of DSPA application is guarantee at each recon-
figuration of the DPSA application. aTSOO-H algorithm
leverages this partitioning in order to decide which part of
the DSPA application to replicate on a Fog/Cloud node or
to remove from a Fog/Cloud node in order to achieve the
optimisation goal with lower rescheduling cost.

5.1. Partitioning a DSPA application

To partition a DSPA application between the Fog and
Cloud nodes, we split the resulting application graph G by
selecting for each data stream Sj an edge-cut ecj ∈G so that
the sub-graph that includes Sj constitutes the sub-graph
Gmigj to replicate on the Fog node Fj and the sub-graph
that includes the sink, i.e., GmigC remains in the Cloud.
As defined in Formula (4), the union of all the resulting
partitions of G constitutes a deployable graph Gdep that
can be a candidate solution to our optimization goal.

For instance, Figure 6 depicts an application graph G
which is entirely deployed in the Cloud to process 3 IoT data
streams S1,S2 and S3 and feeds the analytic results to 1 sink
(Step 1). To split this application graph G between the Fog

Algorithm 1: aTSOO-H

Input: G, application graph
Input: Bmax, upper threshold for bandwidth usage
Input: Tmax, upper threshold for response time
Input: Sraw, set of raw data streams Sj

Input: M, current operator scheduling solution
Input: RM, replication and migration points
Input: B, current overall Fog to Cloud bandwidth usage
Input: Nodes, Set of Fog node Fj where cmuFj

>cmaFj

Output: Rewrite Gdep to include all updated Gmigni ∈M
Output: Send each updated Gmigni to corresponding

resource node ni

1 if M=∅ then
2 TSOO-H(G, Grep, Bmax, Tmax, Sraw)

3 else
4 for Fj ∈Nodes do
5 Get the data stream Sj served by Fj

6 Gmigcurrent←M [j]
7 Get Gsatj⊆Gmigcurrent where

cmuFj
≤cmaFj

+cmucurrent

8 Find minimum ecj in Gsatj
9 Find Gmigj⊆Gsatj delimited by ecj

10 M [j]←Gmigj
11 RM [j]←ecj

12 if B>Bmax then
13 Set Sraw1 to contain data stream Sj ∈Sraw

not yet migrated on Fog
14 M,RM,Gdep← dataMinCut(Sraw1, G)
15 Set Sraw2← Sraw \ Sort Sraw2 in decreasing order
16 while B>Bmax do
17 pull Sj on top of Sraw2 and get current ecj
18 Gmigj ,ec

′
j←dataMinCut(Sj ,G)

19 if |ec′j |≤nbaFjC +|ecj | then
20 M [j]←Gmigj ;RM [j]←ec′j
21 B←B−|ecj |+|ec′j |

22 if T >Tmax∧B≤Bmax then
23 Set maxπ, sorted set of paths πij where Lπij >Tmax
24 operatorMoveBack(M,RM,Gdep,maxπ)
25 if T >Tmax then
26 operatorMoveDown(M,RM,Gdep,maxπ)

27 if B≤Bmax & T ≤Tmax then
28 Improve RU

Figure 6: Partitioning a DSPA application between Fog and Cloud

andCloud, if we select the edge-cut ec3∈G as the replication
and migration point of S3 and Fog node F3, the resulting
deployable graph, i.e., Gdep where Gmig3 that contains O2
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Algorithm 2: operatorMoveBack

1 Function OperatorMoveBack(M, RM, maxπ):
2 Get πij on top of maxπ
3 while continue= true do
4 continue←false
5 Get Gmigj and GmigC traversed by πij

6 Get exy in ecj of the path πij

7 Gmig′j←Gmigj\Ox

8 Gmig′j←Gmigj\{Ox,{exy}}
9 Replace exy by eux in ecj and calculate L′πij , B

10 if L′πij <Lπij &B≤Bmax then
11 Gmigj←Gmig′j
12 Update GmigC accordingly and calculate T
13 M [j]←Gmigj ,M [C]←GmigC , RM [j]←ecj
14 if T ≤Tmax then
15 continue←false

16 else if For eux|u=source&maxπ ̸=∅ then
17 Get πij on top of maxπ
18 continue← true

19 else if maxπ ̸=∅ then
20 Get πij on top of maxπ
21 continue← true

22 return M, RM, T

Algorithm 3: operatorMoveDown

1 Function OperatorMoveDown(M, RM, maxπ):
2 Get πij on top of maxπ
3 while continue= true do
4 continue←false
5 ecj←RM [j]
6 Get Gmigj and GmigC traversed by πij

7 Get exy∈ecj of the path πij

8 Gmig′j←Gmigj∪{Oy,{eyz}}
9 Replace exy by eyz in ecj and calculate L′πij , B

10 if L′πij <Lπij &B≤Bmax then
11 Gmigj←Gmig′j
12 Update GmigC accordingly and calculate T
13 M [j]←Gmigj ,M [C]←GmigC , RM [j]←ecj
14 if T ≤Tmax then
15 continue = false

16 else if For exz|=sink &maxπ ̸=∅ then
17 Get πij on top of maxπ
18 continue = true

19 else if maxπ ̸=∅ then
20 Get πij on top of maxπ
21 continue = true

22 return M, T, RM

is replicated on the Fog nodeF3 to partially processS3 (Step
2a) while S1 and S2 are entirely process in the Cloud by the
part of G remaining (deployed) in the Cloud (Step 2b).

We observe that by selecting an edge-cut ecj per data
stream Sj , we can split RU, CRU and NRU per Sj :

RU=

N∑
j=1

RUj (34)

Where RUj=CRUj+NRUj and RUj , CRUj and NRUj

are respectively the contributions to RU , CRU , and NRU
for processing Sj .

In this respect, we are able to search in the application
graph G the edge-cuts per data stream Sj that provides the
minimumNRU and theminimumRU by using respectively
DataMinCut algorithm and RUminCut algorithm [37].

5.1.1. DataMinCut
The algorithm searches in G, the edge-cut ecj per data

stream Sj that minimises NRUj . In this respect, the iden-
tified edge-cut is the minimum edge-cut [17]. To do so, for
each data stream Sj , it identifies the sub-graph Gmigj ∈G
delimited by the minimum edge-cut ecj ∈ G while Gmigj
satisfies the constraint cmuFj≤cmaFj ( see Formula (31)).

5.1.2. RUminCut
This algorithm searches in G, the edge-cut ecj per

data stream Sj that minimises RUj . It processes like
DataMinCut() however, it identifies the subgraph
Gmigj ∈G based on the edge-cut ecj ∈G that produces the
minimum RUj .

5.2. Initial scheduling algorithm

For the initial scheduling, aTSOO-H algorithm applies
TSOO-H algorithm (Algorithm 1, lines 1-2) that was
previously introduced in [10]. However, in this work, we
apply TSOO-H algorithm in order to take into the available
resource capacities rather than only the maximum resource
capacities as it was previously designed.

TSOO-H algorithm starts by applying RUminCut()
to generate a solution that attempts to minimise directly
RU . If the output solution of RUminCut() satisfies the
constraints B ≤Bmax and T ≤ Tmax, then the achieved
RU is optimal. Otherwise, the problem may not have a
solution or, if a solution exists, finding the optimal solution
is NP-hard.

As a next step, TSOO-H applies a greedy search that
produces local optimal solutions to approximate the global
optimal. In this respect, we apply dataMinCut() to iden-
tify the solution that minimises NRU and consequently B.
If the output solution of dataMinCut() does not satisfy the
constraint B≤Bmax, the TSOO problem has no solution
satisfying this constraint, unless we relax Bmax in order
to accept this solution as the least bad one.

If the constraint B≤Bmax is satisfied, TSOO-H further
checks whether the constraint T ≤Tmax is satisfied or not:
(i) if the constraint T ≤Tmax is satisfied, this means that
the solution produced by dataMinCut() satisfies all the
problem constraints; (ii) if the constraint T ≤Tmax is not
satisfied, starting from the solution of dataMinCut(), we
search in the sub-graph Gmigj and GmigC the operators
to move from the Fog to the Cloud (or the inverse) in order
to reduce T until we satisfy this constraint, while keeping
satisfied the constraint B ≤ Bmax. We briefly describe
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this greedy search in Section 5.2.1. If the greedy search
does not find a solution that satisfies the time constraint,
we relax Tmax to accept this last solution as the least bad
one we can find.

If both constraints B ≤ Bmax and T ≤ Tmax are
finally satisfied, as a next step, TSOO-H applies a greedy
search to minimise RU while keeping satisfied the problem
constraints. We briefly describe the greedy search in
Section 5.2.2.

5.2.1. Satisfy the response time constraint
When moving an operator from the Cloud to the Fog, the

operator latency will probably increase, if we assume that
the computational resources of a Fog node are smaller than
the ones of theCloud. At the same time, if other operators of
the same operator path are already hosted on this Fog node,
the latency of these operators will also probably increase, if
we assume that the node resourceswill nowbe shared among
more processes. Regarding the operators of the same path
that remain in the Cloud after this move, we assume that
the effect on their latency is negligible. On the other hand,
the effect of this move on the network delay of the network
link between the Fog node Fj and the Cloud depends on the
size of the data produced by the moved operator in com-
parison to the size of the data that was transmitted from
the Fog node Fj to the Cloud before. In the opposite case,
when moving an operator from the Fog to the Cloud, the
operator latency on the same path will probably decrease,
while the network link delay may increase or decrease.

Operator move back. is firstly applied as it is more
likely to reduce the response time T on an operator path.
As depicted in Algorithm 2, we iteratively select the
operator paths πij where Lπij > Tmax, in decreasing
order of their end-to-end latencies Lπij . For each selected
πij , we start from the edge-cut ecj that delimits the two
subgraphsGmigj andGmigC , through which this operator
path πij traverses, and we select the upstream replicated
operator of ecj to be removed from the Fog node Fj . If
this action improves the resulting end-to-end latency, we
continue to remove the next upstream replicated operator,
as long as the constraint B ≤ Bmax is satisfied. We stop
applying operator move back if the constraint T ≤Tmax is
satisfied. However, if the constraint is finally not satisfied
or if removing a replicated operator does not improve the
resulting end-to-end latency, we next apply the function
operator move down.

Operator move down. described in Algorithm 3. Unlike
in Operator move back algorithm, this algorithm replicates
and migrates non yet replicated operators from the Cloud
to the Fog. Then, it stops if the constraint T ≤ Tmax is
satisfied. If the constraint is not satisfied or if replicating
an operator on the Fog does not improve the resulting
end-to-end latency, we stop improving the response time.

5.2.2. Improve the overall resource usage cost (RU)
For each individual data streamSj , any backwardmove of

an edge-cut ecj inGmigj will decreaseCRUj (consequently
also CRU ) while it will increase NRUj (consequently

also NRU), let consider ∆CRU and ∆NRU the change of
respectively CRU and NRU. Therefore, RU may decrease
or increase, so let us consider ∆RU=∆CRU+∆NRU this
change.

In this respect, we need to identify all possible backward
moves that will further decrease RU [37]. To do so, we
identify all possible backward edge-cut moves, we put the
identified edge-cut moves and their ∆RU values in the set
∆RUset. To apply the edge-cut moves from the set ∆RUset
as the new replication points, we sort the set ∆RUset in
increasing order. Then, we pull from the top of the set
the smallest ∆RU. If ∆RU< 0, we apply its corresponding
edge-cut move ecjk to the data stream Sj , only if the
constraints B≤Bmax and T ≤Tmax are satisfied. Then,
we pull from ∆RUset the next lowest ∆RU to continue im-
proving RU , as long as the remaining ∆RUset is not empty
or we do not yet encounter a ∆RU≥0. TSOO-H updates at
most once each data stream Sj with its best (lowest) ∆RU.

5.3. Scheduling algorithm at run-time

At the run-time of a DSPA application deployed between
the Fog and Cloud nodes, upon aTSOO-H algorithm is
triggered, calculating its operator placement from scratch
is costly in terms of execution cost (for both execution time
and rescheduling cost), that why we consider to adapt the
current operator placement from which we calculate a new
operator placement that solves the TSOO problem (see
Algorithm 1, lines 3-27) while satisfying Formula (35).

In this respect, aTSOO-H algorithm checks whether
there is a Fog node Fj where the computational resource
usage constraint is not satisfied. In this case, aTSOO-H
selects another edge-cut as the replication and migration
point. This is used to identify a new sub-graph Gmigj so
that the resulting computational resource usage satisfies
the constraint (cmuFj ≤cmaFj) (Algorithm 1, lines 4-10).
In the next step, aTSOO-H checks whether the overall

Cloud bandwidth usage constraint is not satisfied. In this
case, aTSOO-H migrates the data stream Sj on the Fog if
they are not yet processed there. To this end, aTSOO-H ap-
plies the function dataMinCut() (Algorithm 1, lines 12-13).
Then, aTSOO-H builds the set Sraw2 that contains the
data stream Sj that has been already migrated in the Fog
and sorts them in decreasing order by their rates (Algorithm
1, line 14-15). If the Cloud bandwidth usage constraint
(B ≤Bmax) is still not satisfied, aTSOO-H selects on the
top of Sraw2 the highest-rate data stream Sj then applies
the function dataMinCut() in order to identify a new repli-
cation and migration point with the minimum edge-cut ecj
if it exists to further reduce the overall Cloud bandwidth
usage and hence, to satisfy the Cloud bandwidth usage
constraint. aTSOO-H continuous to iterate by pulling the
highest-rate data stream Sj ∈ Sraw2 as long as the con-
straintB≤Bmax is not satisfied (Algorithm 1, lines 16-20).
Then, if the constraint T ≤ Tmax is not satisfied,

aTSOO-H searches in sub-graphs Gmigj and GmigC the
operators to move from the Fog to the Cloud (or the
inverse) in order to reduce T until the constraint T ≤Tmax
gets satisfied. This greedy search is performed with the
functions operatorMoveback() and operatorMoveDown()
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(Algorithm 1, lines 22-25), which we describe in Section
5.2.1. If both constraints B ≤ Bmax and T ≤ Tmax are
finally satisfied, aTSOO-H algorithm applies a greedy
search to further minimise RU while keeping satisfied
the problem constraints (Algorithm 1, lines 26-27). This
greedy search is described in Section 5.2.2.

It is worth noting that at the end of the algorithm
execution if aTSOO-H produces a solution where at least
one constraint is still not satisfied, as our strategy is to
always deploy a solution, we consider constraint relaxation
to accept this last solution as the least bad one.

The current deployment of DSPA application (i.e., M)
is acceptable under the following conditions:

RU(t)≤RUmax, and

kmax∑
k=1

ϕk=0 (35)

If at least one of the conditions (35) is not satisfied,
aTSOO-H algorithm is triggered aiming to search for a new
operator placement M by taking into account the current
operator placement M as M̸=∅.

5.4. Time complexity analysis of aTSOO-H

To solve the TSOO problem, aTSOO-H performs the
searches in the application graph for all the N data streams
Sj . Therefore, the time complexity depends on the size of
the application graph G, i.e. |VG| and |EG| and the number
of data streams Sj or Fog node Fj , i.e., N. We know that,
the time complexity of the search in the application graph
G is O(|VG| + |EG|). We recall that for the application
graph G, VG is the set of vertices (i.e., operators) and EG is
the set of edges (i.e. data flowing between two operators).

For the initial deployment of a DSPA application,
aTSOO-H in the worst case will apply the following 5
functions for all the N data stream Sj , these functions
are based on graph search: RUmintCut, DataMinCut,
OperatorMoveDown, OperatorMoveBack. In this respect,
the time complexity of aTSOO-H for the initial deployment
of a DSPA application is O(5·N ·(|VG|+|EG|)).

For the dynamic deployment of a DSPA application,
aTSOO-H in the worst case first applies for the N data
streams Sj the search of minimum edge-cut of the data
stream Sj not yet migrated on the Fog, then the search of
the new minimum edge-cut for the data stream Sj that was
already migrated in the Fog. For these two searches the aim
is to satisfy the Cloud bandwidth usage constraint. The
time complexity is O(N · (|VG|+ |EG|)). Then, aTSOO-H
applies for all the N data streams Sj operatorMoveBack
and operatorMoveDown in order to satisfy the response
time constraint. The overall time complexity becomes
O(3 · N · (|VG| + |EG|)). Finally aTSOO-H applies the
greedy search to improve RU, this search brings the overall
time complexity to O(4·N ·(|VG|+|EG|)).
We can note that, at dynamic deployment, aTSOO-H

does not apply RUmintCut. In this respect, aTSOO-H is
faster than TSOO-H at the at dynamic deployment. In
both cases, the time complexity is linear.

6. Experimental methodology

This section describes the baselines and the experimental
setup we use to evaluate the proposed solution aTSOO-H.
We use iFogSim to simulate DSPA applications sharing the
same EFC architecture for processing the IoT data streams.

6.1. Baselines
TRCS. stands for time and resource constraint satisfac-
tion, it was introduced in [10] to enhance the pure IoTCloud
analytics by dynamically placing the operators between the
Fog and the Cloud in synergy with the evolution of the IoT
data stream rates. More specifically, assuming an initial
deployment of all the operators in the Cloud, TRCS min-
imally uses the Fog computational resources to satisfy the
constraints T ≤ Tmax, B ≤Bmax and B ≥Bmin, where
Bmin is a lower threshold of B used to avoid the oscillation
of operator placement between the Fog and the Cloud.

FogOnly. policy aims to maximize the Fog resource usage
[8] by fully deploying in the Fog a DSPA application even
if it has the sink in the Cloud.

Fog Cloud Interplay (FCInterplay). policy is based on the
on the goals provided in the work [8]. It processes as fol-
lows: i) Send directly a data streamSj to be processed in the
Cloud if the resulting end-to-end operator path latency can
not satisfy in any way the response time constraint. This is
to avoid wasting the Fog computational resources. However
if only the Cloud bandwidth usage constraint is satisfied; ii)
a data streamSj forwhich the resulting end-to-end operator
path latency can meet the response time constraint without
being partially processed in the Fog is placed in the Cloud
to avoid wasting Fog resources. However if only it also sat-
isfies the Cloud bandwidth usage constraint. Otherwise, it
should be partially processed on the Fog. For the latter case,
we identify the sub-graphGmigj delimited by theminimum
edge-cut ecj to be replicated on the corresponding Fog node
Fj ; iii) For the remaining data streams Sj , for which the
resulting end-to-end operator path latency can meet the re-
sponse time constraint by using the Fog resources, we iden-
tify the sub-graph Gmigj delimited by the minimum edge-
cut ecj to be replicated on the corresponding Fog node Fj .

In order to evaluate all the scheduling algorithms on
a common basis, we set the experiments to trigger the
algorithms aTSOO-H, TRCS, FogOnly and FCInterplay
at each change in data stream rates. In this respect, we
evaluate also aTSOO-H against TSOO-H algorithm that
calculates a new operator placement of a DSPA application
from scratch at each scheduling request.

6.2. Experimental Setup
We present the parameters that we applied to simulate

the EFC architecture in iFogSim along with the DSPA
applications that share the resources of this architecture.
We complement with the description of dynamic generation
of data stream rates produced by IoT devices and the
threshold parameters used in the algorithms. Since we
are using simulation to evaluate our approach, we are
essentially using the real-world values suggested in the
literature for the experimental setup.
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6.2.1. Simulated Edge-Fog-Cloud architecture
To simulate the hierarchical EFC architecture, we con-

sider 1 Cloud node at the top, 10 Fog nodes in the middle
of the hierarchy. In the bottom, we consider up to 75000
IoT devices at the Edge in order to vary the size of the data
streams to be processed by the two DSPA applications. We
use Ether [50] to generate plausible (based on real data set)
network configurations of aEFCarchitecture. The distribu-
tion of the resulting network configurations follows the one
used in [6]. For the computational resources, we simulate
the Cloud node as an AWS VM instance of type m6g.xlarge
[47]. At the Fog, we simulate ESXi virtual machines [51].
TheMIPS evaluation of each resource node comes from [52].
Table 6 presents the configuration of the EFC architecture.

Table 6: Network and computational resource parameters

Edge Fog Cloud
Number of nodes [5000, 75000] 10 1
CPU (MIPS) - [1, 4] 35900
RAM (GB) - [2400, 8150] 12
Delay to up layer (ms) [10, 100] [100, 300] -
Band. to up layer (Mbps) [10, 50] [100, 250] -

6.2.2. DSPA applications
We consider the New York City Taxi and Limousine

Commission rides use case (TLC) [53]. In this context,
we build two DSPA applications: App-1 and App-2,
containing respectively 9 and 11 continuous operators.
We need that the two applications come with different
requirement in terms of resource usage. To this end, for
App-1 depicted in Figure 7a, we set the selectivity and cost
of the operators respectively from [0.4,1] and [1.0,1.8], and,
for App-2 depicted in Figure 7b, we set the selectivity and
cost of operators respectively from [0.8,1.2] and [1.0,1.9].
App-1 is initially deployed across the EFC architecture,

then follows App-2 when App-1 is processing data stream.
Thus, both App-1 and App-2 are sharing the EFC re-
sources. For each DSPA application, we set the threshold
Bmax=125MB/s. Given that the maximum propagation
delay among all the network links is 300ms (Table 6), we
set the threshold Tmax = 1000ms, to allow some margin
for operator latency and transmission delay. Finally, for
TRCS we set Bmin=50MB/s.

6.2.3. Dynamic IoT data stream rates
We statically simulate the variability of the data stream

rates arriving to the Fog nodes by selecting randomly
(uniform distribution) 11 values of M (number of IoT
devices) in the interval [5000,75000], where each IoT device
produces data at a rate of 6KB/s. Then, for each value of
M, we set an interval [0,M ] in which we uniformly setmj(t)
IoT devices per geographical area Aj so that the sum of
mj(t) be equal to M.
As we want to deploy both App-1 and App-2 across

the EFC resources, some IoT devices at the Edge should
produce data streams to be processed by App-1 while
some others IoT devices should produce data streams to be
processed by App-2. In this respect, we split eachmj(t) be-
tween mj1(t) and mj2(t) so that each Fog node Fj receives

data stream Sj splits between Sj1 and Sj2 with rate respec-
tively |Sj1 |=mj1(t)×6KB/s and |Sj2 |=mj2(t)×6KB/s
as the input of respectively App-1 and App-2.

Specifically, we want to have close but not equal rates for
the input data streams of App-1 and App-2. In this respect,
mj1(t) has 55% of mj(t) IoT devices per geographical area
Aj andmj2(t) has the remaining 45% ofmj(t) IoT devices.
Figure 7c depicts the total input data stream rate per
DSPA application for each value of M.

We need to consider around 15 repetitions for each
experiment [37, 38, 10]. In this respect, we repeat the
splitting of each value of M per geographical area and per
DSPA application 15 times. The total data rate reaching
the Fog follows a sequence of 11 uniformly distributed
values of M ×6KB/s repeated 15 times. We feed this
sequence to TSOO-H, aTSOO-H, TRCS, FogOnly and
FCInterplay. We produce 15 results of T, B, and RU for
each value of M and we plot the average of these results per
value of M and per DSPA application (App-1 and App-2).

7. Experimental results

This section presents the analysis of the results obtained
from the experiments conducted to evaluate aTSOO-H
against baseline heuristic algorithms (TSOO-H and TRCS)
as presented in Section 7.1, and against heuristic algo-
rithms inspired by related work (FCInterplay, FogOnly) as
presented in Section 7.2.

7.1. Evaluation results against baseline approaches

We compare the results achieved by aTSOO-H , TSOO-H
and TRCS. We pay particular attention to the achieved
results in terms of the: overall resource usage cost (RU),
the satisfaction of the problem constraints related to the
response time T and the Cloud bandwidth usage B and the
algorithm execution cost. Figures 8, 9, 10 and 11 present
the achieved results.

7.1.1. Overall resource usage cost
The plots of the overall resource usage cost (RU) are

steeper as depicted in Figure 8a. We observe that when
scheduling App-1, aTSOO-H performs like TSOO-H. In
particular TSOO-H produces the optimal solution from
M1 to M10 IoT devices, thanks to RUminCut algorithm,
and it approximates the optimal solution at the highest
data stream rates (i.e., M11). Since we run TSOO-H from
scratch at each time the rescheduling is triggered, it is
more obvious to observe such performance of TSOO-H as
long as we have shown in [37] that TSOO-H is more likely
to identify the optimal (or near optimal) solution. Unlike
TSOO-H, aTSOO-H uses TSOO-H only for the initial
deployment (i.e., first data stream rates in the random
sequence of data stream rates) where it produces also the
optimal solution. For the dynamic scheduling, aTSOO-H
adapts the current operator placement solution in order
to provide an (near) optimal operator placement solution
with respect to the actual workload and available resource
capacities. In this respect, aTSOO-H takes the advantage
of the abundant available resources capacities across
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(a) DSPA application App-1 (b) DSPA application App-2 (c) Input data stream rates per DSPA apps

Figure 7: DSPA applications App-1 and App-2 sharing the EFC network resources with their input data stream rates

(a) RU of APP-1

(b) RU of APP-2 w.r.t the load of App-1

Figure 8: Overall resource usage cost per application

the EFC architecture which does not trigger constraint
violations and hence it improves only RU . However TRCS
provides the highest RU when comparing to both TSOO-H
and aTSOO-H with a difference ratio of up to 7.65%
When Scheduling App-2 with respect to the load of

App-1 already scheduled between the Fog and Cloud
nodes, Figure 8b shows that TSOO-H has the lowest RU
among all algorithms for the data stream rates produced
from M1 to M8 IoT devices. Even though that aTSOO-H
is outperformed by TSOO-H, the difference ratio is very
small up to 1.29%. However, at higher data stream rates
from M9 to M11 IoT devices, aTSOO-H outperforms
TSOO-H with a small difference ratio of up to 1.88%.
This happens in general when both algorithms fail to
satisfy the constraint T ≤ Tmax. In particular, both
algorithms provide a different operator placement solution
from which to improve the response time in order to satisfy
the related constraint. Then, the greedy search to satisfy
the response time is applied differently based on the input
operator placement. Moreover, when comparing to TRCS,
aTSOO-H and TSOO-H provide lower RU with a difference
ratio respectively of up to 17.68% and 18.02%.

7.1.2. Constraint satisfaction rates

Cloud bandwidth usage constraint. Even though that
TSOO-H and aTSOO-H provide the lowest RU when
scheduling App-1, however they are more likely to fail to
satisfy the constraintB≤Bmax as the data stream rates are

increasing from M8 to M11 spanning from 20% to 86.67%
of constraint violation rate, see Figure 9a. For App-2, we
observe that TRCS is likely to not satisfy the constraint
B ≤ Bmax. As depicted in Figure 9b, both aTSOO-H,
TSOO-H and TRCS start failing to satisfy this constraint
at higher data stream rates (i.e.,M9 toM11) with however
high constraint violation rate spanning from 20% to 73.33%
for TRCS, while TSOO-H and aTSOO-H have the same
constraint violation rate spanning from 13.3% to 60%.

Response time constraint. All the algorithms satisfy the
constraint T ≤ Tmax when scheduling App-1 at any data
stream rates that why we omit to put the related plots.
When scheduling App-2, Figure 9c shows that all the
algorithms start failing to satisfy this constraint up on
moderate data stream rate, i.e., M7 for aTSOO-H and
TRCS and M8 for TSOO-H. Then, the constraint violation
rate keep increase with the data stream rates.

7.1.3. Algorithm execution cost
We split the execution cost of the algorithm between

the algorithm execution time and rescheduling cost. The
execution time is the time it takes for each algorithm to find
the new operator placement and to rewrite the application
graph based on the identified operator placement. We
define the rescheduling cost as the number of operators
that are: (i) instantiated, i.e., they are replicated in the
Fog or they are deployed for the first time (like operator U)
in the Fog or Cloud or (ii) deleted, i.e., they are ’migrated’
back to the Cloud. Improvement of the resource usage cost
model will be necessary in order to take into account state
migration between the Fog and Cloud in case of statefull
operator. In this work we assume stateless operators.

Execution time. When (re)scheduling App-1, Figure 10a
shows that TSOO-H has the highest execution times
from the lowest to the highest data stream rates (i.e., M1
to M11) except at M3 and M9 where aTSOO-H equals
the high execution time of TSOO-H. Even thought that
TSOO-H is executing in the best case from M1 to M10 by
applying only RUminCut algorithm. However the adaptive
approach of aTSOO-H is much faster than the RUminCut
algorithm. On the other hand, we observe that TRCS has
the lowest execution times among all the algorithms except
at M3 where aTSOO-H as the lowest execution time.

For the execution time of (re)scheduling App-2 after
App-1, in this case the available resource capacities are
not abundant as already some part of the resources are
already allocated to App-1. Therefore, the algorithms
are likely to be executed in the worst case exhibiting high
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(a) Cloud bandwidth constraint for APP-1 (b) Cloud bandwidth constraint for APP-2 (c) Response time constraint for App-2

Figure 9: Constraint violation rates when scheduling App-1 and App-2

(a) Execution time

(b) Rescheduling cost

Figure 10: Execution cost of App-1

(a) Execution time

(b) Rescheduling cost

Figure 11: Execution cost of App-2

execution time. TSOO-H and aTSOO-H are still high
when comparing to TRCS (see Figure 11a). However both
TSOO-H and aTSOO-H have practically equal execution
time at lower data stream rates i.e.,M1 toM4, at moderate
data stream rates i.e.,M5 toM7 we can see that aTSOO-H
has the highest execution time among all the algorithms.
On the other hand TSOO-H has the highest execution time

from M8 to M11 (high data stream rates). In this case
TSOO-H is applied in the worst case that encompassed
RUminCut, dataMinCut and the greedy search.

Rescheduling cost. In terms of the rescheduling cost,
Figure 10b shows that the rescheduling cost of aTSOO-H
is the lowest among all the algorithms except for M5 and
M6. Thanks to the adaptive approach of aTSOO-H that
replicates or/and removes only the operator that are likely
to solve the TSOO problem. Note that TRCS outperforms
aTSOO-H at data stream rates M5 and M6, this is due
to fact that that TRCS only aims to keep the network
bandwidth usage between Bmin and Bmax and therefore,
TRCS moves down on Fog respectively 1 operator and
3 operators which are sufficient to satisfy the constraint
Bmin≤B ≥Bmax and T ≤ Tmax. In contrast TSOO-H
has the highest rescheduling cost, this cost is constant
from lower to moderate data stream rates (i.e., M1 to M7)
as TSOO-H is executed from scratch in its best case by
applying only the RUminCut algorithm that provides the
same number of operator to replicate on the Fog. However,
frommoderate to higher data stream rates (i.e., M8 to M9),
this cost is increasing with the data stream rate. This is
due to the fact that TSOO-H is executed in the worst case
where the algorithm applies a greedy search and identifies
an operator placement with increasing number of operator
as the data stream rates are increasing.

The rescheduling cost of App-2 after the deployment of
App-1 follows the same pattern of the rescheduling cost of
App-1, aTSOO-H has the lowest cost only at lower data
stream rates (i.e., M1 to M4). From M4 to M11 the
rescheduling cost of aTSOO-H becomes higher than the
one of TRCS but remains lower than the one of TSOO-H
(see Figure 11b).

7.2. Evaluation results against state of the art approaches

In this set of experiments, we wanted to evaluate
aTSOO-H against the stat of the art algorithms FogOnly
and FCInterplay as well as against TSOO-H. We use the
same experimental setting parameters introduced earlier.
However, we use the same VM in the Cloud as in the Fog.
In this way the Fog can have a time advantage over the
Cloud as there is no network delay. To make the evaluation
fair, we consider the metrics used in [8] for the FogOnly
and FCInterplay algorithms, which we can easily calculate
from our model: (i) the overall Fog to Cloud bandwidth
usage ratio; (ii) the overall Fog computational resource
usage ratio; and (iii) the DSPA application deployment
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(a) Fog computational resource usage ratio (b) Fog to Cloud bandwidth usage ratio (c) Deployment success rate

Figure 12: Computational and network utilization ratio and deployment success rate

success rate. The latter is calculated as the ratio of the
DSPA applications deployed successfully over the total
number of deployed DSPA applications.

In particular, we consider each change in the data stream
rate as the request of deploying a newDSPA application [8].
Given the sequence of 165 variations of data stream rates
that we feed to the algorithms for each of the two DSPA
applications. We have in total 330 requests of DSPA appli-
cation deployment with 30 requests for each of the 11 (M)
values of IoT devices. Hence, the deployment success rate is
calculated on the basis of 30 requests for eachM value of IoT
devices. In the following we present the evaluation results
depicted in Figure 12. However we discuss the result for
only up toM7data stream rates, for the omitted data stream
rates (M8 toM11), the deployment success rate of FCInter-
play is equal to 0 as it is already the case fromM6 andM7.

7.2.1. Fog computational resource usage ratio

Figure 12a shows that FogOnly has the highest usage of
these resources. This is due to its strategy of deploying the
overall DSPA application on the Fog. However, FCInter-
play adapts the usage of the Fog computational resources
according to the data stream rates. In particular, at lower
data stream rates (i.e., M1 to M2), FCInterplay has higher
Fog computational resource usage than aTSOO-H and
TSOO-H as by partially processing each individual data
stream Sj on the Fog, the resulting end-to-end latency
satisfies the response time constraint (i.e., Lj ≤ Tmax).
Consequently the constraints T ≤ Tmax and B ≤ Bmax
are satisfied. In this way the Fog to Cloud bandwidth
resources are saved for other applications. For the next
data stream rates (i.e., M3 to M6), we observe that the
Fog computational resource usage of FCInterplay starts
decreasing when comparing to aTSOO-H (and TSOO-H).
In this respect, FCInterplay favors processing entirely the
data stream Sj in the Cloudwhose when partially processed
in the Fog, their resulting end-to-end latency did not satisfy
the response time constraint (i.e., Lj≤Tmax). In this way
FCInterplay saves the Fog resources for other applications.
Finally, at the data stream rateM7, we observe that FCIn-
terplay has a sudden increase in the Fog resource usage
compared for instance to data stream rate produced byM6
IoT devices. This is due not only in the increase of data
stream rates, it is also due to the fact that for certain data
stream Sj that should be processed entirely in the Cloud,
however the constraintB≤Bmaxwas not satisfied. Hence,
theses data streams are partially processed in the Fog.

We observe that aTSOO-H keeps trying to jointly

optimise the usage of the Fog resources and Fog to Cloud
network resources.

7.2.2. Fog to Cloud network bandwidth usage ratio

At lowest data stream rates (i.e., M1 and M2), Figure
12b shows that FCInterplay has the lowest Fog to Cloud
bandwidth usage ratio thanks to dataMinCut algorithm
which was applied in order to partially process data streams
Sj in the Fog. For the other data stream rates (i.e., M3 to
M7) as they are increasing, the Fog to Cloud bandwidth
usage ratio of FCInteraplay is also increasing. It becomes
even the highest among all the algorithms at the data
stream rate produced by M6 and M7. This is due to the
fact that FCInterplay favors processing some data streams
in the Cloud if partially processing them in the Fog would
not satisfy the response time constraint.

At the lowest data stream rates (i.e., M1 and M2),
FogOnly has the second lowest Fog to Cloud bandwidth
usage ratio when comparing to FCInteraplay. However the
data stream rates is increasing, FogOnly has the lowest Fog
to Cloud bandwidth usage ratio among all the algorithms.
FogOnly does not apply dataMinCut as FCInterplay.
However, given that it replicates as much as possible the
operators for each individual data streams on the Fog, as
we go from the source to the sink the cumulated selectivity
and hence data stream rates most often decrease. As a
result the Fog to Cloud bandwidth usage also decreases.

On the other hand, aTSOO-H and TSOO-H have slightly
higher usage of these resources when comparing to FogOnly
but lower when comparing to FCInterplay. This is due to
the fact that aTSOO-H and TSOO-H aim to jointly min-
imise the Fog resources and Fog to Cloud network resources.

7.2.3. DSPA Application deployment success rate

Figure 12c shows that FCInterplay successfully deploys
the DSPA applications only at lower data stream rates
(M1 to M2) with success rate of 100%. Upon data stream
rates produced by M3 the success rate start decreasing. In
this respect, FCInterplay has the lowest success rate and it
becomes even 0 at data stream rates produced by M6 and
M7. As the data stream rate is increasing the strategy of
FCInterplay is not sufficient to solve the TSOO problem,
an optimization approach is necessary.

On the other hand FogOnly has the second lowest
success rate and it achieves 100% of success rate only at
the lowest data stream rates (i.e., M1 and M2). This is
due to the choice of maximizing Fog resource usage by
replicating as much as possible the operators on the Fog
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nodes, as a results operator latencies (processing times)
are higher that increase the response time. Hence, the
constraint T ≤ Tmax is less likely to be satisfied. It
worth noting that, the major cause in the decrease of the
success rate of FogOnly is the violation of the response
time constraint. This is exacerbated by the violation of the
Cloud bandwidth constraint at higher data stream rates.

TSOO-H has 100% of success rate from M1 to M4
while aTSOO-H has 100% of success rate only from M1 to
M2. The success rate of TSOO-H starts decreasing only
from M5, while aTSOO-H has a success rate lower than
TSOO-H but higher than FCInterplay.

8. Conclusion

In this work, we addressed the problem of adaptive
scheduling continuous operators of DSPA applications
between the Fog and Cloud nodes inline with dynamic
data stream rates, as well as, dynamic resource capacities
of shareable EFC resources. The objective was to con-
tinuously optimise the combined usage cost of the Fog
computational resources and the Fog to Cloud network
resources while satisfying the response time constraint of a
DSPA application. In this respect, we introduced a resource
usage cost model that takes into account both maximum
and available resource capacities when deploying DSPA
applications across the EFC resources and covers that these
resources can be shared among several DSPA applications.
Then, we introduced the aTSOO-H algorithm that adap-
tively schedules a DSPA application by taking into account
its current deployment state. Using simulations we demon-
strate that aTSOO-H efficiently trade-offs the response
time, the usage cost of the two types of resources and the
execution cost of the scheduling algorithm. The proposed
solution in this work for adaptive scheduling a DSPA appli-
cation encompasses a monitoring tool of resource usage and
response time based on witch the aTSOO-H algorithm can
be triggered if a problem constraint is not satisfy anymore
or if the resource usage goes beyond a threshold value.
For evaluating the the proposed algorithm against related
work algorithms, we trigger the scheduling algorithms at
each change in the data stream rates, therefore as future
work, we plan to evaluate aTSOO-H algorithm along with
the monitoring tool. In this case, it is necessary to identify
the threshold specifically for the overall resource usage
cost in order to avoid over or lower threshold estimation.
Furthermore, we want to consider not only reactive ap-
proach but also predictive approach. the latter enables to
trigger the rescheduling of DSPA applications proactively
in order to anticipate any degradation in the performances
of DSPA applications. Furthermore, we plan to include
also computational resources of the Edge layer. In this
respect, it will require to extends the system modelling in
order to take into account mobility constraint of mobile
IoT devices at Edge, as well as, energy consumption.
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