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RPTU Kaiserslautern-Landau
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apatel @rptu.de

Abstract—The emergence of Automated Driving Systems
(ADS) signifies a remarkable transformation in the realm of
vehicular technology, bringing forth new challenges in assessing
risks and formulating safety goals.

In this paper, we delve into the evolving nature of risk features
in ADS and their prioritization, highlighting the inadequacy of
conventional static risk assessment models. Our research has
led to the development of a model that utilizes Random Forest
(RF) for predicting risk ratings in diverse driving conditions.
This model gathers and processes various types of data from
On-Board Sensors (OBS), converting them into risk features
through mathematical formulas. This process aids in estimating
the unknown correlations between the values of risk features and
predicting risk ratings as an output.

Utilizing a RF model for runtime risk assessment, we demon-
strate how varying triggering conditions, such as unintended
acceleration and unintended braking, affect the derived risk
ratings. These ratings are then used to guide the implementation
of risk-informed actions. They not only influence the modification
of existing safety goals but also assist in formulating new, context-
specific safety goals. Additionally, the predicted risk ratings can
prompt functional modifications if necessary.

Index Terms—Automated Driving System, Risk Assessment,
Random Forest, Severity, Controllability

I. INTRODUCTION

The Hazard Analysis and Risk Assessment (HARA) of ISO
26262 [1] plays an important role in ensuring the functional
safety of automotive systems. It does so by evaluating haz-
ardous events, their associated severity, exposure, and con-
trollability, to determine an Automotive Safety Integrity Level
(ASIL). In similar vein, the Hazard Identification and Risk
Evaluation (HIRE) process from ISO 21448 [2] also evaluates
factors such as severity, exposure, and controllability, its main
focus lies in assessing the hazardous event itself, rather than
assigning an ASIL.

A challenge arises from the subjective nature of risk rat-
ing assignment, often overlooking the dynamic interaction
between vehicle dynamics and the environment. This leads
to a lack of emphasis on the dynamic aspects of risk and their
prioritization under varying conditions. The HARA and HIRE
process, therefore, suffers from inconsistencies, primarily due
to the subjective judgments of safety engineers. These judg-
ments, influenced by personal backgrounds, experiences, and
preferences, introduce variability in assessing hazard severity,
controllability, and exposure [3, 4]. Such inconsistencies in
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risk assessment can cause improper allocation of resources
for safety goals and hazard mitigation.

This paper introduces a dynamic and responsive risk as-
sessment method tailored for the evolving conditions of the
driving environment and advancements in ADS. Central to
this approach is the integration of runtime data and predic-
tive analytics, leveraging data from OBS and sophisticated
algorithms. This method is designed to be both empirical and
adaptable, aiming to enhance the accuracy and relevance of
risk evaluations in real-world driving scenarios.

A key aspect of this proposed approach is the use of a RF
model for predicting severity and controllability ratings. The
choice of this algorithm is strategic, reflecting its capability to
handle a multitude of input variables and to model complex in-
teractions effectively. This is coupled with the continuous risk
assessment cycle, which facilitates moving from unknown-
unsafe to known-safe regions. It does this by integrating
multiple interactions between environmental factors, system
dynamics, and user behavior, thereby adding nuance to the
risk ratings.

The study focuses on the prioritization of various risk
features in diverse conditions and their impact on runtime
risk ratings. It particularly emphasizes different triggering
conditions encountered during operation, illustrating how this
method aligns safety measures with actual on-road conditions,
thus ensuring a more objective assessment of risks.

II. RELATED WORK

The field of risk assessment for ADS encompasses a di-
verse array of methodologies, ranging from qualitative ap-
proaches that rely on subjective judgments [5] to quantitative
methods grounded in numerical data and statistical analy-
sis [6]. Dynamic models stand out for their adaptability to
runtime data and changing conditions [7], while simulation
and scenario-based methods [8] offer risk foresight through
virtual modeling. Additionally, data-driven and machine learn-
ing approaches [9], particularly using the RF model, have
gained traction for their ability to analyze vast data sets,
with studies exploring its application in both accident data
analysis [10], ongoing risk monitoring [11], and impact on
accident frequency [12]. These varied perspectives provide
a comprehensive view of risk assessment in ADS, laying a
foundation for the development of continuous risk assessment
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Fig. 1. Schematic Representation of the Continuous Risk Assessment Cycle

cycles that are responsive, adaptable, and grounded in a blend
of empirical data and expert insight.

III. CONTINUOUS RISK ASSESSMENT CYCLE

The continuous risk assessment cycle is a methodical ap-
proach that splits into two essential yet interlinked modules:
the “Risk-Learning Process” and the “Risk-Informed Actions”
as shown in Fig. 1.

On its right side, the cycle embraces a fact-based method-
ology, rooted firmly in empirical data collected from runtime
environments. This phase begins with the gathering of specific
risk-related context through OBS, establishing a solid, data-
driven foundation for assessing risk. A key element of this
segment is the incorporation of machine learning, particularly
the use of a RF model to analyze these risk features. Im-
portantly, this process is supervised by a safety engineer who
brings their expertise to the fore, fine-tuning and enhancing the
model. This step ensures that the development of the model
is not only reliant on data but also enriched by professional
insight and judgment. Once the model has been approved by
the safety engineer, it is deployed on the EGO vehicle model to
generate runtime risk ratings, thereby encapsulating the data-
centric nature of this phase.

In contrast, the cycle’s left side is anchored in a value-
based approach, focusing on how predicted risk ratings are
practically applied in decision-making processes. This segment
involves using runtime risk ratings as a facilitator for actions
such as identifying root causes, strengthening safety mecha-
nisms, and fostering communication across various domains.
Safety experts harness the model’s outputs to craft specific
safety goals that blend empirical data with expert judgment.
Such critical reviews help pinpoint areas where the ADS can

be enhanced, striking a balance between its technological
prowess and safety requirements. The cycle’s fluidity is further
emphasized by its ongoing refinement process, where both the
machine learning model and safety tactics are continuously
polished based on feedback from real-world operations.

The continuous risk assessment cycle smoothly combines
a fact-based learning methodology with a value-based action.
This balanced integration ensures that the framework is not
only firmly anchored in empirical data but is also adjusted to
the value-driven safety imperatives that are essential for ADS.
Having outlined the overarching cycle of the continuous risk
assessment, we now delve into the detailed exploration of its
core modules, to understand their individual functionalities and
synergistic interactions within the system.

A. Risk-Learning Process

In our study, we adopt a methodology for runtime risk
assessment inspired by [13, 14], focusing on three fundamen-
tal aspects: data acquisition, feature selection and labeling,
and model training and deployment. The initial phase of
our research concentrates on data acquisition from simulated
environments. This phase is particularly tailored to Highway
Lane Following scenarios with Adaptive Cruise Control using
Matlab/Simulink [15]. Here, the emphasis is placed on the na-
ture of the data collected and its preprocessing. We utilize OBS
data, transforming it into risk features through mathematical
equations, as illustrated in Fig. 2.

Subsequently, our next steps include detailed feature extrac-
tion, precise labeling based on predetermined risk thresholds,
and a strict selection process to ensure the relevance and
accuracy of the features. In the context of severity classifica-
tion, our study delineates four categories: SO (no injuries), S1
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(light and moderate injuries), S2 (severe and life-threatening
injuries), and S3 (fatal injuries). In terms of controllability,
the levels range from CO (controllable) to C3 (uncontrollable),
underscoring their system-dependent nature.

Our scenario creation is grounded on three pillars: Failure
Conditions, Design Parameters, and Non-Design Parameters.
We analyze Failure Conditions to evaluate the system’s re-
sponse to unexpected issues, such as unintended acceleration
and unintended braking. Design Parameters, which fall under
the manufacturer’s control like vehicle acceleration/braking
efficiency, and Non-Design Parameters, such as weather and
traffic conditions (other traffic participants), are rigorously
simulated to generate comprehensive data representing dy-
namic driving conditions. In the final phase of model training
and deployment, our focus shifts to developing the RF model.
This phase encompasses critical processes such as model
training and hyperparameter tuning, and model deployment
on ADS.

In our implementation using the MATLAB/Simulink model
(as shown in Fig. 2), we observed the significant impact of
lead vehicle behavior on risk assessment in various driving
scenarios. When the lead vehicle decelerated rapidly, our RF
model highlighted a high severity (S3) with low controlla-
bility (C3). This situation was particularly critical because
the sudden decrease in speed of the lead vehicle increased
the likelihood of a collision, and the ADS had limited time
to respond effectively. Conversely, when the lead vehicle
maintained a steady speed and distance, the model indicated
a moderate severity (S2) with higher controllability (C1). In
this scenario, the consistent behavior of the lead vehicle, both
in terms of speed and distance, allowed the ADS more room
for corrective actions. This consistency in the lead vehicle’s

behavior provides a safer and more controlled environment for
the ADS to operate, reducing the risk of a collision.

Additionally, our simulations explored scenarios involving
unintended braking. On dry roads, if the lead vehicle initiated
braking, the model predicted a moderate severity (S2) with
moderate controllability (C2), factoring in the ADS braking ef-
ficiency and the existing distance to the lead vehicle. However,
in wet road conditions, the same action by the lead vehicle led
to a high severity (S3) rating with low controllability (C3).
The wet surface increased the potential for skidding, thereby
reducing the ADS ability to brake safely and effectively.

The adaptability of the RF model was particularly evident in
its feature prioritization, which varied depending on the lead
vehicle’s behavior. This dynamic adjustment of risk assess-
ments based on runtime actions of the lead vehicle underscores
the model’s capability to offer nuanced risk predictions. By
focusing on the immediate behavior of the lead vehicle, the
model provided targeted and relevant risk assessments, crucial
for ensuring the safety of the ADS in various operational sce-
narios. This approach marks a significant stride in enhancing
the precision and context-awareness of risk assessments in
ADS.

B. Risk-Informed Actions

In this subsection, we propose applying severity and con-
trollability risk ratings to guide critical actions for transitioning
from static safety goals to context-specific safety goals. These
four key actions contribute to this transition as follows:

1. Identifying and Analyzing Underlying Causes: The risk
ratings provided by the predictive RF model, offer insights
into the severity and controllability of potential hazards. By
analyzing these ratings, underlying causes of risks can be iden-



tified. For instance, a high severity rating in highway scenarios
might indicate issues with the vehicle’s ACC under certain
conditions. This analysis enables targeted investigations into
specific system behaviors or environmental interactions that
contribute to elevated risk.

2. Reinforcing Safety Mechanisms: Based on the under-
standing gained from analyzing risk ratings, safety mech-
anisms within the ADS can be reinforced. If a particular
scenario consistently results in high-risk ratings, it indicates
a need for strengthening the corresponding safety protocols
or system responses. For example, a scenario with low con-
trollability might necessitate enhancements in the vehicle’s
emergency braking system or evasive maneuver algorithms.

3. Communicating Risk with Cross-domain Experts: The
quantified risk ratings serve as a valuable communication
tool with cross-domain experts. By presenting clear, data-
driven assessments of risk, discussions with safety engineers,
software developers, and other stakeholders become more
focused and productive. This collaboration is essential for a
comprehensive safety strategy, ensuring that all aspects of the
ADS, from software algorithms to hardware reliability, are
scrutinized and optimized.

4. Refinement of the Data-Driven Model: Finally, the iter-
ative nature of the process allows for continuous refinement
of the predictive model. The feedback from real-world per-
formance and expert analyses informs subsequent iterations
of model training. This cyclic improvement ensures that the
model stays relevant and accurate in evolving driving contexts
and technological advancements.

In the context of developing safe ADS, by following
these four actions to create a context-specific safety goals
are not only enhancing safety but also facilitate functional
modifications, such as improving sensor and actuator per-
formance/accuracy. This process enables the augmentation
of recognition and decision algorithms, which is pivotal for
ADS development. It improves testability, ensuring rigorous
testing of the system. It increases the safety margin for future
ADS development. This iterative process continues until the
previously unknown and unsafe regions are transformed into
known and safe ones. This methodology ensures that ADS
remains responsive to current challenges and adaptable to the
evolving driving environments and triggering conditions.

IV. CONCLUSION

This study has carefully explored the development and im-
plementation of a continuous risk assessment cycle for ADS.
It excels in providing a dynamic framework that intelligently
prioritizes various risk features in line with the evolving
scenarios of driving.

Nevertheless, it’s crucial to recognize certain constraints.
Notably, while the utilization of the RF model is advantageous
for handling diverse input variables and intricate interactions, it
may not entirely grasp the uncertainty and non-linearity found
in extremely rare or unseen situations. Moreover, the depen-
dence on sensor-based model predictions, though efficient for
runtime data processing, is subject to the inherent limitations

of sensor precision. This can lead to data gaps or noise, which
in turn, might affect the reliability of the predictions.

Despite these challenges, the model stands out for its ability
to adjust to the shifting significance of risk features across
different operational conditions. However, there is still room
for improvement in its verification processes and broader
applicability. Rigorous testing is vital to bolster the safety
case for unforeseen scenarios and to confirm that the model
effectively fills the gap left by traditional risk assessment
methods.

Further research is essential to enhance the model’s effec-
tiveness. Expanding the integration of diverse data sources, in-
cluding driver behavior, and refining the algorithmic approach,
will address existing challenges and improve the model’s
relevance and efficacy in risk assessment.
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