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The coherent dynamics of bubble clusters are of fundamental and industrial importance7
and are elusive due to the complex interactions of disordered bubble oscillations. Here8
we introduce and demonstrate a method for decomposition of the Lagrangian time series9
of bubble dynamics data by combining theory and principal component analysis. The10
decomposition extracts coherent features of bubble oscillations based on their energy, in11
a way similar to Proper Orthogonal Decomposition of Eulerian flow field data. This method12
is applied to a data set of spherical clusters under harmonic excitation at different amplitudes,13
with various nuclei density and polydispersity parameters. Results indicate that the underlying14
correlated mode of oscillations is isolated in a single dominant feature in cavitating regimes,15
independent of nuclei’s parameters. A systematic data analysis procedure further suggests16
that this feature is globally controlled by the dynamic cloud interaction parameter of Maeda17
and Colonius (J. Fluid Mech., vol. 862, 2019, pp. 1105–1134) that quantifies the mean-18
field interactions, regardless of initial polydispersity or nonlinearity. The method provides a19
simplified and comprehensive representation of complex bubble dynamics as well as a new20
path to reduced-order modeling of cavitation and nucleation.21
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1. Introduction24

Cavitation bubble clusters nucleate when the liquid pressure rapidly falls below a certain25
threshold. These clusters coherently oscillate and violently collapse to cause extreme energy26
concentration that leads to various critical consequences and use in applications as diverse27
as injectors and pumps (e.g., Plesset & Ellis 1955; Blander & Katz 1975; Mørch 1980;28
Chen & Heister 1994; Hashimoto et al. 1997; Prosperetti 2017), hydraulic machines (Arndt29
1981), underwater propulsion and hydrofoils (e.g., Kubota et al. 1992; Merkle et al. 1998;30
Kunz et al. 2000; Schnerr & Sauer 2001; Gnanaskandan & Mahesh 2016; Ganesh et al.31
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2016; Venning et al. 2022), medical ultrasound (e.g., Ikeda et al. 2006; Pishchalnikov et al.32
2011; Maxwell et al. 2011; Maeda et al. 2015; Movahed et al. 2016), surface cleaning33
(Verhaagen&Rivas 2016; Yamashita &Ando 2019), chemical synthesis (Suslick et al. 1999;34
Cairós & Mettin 2017), and bio-inspired devices (Tang & Staack 2019). Characterizing the35
dynamics is a challenge due to the complex interactions of bubbles involving disorders and36
stochasticity. Nuclei are typically micro-sized and polydisperse and randomly distributed.37
Their rapid, nonlinear oscillations are, except in controlled experiments (Bremond et al.38
2006), practically not measurable. Molecular and hydrodynamics simulations can provide39
detailed insights into nucleation (Angélil et al. 2014; Gallo et al. 2021), while their time-40
and spatial scales have not reached those of practical cluster oscillations. Analyses have41
been made on the interaction dynamics in various regimes (Brennen 2014), yet no common42
knowledge has been established if the many-body coherence globally exists and if so scaling43
is possible, beyond the consensus that polydispersity induces strong disorders.44
For the past decades, the Rayleigh-Plesset (R-P) equation and its variations have been45

actively explored to investigate the dynamics of single bubbles (Plesset 1949; Plesset &46
Prosperetti 1977). Relatively few studies addressed the theory of clusters. By using mean47
field approach to interacting bubbles modeled by the R-P equation, d’Agostino and Brennen48
(d’Agostino & Brennen 1989) derived a nondimensional parameter that dictates the linear49
coherent oscillations of monodisperse clusters, the so-called "cloud interaction parameter".50
Zeravcic et al. (2011) used the coupled R-P equations and identified disorders represented51
by the Anderson localization of acoustic energy in polydisperse, lattice-like clouds under52
weak excitation. We have recently extended the interaction parameter to the non-equilibrium,53
cavitating clusters under strong excitation by considering the effective interaction at excited54
states (Maeda & Colonius 2019; Maeda et al. 2018; Maeda & Maxwell 2021). To recall, we55
scale the mean kinetic energy of liquid induced by # (� 1) bubbles as (Maeda & Colonius56
2019)57

〈 〉 ∼ 〈 B〉(1 + �3), (1.1)58

where B is the energy of a single bubble: B = 2cd'31,2 ¤'
2
1,2

. �3 is the parameter controlling59

the effective contribution of hydrodynamic inter-bubble interaction: �3 = # 〈'(C)〉/'� , and60
'1,2 and '� denote the characteristic (reference) bubble radius and the cluster radius.61

d; is the liquid density. 〈·〉 and (·) denote time average during a period in which bubble62
dynamics are statistically stationary and the mean value about the bubbles (8 = 1, 2, ...#),63
respectively. The scaling can be simply derived from the coupled R-P equation for the64
correlated (synchronized) limit of monodisperse bubbles ('1 = '2 · · · = '1,2). Although65
realistic correlations are imperfect due to polydispersity and nonlienarity, �3 was found to66
control well both the coherent dynamics of polydisperse cavitating clusters and their acoustic67
emission in numerical simulations and experiments (Maeda & Colonius 2019; Maeda &68
Maxwell 2021). Overall, previous studies indicate that the coherence can depend on both69
polydispersity and nonliearity in a non-separable manner, posing perplexing questions about70
the universality of scaling. The theoretical characterization of the nonlinear dynamics of71
disordered many-body systems is in general not a simple task. Meanwhile, greater computing72
power has enabled learning physics by analysing big data. Principal component analysis73
(PCA) is a powerful method for unsupervised learning which has seen recent success in74
characterizing the coherent physics of many-body and high-dimensional systems in fields75
ranging from quantum information to fluid dynamics (Lloyd et al. 2014; Holmes 2012; Taira76
et al. 2017; Milano & Koumoutsakos 2002).77
In this study, we introduce and demonstrate a method for unsupervised data decomposition78

to study the coherent bubble cluster dynamics by combining theory and PCA. PCA extracts79



3

dominant states and dynamical features, such as coherent quantum states and turbulent80
structures, and their amplitudes as the eigenfunction (feature) and the eigenvalue (variance)81
of the co-variancematrix of physical data.When applied to spatio-temporal data of dynamical82
systems, PCA is often denoted as proper-orthogonal decomposition (POD). Those data can83
be properly weighted prior to PCA such that the variance becomes consistent with the84
norm induced by an energetic inner product of state variables (e.g., kinetic energy) (Lall85
et al. 1999; Rowley 2005). This weighting allows a physical interpretation that resulting86
features associated with a large variance are energetically dominant coherent structures.87
Proper weighting of Lagrangain bubble dynamics data is non-trivial since the linear variance88
of extracted features need to account for the nonlinear interaction energy. For meaningful89
analysis, we introduce strategic pre-processing of the data prior to PCA such that the PC-90
variance becomes theoretically consistent with the energy modeled by the coupled R-P91
equation. Analysing simulation data sets of clusters, we show that the PCA can systematically92
extract not only coherent but also incoherent features whose magnitudes are respectively93
measured by the PC-variance and the entropy. We discover that the coherence is lost by94
disorders induced by polydispersity and nonlinearity, while under strong excitation the95
underlying correlations are globally isolated in a single coherent feature whose variance96
(energy) is scaled by �3 , regardless of the disorders.97
The remainder of this paper is as follows. In §2, we describe the method. The first PC98

variance, spectral entropy, and the coherencemeasure are introduced as quantifiablemeasures99
to characterize the coherent bubble dynamics from extracted features. In §3, we verify and100
demonstrate the method using a numerical dataset of bubble clouds with different density and101
polydispersity parameters under various amplitudes of harmonic excitation. The deviation102
of the PC-variance from the physical energy is quantified for two weighting methods. The103
amplitude dependencies of themeasures are quantified. The PC-spectra and their correlations104
with the coherent energy are analyzed. Moreover, the extracted coherent dynamics is related105
to �3 and its universality is discussed for cavitating clouds. In §4, the physical significance106
of the method is discussed. In §5, we state conclusions.107

2. Methods108

2.1. Principal component analysis of bubble dynamics data109

For clusters modeled by the coupled R-P equations, observable dynamical variables are110
bubbles’ radial velocities and radii. Consider a data matrix W containing the #C snapshots of111
the radial velocities with a constant temporal interval:112

W = [q1, q2, . . . , q#C ], (2.1)113

where q: denotes the vector containing the radial velocities of the # bubbles at time C: (in114
the :-th snapshot):115

q: = [ ¤'1(C: ), ¤'2(C: ), . . . , ¤'# (C: )]) . (2.2)116

For later convenience, we also define the vector r: , containing the radii of the bubbles at the117
same instances:118

r: = ['1(C: ), '2(C: ), . . . , '# (C: )]) . (2.3)119

PCA can be performed on W by using the singular value decomposition (SVD) (e.g., Abdi120
&Williams 2010; Jolliffe & Cadima 2016):121

W = [�^∗. (2.4)122
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The 8-th principal component (feature) is stored in the 8-th score matrix:123

�8 = [�8 , (2.5)124

where �8 contains the 8 − Cℎ largest singular value and zeros elsewhere.125

2.2. Weighted principal component analysis126

Although this procedure for PCA is simple and straightforward, the physical meaning of the127
extracted features are obscure since PCA itself is not informed on the underlying dynamics128
of the system. A related issue of PCA for fluid flow data has been addressed in the context of129
POD. In POD of the snapshots of Eulerian fluid flow data, the state vectors consisting the data130
matrix are often weighted such that the corresponding weighted inner product of the state131
becomes consistent with the kinetic energy of the original system. The dominant features132
(POD modes) can then be interpreted as energetically dominant coherent flow structures.133
Moreover, in our previous studies (Maeda & Colonius 2019; Maeda & Maxwell 2021), the134
scaling of bubble cloud dynamics by � was successfully demonstrated based on the total135
kinetic energy of liquid induced by interacting bubbles. These considerations motivate us to136
relate the energy with PCA for addressing the physics of bubble cloud.137
Inspired by the POD, we consider weighting the present bubble dynamics data prior to138

PCA. To find an appropriate weight, we revisit the potential theory behind eq. (1.1). The139
kinetic energy of the fluid induced by the spherical bubble oscillations is explicitly expressed140
as141

 = 2cd;
#∑
8=1

[
'38
¤'28 +

#∑
9≠8

'2
8
'2
9
¤'8 ¤' 9

A8 9

]
+ (�.$.)), (2.6)142

where '8 , ¤'8 , and A8 9 are the radius and the radial velocity of bubble 8, and distance between143
the centers of bubble 8 and 9 , respectively. The second term in the bracket represents the144
contribution of the long-range interactions. At each instant,  can be expressed as a weighted145
inner product of q:146

 = q)Zq = (]q)) (]q). (2.7)147

where148

)8 9 (r: ) =
{
2cd'3

8
(C: ) (8 = 9),

2cd
'2
8
(C: )'29 (C: )
A8 9

. (8 ≠ 9)
(2.8)149

The weight matrix,], can be obtained through the Cholesky factorization of Z (r):150

Z (r) = ]]∗. (2.9)151

This expression suggests the weighted data, ]W, is appropriate for used in PCA. However,152
Z (r) and ] are time dependent since r can change in time during large-amplitude153
oscillations. The choice of r: in the time series to define ] is unclear. A straightforward154
choice is to use the temporal mean of the radius for each bubble, 〈r〉 : 〈r〉 = ∑#C

:=1 r:/#C,155
but ) (〈r〉) is not a favorable approximation for ) (r) for bubbles with large-amplitude156
oscillations.157
We address this obstacle by variable transformation as a means of pre-processing the data.158

The schematic is shown in figure 1. First, we transform the variables from (q, r) to (/, (),159
where / = [b1, b2, ..., b# ]) and ( = [[1, [2, ..., [# ]) , and (b8 , [8) = (@8A8 , A8) = ( ¤'8'8 , '8)160
for 8 ∈ [1, #]. b8 is nothing but the velocity potential evaluated at the surface of bubble 8.161
Supplemental discussions and justifications for this transformation are provided in Appendix162

Focus on Fluids articles must not exceed this page length
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Figure 1: Schematic of the feature extraction by PCA from Lagrangian bubble dynamics
data, W, after pre-processing. The variance of the resulting features is consistent with the

interaction energy predicted by the coupled Rayleigh-Plesset equation.

A. The instantaneous energy of the system is expressed by a weighted inner product as163

 = /) V(()/ = (
()) (
(). (2.10)164


 is the weight matrix satisfying165

V(r) = 

∗, (2.11)166

where167

%8 9 ([) =
{
2cd[8 8 = 9 ,

2cd [8[ 9

A8 9
8 ≠ 9 .

(2.12)168

Second, we partially replace ( with 〈(〉 to approximate the system. Using (/̂, (̂), the169
instantaneous energy of the approximate system is expressed as170

 ̂ = /̂
)
V((̂)/̂ . (2.13)171

The temporal mean of the energy of the original system can then be approximated as172

〈 〉 ≈ 〈 ̂〉 = 〈/̂) V((̂)/̂〉 ≈ 〈/) V(〈(〉)/〉. (2.14)173

This is a critical result in the present context of PCA, since the energy is now related to the174
weighted inner product with the constant weight, V(〈(〉). Quantitative verification of this175
approximation is addressed through numerical experiments in the following section. Using176
the new set of variables, the PC decomposition is performed as177


� = [ b�b ^
∗
b . (2.15)178

The 8-th PC is stored in � b ,8: � b ,8 = [ b�b ,8 . We denote the 8-th largest singular value of179
�b as f8 . The degree of coherence can be measured by the normalized variance of the first180
PC:181

f̂21 = f
2
1 /tr(�

2), (2.16)182

which represents the ratio of the energy occupied by the first PC to the total energy of183
the system. In the following sections, to distinguish the present method from the standard184
PCA, we denote (2.15) as the weighted principal component analysis of transformed data185
(WPCA-TD).186

2.3. Spectral entropy and coherence measure187

We introduce two additional key measures to characterize the coherent physics of bubble188
clusters through WPCA-TD. First, to quantify the degree of incoherent bubble oscillations,189
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we define the spectral entropy of the weighted co-variance matrix, 
�, as190

(̂E# = −
∑ f̂2

:
(lnf̂2

:
)

ln(#) , (2.17)191
192

where ln2(#) is the normalization factor. The spectral entropy of data is a discrete analogue193
of the Shannon entropy based on the spectrum of data and has been used to quantify the194
randomness of data in various applications (Kullback 1997; Alter et al. 2000; Hu et al. 2005;195
De Domenico & Biamonte 2016). Aubry et al. (1991) introduced a similar definition of196
entropy for spatio-temporal signals of canonical fluid flows from their POD eigenvalues and197
used the entropy to characterize flow instabilities. In the present context, when bubbles are198
in perfect correlation, we expect to excite only the first PC capturing the entire energy of the199
system: f̂21 = 1 and f̂2

:
= 0 for : : : ∈ [2, #], yielding (̂E# = 0. In contrast, if the energy200

is equi-partitioned into all PCs, f̂2
:
= 1/# for all : : : ∈ [1, #] and (̂E# = 1. Second, we201

define the coherence measure �.202

� =
�1
�3
, (2.18)203

204

where205

�1 =
f21

f′21
− 1. (2.19)206

f′21 is the first PC-variance excluding the contribution of interactions, obtained from the207
WPCA-TD of the same data using a diagonal weight matrix 
′ whose diagonal entries208
are those of 
. Further details of 
′ are provided in Appendix B. In the limit of perfect209
correlation (also see eq. (1.1)),210

〈 〉 ≈ f21 ≈ (1 + �3)f
′2
1 (2.20)211

and212

�3 ≈ �1. (2.21)213

Therefore � ≈ 1. This condition is typically realized in monodisperse clusters under weak214
(linear) oscillations (d’Agostino & Brennen 1989). For real clusters under strong excitation,215
bubbles are not perfectly correlated and the energy can be distributed in broad features. In216
this regime, approximation (2.20) is not necessarily expected to hold and � can take values217
far from unity. Phenomenologicaly speaking, � quantifies from data the degree to which the218
most coherent mode of oscillation is represented by the cluster’s mean-field interaction. A219
schematic of the process to obtain � from data is provided in Appendix B.220

3. Numerical experiments221

3.1. Data sets222

To verify and demonstrate the WPCA-TD, we use data sets of spherical clusters excited by223
40 cycles of harmonic pressure excitation. Each cluster contains $ (10 − 103) bubbles with224
their initial radii following log-normal distributions with a reference radius of 'A4 5 = $ (10)225
`m; ln('0/'A4 5 ) = # (0, B3), where B3 is the lognormal standard deviation as the measure226
of polydispersity (Maeda & Colonius 2019). We address B3 = [0.1, 0.3, 0.5, 0.7]. In real227
bubble clouds, nuclei are expected to be polydisperse. B3 = 0.7 may be a representative228
estimation based on previous studies (Katz 1978; Ando et al. 2012; Maeda & Colonius229
2019), and is used unless noted. The smaller values of B3 are used in some cases to quantify230
the effect of polydispersity. The bubbles are randomly distributed in the spherical region231
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Figure 2: Evolution of representative quantities of a bubble cloud with
(�0, B3 , #) = (0.5, 0.1, 100) excited at � = 20, during a stationary state. (a) Radius of a
representative bubble. (b) For the same bubble, b obtained from the raw data, and those
from the first and second dominant features extracted using WPCA-TD. (c) Void fraction.

(d) Kinetic energy of the fluid induced by the bubble cloud.

with a specified cluster radius. Similar parameters of clusters were previously simulated to232
compare with experiments (Maeda & Colonius 2019; Maeda &Maxwell 2021). The density233
of bubbles is characterized by �0, the value of �3 at rest. The far-field pressure is given234
as ?∞(C) = ?0 [1 + �sin(2c 5 C)]. The frequency of excitation is 5 =500 kHz unless noted,235
near the adiabatic resonant frequency of the reference bubble. The amplitude of excitation is236
defined by �, relative to the ambient pressure at ?0 = 1.0 atm. For each set of parameter, we237
compute an ensemble average by taking a mean of the results from 20 bubble clouds with238
distinct spatial placements of bubbles in the clouds. For data generation, we use mesh-free,239
coupled Keller-Miksis equations by modifying previous methods. Details of this method are240
provided in Appendix D.241

3.2. Visualization of representative data242

In figure 2 we show evolution of representative quantities of a bubble cloud in the dataset243
with (�0, B3 , #) = (0.5, 0.1, 100) excited at � = 20, during a stationary . Figure 2 (a)244
shows the radius of a representative bubble. The plot presents familiar features of cavitation245
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(a) (b) (c)

Figure 3: Projected side-views of the three-dimensional bubble cloud of figure 2The size
of the spheres denotes the root-mean-square amplitude of the velocity potential evaluated
at the bubble surface at corresponding locations during the stationary state of oscillations,
for (a) the raw data, (b) the first principal feature, and (c) the second principal feature.

bubbles forced by continuous, strong excitation, including fast events of collapse/rebound246
and slow growth/decay between them. During the slow phase, small-amplitude oscillations at247
excitation amplitude are evident. For the same bubble, figure 2(b) shows the evolution of the248
velocity potential obtained from the raw data, and those from the first and second dominant249
features extracted through the WPCA-TD. Compared to the radius, the raw data of the250
velocity potential looks much more symmetric about zero, even around the collapse events.251
The potential of the first feature presents a sinusoidal profile at the excitation frequency252
and with a constant amplitude which is close to the peak amplitude of the original data.253
The collapse events are not captured in this feature. The potential of the second feature254
is symmetric but has a much lower amplitude compared to the first feature. There is no255
clear similarity between the original data and the second feature, unlike that between the256
original data and the first-PC. Figure 2(c) shows the void fraction. The fraction oscillates257
with an amplitude of around 5.0 × 10−4 near 3.0 × 10−3 at the excitation frequency. Slow,258
small amplitude of variations are also observed. Figure 2(d) shows the kinetic energy of259
fluid induced by bubble oscillations. The energy oscillations around 0.75 `J at doubled260
the excitation frequency. Although the frequency is as expected, the peak amplitude largely261
fluctuates in the window as well as the waveform is not symmetric, unlike the void fraction.262
The fluctuation and asymmetry indicate can be associated with the incoherent oscillations to263
the kinetic energy. For instance, if one bubble is expanding and another bubble is collapsing264
out of phase, their net contribution may not appear in the void fraction due to mutual265
cancellation but can appear in the energy. Overall, the averaged quantities, void fraction and266
the energy, are much smoother than the individual bubble dynamics. This can be trivially267
explained by the incoherence of violent collapse events among bubbles and coherence of268
the linear response against fundamental frequencies. Meanwhile, the quantitative nature of269
coherent response is not predictable or easily analyzable from these plots due to strong270
non-linearity, especially under inter-bubble interactions with disordering factors including271
randomness of bubble position and polydispersity.272
Figure 3(a-c) show the projected side-views of the three-dimensional bubble cloud of273

figure 2. The size of the spheres denotes the root-mean-square amplitude of the velocity274
potential evaluated at the bubble surface at corresponding locations during the stationary275
state of oscillations, for (a) the raw data, (b) the first principal feature, and (c) the second276
principal feature. The size of spheres can be interpreted as the mean energy of oscillations277
of bubbles at those locations in each feature. The overall distribution of the spheres of the278
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Figure 4: Relative error of the mean kinetic energy of the fluid induced by clusters for the
two approximations, (×):〈 〉 ≈ 〈q) Z (〈q〉)q〉 and (◦):〈 〉 ≈ 〈/) V(〈(〉)/〉, against the
excitation pressure amplitude with various polydispersities and values of �0. Black:

(B3 , �0) = (0.1, 0.5) and red: (B3 , �0) = (0.7, 5.0).

1st feature resembles that of the raw data, while the energy of the bubbles in the 2nd feature279
is much smaller than that of the 1st feature. The plots therefore visually confirm that the280
1st-feature represents the most energetic mode of oscillations in the original data. This result281
also agrees with the observation of figure 3(b).282

3.3. Error analysis283

To show the effectiveness of the pre-processing, in figure 4, we plot the relative errors284
of the time-averaged kinetic energy of bubble clusters, one approximated using the original285
variable (〈q)Z (〈r〉)q〉) and the other using the transformed variables (〈/) V(〈(〉)/〉), against286
the excitation amplitude. At � < 10−1, the error is nearly zero for both approximations. At287
� > 10−1, at which bubble dynamics become nonlinear, the error grows with � for the288
former, while it remains small for the latter. This result confirms the improved approximation289
by the pre-processing.290

3.4. Amplitude dependence of the key measures291

The coherent dynamics critically depend on the excitation amplitude. Figure 5 shows the292
dependence of f̂21 , (̂E# , and � against � for various density and polidispersity parameters293
of clouds. This dependence is best highlighted in the result of sparse, weakly polydisperse294
cluster (�0 = 0.5, B3 = 0.1) in figure 5(a). The relative importance of the first PC, f̂21 ,295
decays nearly monotonically from 0.9 to 0.2 through three distinct regimes. For � / 0.2,296
f̂21 ≈ 1 meaning the entire energy is captured by the first PC. Then f̂21 rapidly decays to 0.4297

and stays nearly constant up to � ≈ 3. At � > 3, f̂21 decays again and stay nearly constant298
around 0.2. The decay indicates the decrease in the coherence with increasing � and can be299
explained by the excitation of the nonlinear oscillations and cavitation triggered at � ≈ 1300
and above. (̂E# has a profile vertically mirrored to f̂21 ; (̂E# increases from around 0.1 to301
0.5 through the three regimes, indicating more partitioning of the energy into multiple PCs302
and increase of incoherence, by increasing �. The mirrored profiles of f̂21 and (̂E# suggest303
that these parameters are complementary.304

305
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Figure 5: The first PC-variance (f̂21 ), the normalized von Neumann entropy ((̂E# ), and
the coherence measure (�), against the excitation amplitude with various initial density

and polydispersity parameters, with (�0, B3)= (a) (0.5,0.1), (b) (0.5,0.7), (c) (5.0,0.1), and
(d) (5.0,0.7).

Remarkably, � draws a square-well like profile, where � ≈ 1 for both low (� < 0.2) and306
large (� > 5) amplitudes reaching a minimum value (� ≈ 0.5) at � ≈ 1. This counter-307
intuitive result suggests that the energy of the first PC is scaled by the mean-field parameter308
�3 regardless of the increase of incoherence for large �, and the scaling is lost only for the309
intermediate range at 1 < � < 5. Comparisons with the result of dense, weakly polydisperse310
clusters (�0, B3) = (5.0, 0.1) shown in figure 5(b) highlights the effect of the density of311
bubbles. In figure 5(b), f̂21 takes values near unity at small � and decays at � ≈ 1.0 to around312

0.4 and stays nearly constant at � > 5.0. At � > 10, f̂21 slightly grows against �. (̂E# has a313

profile vertically mirrored to f̂21 . The features of f̂
2
1 and (̂E# are similar to those observed314

in figure 5(a), except that the transition occurs at a larger range of �. The sudden decay and315
growth of f̂21 and (̂E# can likewise be associated the linear-to-nonlinear transition of bubble316
dynamics which results in incoherence. Meanwhile, the positive shift of the transition range317
of � indicates that the dense bubble clouds tend to behavemore coherently than sparse bubble318
clouds, agreeing with the previously theory (d’Agostino &Brennen 1989;Maeda &Colonius319
2019).� is greater than 0.5 at almost all values of �, and is relatively more insensitive against320
� compared to figure 5(a), indicating that the cluster dynamics is moderately controlled by321

Rapids articles must not exceed this page length
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�3 . Figure 3(c) and (d) respectively corresponds to sparse and dense clusters with strongly322
polydisperse nuclei; (�0, B3) = (0.5, 0.7) and (5.0, 0.7). These plots show clear differences323
from those of weekly polydisperse clusters in figure 5(a) and figure 5(b). For the sparse324
clusters (figure 5(c)), f̂21 mildly decays from 0.8 to 0.7 at 0.1 < � < 0.2, sharply decays to325
the minimum of 0.2 at � ≈ 0.4 and then mildly grows to 0.3 at � = 1.2. The sharp decay326
resembles that in figure 5(b), while the slope is milder. (̂E# has also a profile mirrored to327
f̂21 , but it is less symmetric than figure 5(a) and figure 5(b). (̂E# is nearly constant around328
0.2 at 0.1 < � < 2.0 and draws a concave curve with its maximum of around 0.5 at � ≈ 5.0329
followed by a smooth decay to 0.3 at � = 20. � almost constantly increases from 0.2 to$ (1)330
throughout the plot, indicating that the coherent dynamics is controlled by �3 , only at large331
�, unlike weakly polydisperse case of figure 5(a). The overall trend of the plots in figure 5(b)332
is similar to figure 5(a), although the changes of variables against � are milder in figure 5(b).333
Overall, themutual trends of variables at � > 5 are similar between figure 5(a) and 5(c) and334

between figure 5(b) and 5(d), indicating the decreasing influence of the initial polydispersity335
in the nonlinear regime. At � < $ (1), the polydisperse clouds tend to have smaller values of336
f̂21 , and larger values of (̂E# and�. This can be explained by the enhancement of incoherent337
dynamics induced by polydispersity.338

3.5. Principal component spectrum339

To gain deeper insights on the meaning of �, in figure 6(a-d) we show the PC-variances340
obtained at � = 2 × 10−2, 1.2, and 20, for the first 10 PCs, obtained from the sparse,341
weakly polydisperse clouds blueplotted in figure 5(a). The insets show the evolution of the342
square-root of the normalized total energy (

√
 ) and those of the first and the second PC-343

variances (
√
 1 and

√
 2), during the four periods of excitation in statistically stationary344

states. As expected, in the linear regime (figure 6(a), the first PC occupies nearly the entire345
energy.

√
 1 evolves at the fundamental frequency. In the transition regime (figure 6(b)), the346

first PC occupies 40% of the energy and the rest is partitioned into the sub-dominant PCs347
with a smooth decay.

√
 evolves more chaotic than the linear regime, as expected due to348

the nonlinear response of bubbles. Both
√
 1 and

√
 2 evolve with similar quasi-periodic349

profiles. We interpret that both PCs represent the coherent part of the energy.350
Interestingly, in the nonlinear regime (figure 6(c)) energy partitioning is non-smooth; the351

first PC occupies 40% of the total energy similar to the transition regime, but the rest of the352
energy is broadly distributed into the other PCs with much smaller amplitudes. The evolution353
of
√
 is non-periodic with noisy, fine structures of spikes. These spikes are expected due354

to the incoherent collapse events. The evolution of
√
 1 is, in contrast, highly periodic, and355

somewhat resembles that of figure 6(b). The evolution of
√
 2 is more chaotic and less356

smooth than
√
 1. The difference between the first-PC and the rest of PCs suggest that, in this357

regime, only the first PC captures a major coherent feature and the rest of PCs represent more358
the incoherent dynamics as broadband noise. Figure 6(d) shows the result of the nonlinear359
regime with a stronger excitation amplitude (� = 20). Overall, both the spectrum and the360
evolution of  look similar to that of figure 6(c), other than that the amplitude of the first361
PC-variance is increased to 60%. The resemblance of figure 6(c) and figure 6 (d) indicates362
that the dynamical features identified from these two plots are common in the non-linear363
regimes.364
The resemblance of the evolution of the first PCs in the linear and the nonlinear regimes365

can explain the recovery of � at � > 5 in figure 6(a). Although the overall dynamics are366
much more chaotic in the nonlinear regime, the contribution of the coherent interactions to367
the system’s energy effectively appears only in the first PC in both regimes and therefore the368
relative contribution of the interaction to the first PC is commonly scaled by �3 . This result369
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Figure 6: (a-d) The PC spectral profiles at � = 2 × 10−2, 1.2, 8.6, and 20. Insets show the
evolution of the square-root of the normalized total energy (

√
 , black) and those of the

first (blue) and the second (red) PC-variances (
√
 1 and

√
 2), during the four periods of

harmonic excitation, with Ĉ being a non-dimensional time Ĉ = C 5 . The H-axis of each inset
is normalized by the maximum value of

√
 .

also implies that the underlying coherence in the nonlinear regime represents the perfect370
correlation (synchronized oscillations) like that of linear, monodisperse clouds.371

3.6. Evaluation of the coherence measure372

To assess the variation of the coherence measure dependent on the three regimes, in figure373
7(a-c) we plot �1 against �3 for$ (103) clusters with various values of B3 , # , and '� , at the374
three distinct excitation amplitudes (� = 2×10−2, 1.2, and 20). Appendix D summarizes the375
parameters used. With the weak excitation (figure 7(a)), bubble oscillations are in a linear376
regime and �3 ≈ �0. The data points are collapsed on the line of � = 1 for B3 = 0.1, while377
data points are scattered for the other values of B3 . This result is expected as �3 was originally378
defined to scale the coherence of the monodisperse, perfectly correlated bubbles in the linear379
regime (d’Agostino & Brennen 1989; Zeravcic et al. 2011). With the intermediate excitation380
(figure 7(b)), the bubble oscillations are nonlinear. The data points are scattered from � = 1,381
regardless of the value of B3 . In this regime, the result indicates that the coherence is lost due to382
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Figure 7: �1 against �3 , for $ (103) clusters with various values of B3 , # , '� , and other
physical parameters (Appendix D) in the linear (a: � = 2 × 10−2), transition (b: � = 1.2),

and nonlinear (c: � = 20) regimes.

the nonlinear dynamics, regardless of polydispersity. Surprisingly, with the strong excitation,383
(figure 7(c)), the data points are collapsed on the line of � = 1, meaning that the variance of384
the first PC is scaled by �3 , regardless of the parameters. This collapse is not observed for the385
second PC, regardless of the parameters (Appendix E). The results suggest that the scaling386
of �1 is universal for cavitating clusters, which are typically excited at$ (1) MPa and above.387
Physically speaking, the scaling indicates that in cavitating clusters, the energy is partitioned388
into a single coherent mode of correlated (synchronized) oscillations and incoherent modes389
generalizing the aforementioned interpretation of figure 6(c) and figure 6(d). The coherent390
energy is controlled by the mean field originally derived for monodisperse, near-equilibrium391
bubbles. It is suggested that this partitioning and scaling are universal regardless of nuclei’s392
polydispersity and the degree of nonlinearity. This finding explains successful use of �3 in393
characterizing and controlling seemingly disordered clusters in our previous studies (Maeda394
& Colonius 2019; Maeda & Maxwell 2021). The isolation of coherence implies that the395
details of the microscopic scale as well as of the many-body interactions represented by396
higher-order PCs could be modeled as fast variables, which force the macroscopic (relevant)397
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scales in the form of noise. A rigorous way to corroborate this hypothesis might be the398
Mori-Zwanzig projection operator formalism (Mori 1965) by assuming that the fluctuations399
of fast and slow variables are uncorrelated. Although the choice of relevant slow variables400
may be unclear, the present approach is promising since the WPCA-TD can be seen as a401
prompter for more refined models of the evolution of slow variables.402

4. Significance of the WPCA-TD to inform on cavitation physics403

In general, PCA can be considered a mathematical technique for data decomposition,404
and the physical meaning of extracted features can be left to one’s interpretation. To the405
authors’ knowledge, studies of complex fluid flows employing data decomposition and feature406
extraction techniques often rely on one’s intuition to discuss the physical meaning of features.407
In fact, in §3.5, the analyses of the PC spectra required rigorous interpretations based on408
previous knowledge on cavitation physics. Meanwhile, the correlation between �1 and �3409
identified in the last section shows that the present WPCA-TD can directly extract �3 from410
data without additional signal processing like spectral filtering, which are often required for411
Fourier-based analysis, despite the presence of noisy and incoherent features. To generalize,412
WPCA-TD is not only a tool for data decomposition and feature extraction but also can be413
used to directly inform on the non-dimensional number that controls the coherent physics414
of interests. This informative aspect of the WPCA-TD can provide a meaningful shortcut to415
address the physics of cloud cavitation.416
To perform WPCA-TD, bubble dynamics data can be obtained from experimental mea-417

surements as well as other numerical approaches (e.g., Kameda & Matsumoto 1996; Maeda418
& Colonius 2018; Pishchalnikov et al. 2019). The cluster’s shape can be arbitrary. Although419
bubble’s translation and deformation are neglected in the present numerical experiments,420
WPCA-TD can incorporate dynamical variables controlling these effects (e.g., Ilinskii et al.421
2007; Murakami et al. 2020). Physically meaningful data decomposition requires the fine422
temporal resolution of individual bubble dynamics. In practice, such information would be423
difficult to obtain in experiments except for a small number of bubbles in a highly controlled424
environment. We thus emphasize that WPCA-TD would primarily be useful to process fine425
temporal resolution of numerical data.426

5. Conclusion427

In conclusion, to corroborate the coherent dynamics of bubble clusters, we introduced and428
demonstrated WPCA-TD, a method of PCA to comprehensively decompose the time series429
of Lagrangian bubble dynamics data into coherent dynamical features, in way similar to430
the modal decomposition of Eulerian flow field data. The data are pre-processed such that431
the PC-variance of the features becomes consistent with the hydrodynamic potential energy432
induced by bubble oscillations that is predicted by the R-P equation. Analyzing simulation433
data sets of clusters under harmonic excitation, we demonstrated that the coherent energy and434
the degree of incoherence are respectively quantified by the variance and the spectral entropy.435
The coherence was lowered by disorders induced by nuclei’s polydispersity and nonlinear436
response of bubbles, as expected. Meanwhile, in cavitating regimes, underlying, correlated437
mode of oscillations were isolated in a single dominant feature. The variance of this feature438
was found to be controlled by the previously identified mean-field parameter, �3 , regardless439
of the disordering factors, indicating that the underlying coherent dynamics may be universal440
in cavitating clusters. These results suggest that the method can provide a simplified and441
comprehensive representation of complex bubble dynamics. Analogous to the use of POD442
for reduced-order modeling (ROM) of various flows, the dynamical features extracted by443
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PCA may be used for ROM, without directly solving many-body interactions. Such a model444
may be promising for controlling cavitation and nucleationwithout tracking individual nuclei.445
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464

Appendix A. Variable transformation for a single bubble465

In this section, we provide supplemental discussions and justification on the variable466
transformation used in the WPCA-TD, by considering the single bubble dynamics. By467
transformation (b, [) = (' ¤', '), with b being nothing but the velocity potential evaluated at468
the bubble surface, the R-P equation can be expressed as469

¤b = −1
2

(
b

[

)2
+ ?1 − ?∞(C)

d
, (A 1)470

¤[ =
b

[
. (A 2)471

472

?1 and ?∞ are the pressure inside the bubble and that in infinity, respectively. The473
instantaneous energy of the system is expressed as474

 = 2cd ¤'2'3 = 2cdb2[. (A 3)475

Next, we approximate the system (A 1). Given the time series data, the temporal average of476
[ can be computed as 〈[〉. Using 〈[〉, we approximate the system of eq. (A 1) on a space477
spanned by a set of new variables (b̂, [̂).478

¤̂b = −1
2

(
b̂

〈[〉

)2
+ ?1 − ?∞(C)

d
, (A 4)479

¤̂[ =
b̂

[̂
. (A 5)480

481

This system models well the dynamical features of the R-P equation including bifurcation,482
although b̂ and [̂ are now partially decoupled. Our explanation is the following. In the483
linear regime, the quadratic term of eqn. (� 4) can be neglected, and this system becomes484
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Figure 8: Comprehensive schematic of the present procedure to obtain the spectral
entropy, PC-variance, and coherence measure, from input data.

identical with the original one. In nonlinear, cavitating regime, the bubble size ([) varies485
slowly near its peak after the explosive cavitation growth. Sporadic, fast collapse events486
do not influence much the temporal mean of the bubble size. Therefore, [ is close to 〈[〉487
except at collapse events and, even if [ changes rapidly during the collapse and rebound, this488
change has a relatively small influence on the mean behavior of the system at the timescale489
of (statistically) stationary bubble oscillations.490
We can express the instantaneous energy of this approximate system as491

 ̂ = 2cdb̂2[̂. (A 6)492

With the same initial condition (b = b̂ and [ = [̂ at C = 0), the temporal mean of the energy493
of the original system is approximated as494

〈 〉 ≈ 〈 ̂〉 = 2cd〈b̂2[̂〉 ≈ 2cd〈b̂2〉〈[〉. (A 7)495

496
Note that Preston et al. (2007) used a POD-based analysis of single bubble dynamics for497

reduced-order modeling of heat and mass diffusion across bubble interface. In the study, the498
temperature and concentration fields were obtained by solving partial differential equations499
and then represented by PODmodes, following the POD/Galerkin framework. This is distinct500
from the present PCA (POD) of Lagrangian bubble dynamics data based on the direct501
transformation and projection of the Rayleigh-Plesset equation.502
Appendix B. Schematic of the input-output procedure503

Figure 8 shows the schematic of the present procedure to obtain the spectral entropy, PC-504
variance, and coherence measure, from the input data including the time series of the radius505
and radial velocity of Lagrangian bubbles.506
For computing �, we introduced the alternative weight, 
′. 
′ is defined through V′ :507

V′(〈s〉) = 
′
′∗, where V′ is the diagonal matrix with its entries from V:508

%′8 9 ([) =
{
2cd[8 8 = 9 ,

0 8 ≠ 9 .
(B 1)509
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The corresponding inner product, /) V′/, represents the portion of the energy of the system510
excluding the contribution of inter-bubble interactions.511

 ′ = /) V′/, (B 2)512

where513

 ′ = 2cd;
#∑
8=1

'38
¤'28 + (�.$.)). (B 3)514

515

Appendix C. Details of the K-M equation used for data preparation516

In this section, we provide details of the formulation of the Keller-Miksis (K-M) equation for517
multiple bubbles, which is used to generate the Lagrangian bubble dynamics data. Various518
extensions of the Rayleigh-Plesset equation and its applications to a system of multiple519
bubbles are available (Doinikov 2004; Takahira et al. 1994; Ilinskii et al. 2007; Yasui et al.520
2008). Our formulation can be derived from the K-M equation extended for multiple bubbles.521
First, we recall the general formulation for the oscillations of interacting spherical bubbles522
in weakly compressible liquid with arbitrary inter-bubble distances, whose derivation is, for523
instance, provided in Appendix 2.4 of Fuster & Colonius (2011). In the present study, we524
use a simplified version of this derivation. To recall, in Fuster & Colonius (2011), the radial525
evolution of bubble 8 is described as526

¥'8
(
'8

(
1 −
¤'8
2

))
+ 3
2
'28

(
1 −
¤'8
32

)
= �∗ + �∗, (C 1)527

where �∗ and �∗ represent the forcing due to the external potential and the inter-bubble528
interaction, respectively, and are expressed as529

�∗ =
mq∞
mC

(
1 −
¤'8
2

)
+ '8
2

m2q∞
mC2

+ �8
(
1 +
¤'8
2

)
+ '8

¤�8
2

, (C 2)530

and531

�∗ =
#∑
9≠8

[(
1 +
¤'8
2

)
mq 9 ('8)
mC

]
+ '8
2

#∑
9≠8

[(
1 +
¤' 9 (C ′)
2

) (
1 −
¤' 9
2

)
m2q 9 (C ′ − ' 9 (C ′)/2)

mC ′2

]
(C 3)

532

−
#∑
9≠8

[(
1 +
¤' 9 (C ′)
2

)
mq 9 (C ′ − ' 9 (C ′)/2)

mC ′
'8

' 9

¤' 9
2

]
. (C 4)533

534

q∞ is the velocity potential of liquid at infinity, and q8 ('8) and �8 are the potential and535
the enthalpy of liquid evaluated at the surface of bubble 8. C ′ is the retarded time defined as536
C ′ = C − (38 9 − ' 9)/2, where (38 9 − ' 9)/2 represents the travel time for the pressure wave to537
reach bubble 8 from the surface of the bubble 9 and 38 9 is the distance between the centers of538
those bubbles. In the sparse limit, the equation recovers the original Keller-Miksis equation539
(Keller & Miksis 1980).540
To close the equations, several relations are considered. Using the Bernoulli’s equation,541

the potential for the bubble 8 can be expressed as542

mq8 ('8)
mC

= −
(
1
2
¤'28 + �8 +

#∑
9≠8

mq 9 ('8)
mC

+ mq∞
mC

)
. (C 5)543

544
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The velocity potentials at the bubble 8 and bubble 9 satisfy the following relation.545

mq8 ('8)
mC

=
' 9 (C ′)
38 9

mq 9 (C ′ − ' 9/2)
mC ′

. (C 6)546
547

The enthalpy and the potential derivative are approximated as548

�8 ≈
?8 − ?0
d;,0

. (C 7)549

550

mq∞
mC
≈ ?∞ − ?0

d;,0
. (C 8)551

Finally, ?∞ is obtained using the information of the background Eulerian field computed on552
a mesh.553
In the present study, we simplify �∗ and �∗ by invoking further approximations. First,554

consider that the bubble cluster size is smaller than the characteristic length-scale of the555
pressure wave in the field, _2 . The inter-bubble distance in the cluster is naturally smaller556
than _2:557

38 9 − ' 9 � _2 . (C 9)558

Dividing both sides with 2,559

38 9 − ' 9
2

= C − C ′ � _2

2
=
1
52

= )2 , (C 10)560

where 52 and )2 are the characteristic frequency and the period of the wave in the field.561
Therefore, the difference between C and C ′ is much smaller than the characteristic timescale562
of the dynamics. Given this knowledge, we approximate that C ′ ≈ C. Second, we neglect the563
terms in the order of ( ¤'/2)2. Using these approximations, we can simplify �∗ and �∗ as564

�∗ =
?8 − ?∞
d;

(
1 +
¤'8
2

)
+ '8

d;2

m (?8 − ?∞)
mC

(C 11)565

and566

�∗ = (C 12)567

−
#∑
9≠8

' 9

38 9

(
1
2
¤'29 + ¥' 9

(
' 9

(
1 −
¤' 9
2

))
+ 3
2
¤'29

(
1 −
¤' 9
32

)
−
? 9 − ?∞
d;

¤' 9
2
−
' 9

d;2

m (? 9 − ?∞)
mC

)
.

(C 13)

568

569

For harmonic excitation,570

?∞ = ?0sin(lC). (C 14)571

We use polytropic law to describe the pressure of the gas inside each bubble (Brennen 2014).572

?8 = ?8,0

(
'8,0

'8

)3W
, (C 15)573

where W is the constant polytropic exponent. Eqns (C 1), (C 11) and (C 13), together with574
relations (C 14) and (C 15) provide a complete system of ODEs for the radius of # interacting575
bubbles, which can be readily solved with a given initial condition.576



19

# '2 [mm] 'A4 5 [`m] B3 5 [kHz]
16 0.33-2.0 10 0.1-0.7 500
32 0.33-2.0 10 0.1-0.7 500
64 0.33-2.0 10 0.1-0.7 500
128 0.33-2.0 10 0.1-0.7 500
256 0.33-2.0 10 0.1-0.7 500
512 0.8-2.0 10 0.1-0.7 500
64 0.33-2.0 5 0.1-0.7 500
64 0.33-2.0 10 0.1-0.7 250

# '2 [mm] 'A4 5 [`m] B3 5 [kHz]
16 0.33-2.0 10 0.1-0.7 500
32 0.33-2.0 10 0.1-0.7 500
64 0.33-2.0 10 0.1-0.7 500
128 0.33-2.0 10 0.1-0.7 500

Table 1: Summary of the parameters used for the data set of clusters analyzed in the main
manuscript.

Appendix D. Summary of the parameters577

Table 1 summarizes a set of parameters used to construct the database analyzed the main578
manuscript. The number of bubbles # , cluster radius '2 , reference bubble radius 'A4 5 ,579
polydispersitymeasure B3 , and the forcing frequencywere varied. The left table of parameters580
are used for the clusters in figure 4 (B3 = 0.1, 0.7), figure 7(a) (all values of B3), and figure581
9(a) (all values of B3). The right table of paramters are used for the clusters in figure 7 (b),582
figure 7 (c), figure 9 (b), and figure 9 (c).583

Appendix E. Scaling of the second PC584

Figure 9 shows the scaling of the interaction energy of the second dominant feature of bubble585
clouds in the data set, �2 = f22 /f

′2
2 − 1, for various values of excitation amplitude and586

nuclei polydispersity. For all parameters, data points are widely scattered and there is no587
clear correlation observed between �2 and �3 , indicating that the second dominant feature588
do not represent coherent oscillations like those of the principal feature.589
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