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A 2D axisymmetric finite element multiphysics model is proposed to study magnetoelectric composite disks. This modeling approach 

includes a nonlinear magneto-elastic model to replicate the behavior of magnetostrictive materials under static conditions. Additionally, 
it offers a harmonic regime resolution that considers frequency dependence, including the implicit inclusion of eddy currents in the 
formulation, as well as electrical load. To validate the model, simulation results regarding the dependence of the static magnetic field 
and frequency are presented and compared with experimental measurements from literature. 
 

Index Terms—Piezoelectric, magnetostriction, magnetoelectric composite, eddy current, energy harvesting, finite element modeling, 
nonlinearity, edge element, multiphysics model. 

I. INTRODUCTION 
AMINATED  magnetoelectric composites (MECs) are engineered multifunctional materials composed of 
layers of piezoelectric and magnetostrictive materials. These materials indirectly couple electric and 

magnetic polarizations through the elastic phase. Unlike piezoelectric materials, magnetostrictive materials 
exhibit nonlinear behavior. Therefore, the preferred operational mode involves the application of an external 
magnetic field 𝑯 = 𝑯!" + 𝒉#", where𝑯!" is a stable static bias, and 𝒉#" is a small harmonic component. 
This magnetic field excitation induces substantial elastic stress within the magnetostrictive layers, resulting 
in strain across the piezoelectric layer and generating a harmonic electrical voltage V across its electrodes. 
Under resonance conditions, this harmonic electrical voltage V can be significant in MECs. 
 
The performance of MECs is assessed using the magnetoelectric voltage coefficient 𝛼&$ = 𝛿𝑉 𝛿ℎ#" 	⁄  or the 
magnetoelectric electric field coefficient 𝛼&% = 𝛿𝑉 ,𝑡&𝛿ℎ#".	⁄ , where 𝑡&  represents the thickness of the 
piezoelectric layer. The effectiveness of MECs depends on the orientation of the external magnetic field H 
concerning the longitudinal (L) or transverse (T) magnetization and polarization directions of the 
magnetostrictive and piezoelectric layers, resulting in different modes like LT, LL, TT, TL modes [1]. Due 
to their compact size and high-power efficiency, MECs have gained significant attention in various 
engineering applications, including magnetic sensors, energy transducers [2-4], and potential biomedical 
solutions [5]. Among the most promising structures, composites based on Terfenol-D and PZT layers [6-7] 
have demonstrated excellent performance. However, Terfenol-D/PZT composites suffer from losses caused 
by mechanical losses due to the epoxy adhesive used to bond the material layers and the presence of eddy 
currents, particularly given the high conductivity of Terfenol-D ~ 6106 S/m [8]. Moreover, there's an 
environmental concern as Terfenol-D and PZT materials are known to be environmentally toxic, which raises 
questions about their extensive use. In this context, while there has been a preference for environmentally 
friendly alternatives such as magnetostrictive FeGa alloys (Galfenol) or piezoelectric materials like BaTiO3 
(barium titanate, called BTO here) [9-11], it's essential to critically evaluate and explore these alternatives 
considering their environmental impact and performance characteristics.  
 
To achieve innovative and optimized designs for future MECs while reducing costs and development time, 
it is crucial to employ multiphysics modeling that considers all physical coupling phenomena, including 
losses, regardless of the structural form under investigation. While analytical methods like equivalent 
electrical circuits and numerical codes such as the Finite Element Method (FEM) based on multiphysics 
constitutive laws are valuable tools, analytical methods relying on equivalent electrical circuits are limited to 
1D assumptions and fail to accurately represent the complex interactions within ME composites or account 
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for the electrical impact on the magneto-elastic phase when the structure is subjected to electrical impedance. 
Recently, a 3D FEM model [12], utilizing a complete A-V formulation (combining mixed magnetic vector 
potential A and electric scalar potential V) along with nodal and edge Whitney elements, has been effectively 
employed to study laminated magnetoelectric composite (LMEC) disks under the TT and LT modes while 
considering the electrical load impedance and eddy current effects. Although the simulation results have 
shown good concordances with the measurement concerning a Galfenol/BTO/Galfenol disk, the 
computational time can be excessive in harmonic regime. To overcome this challenge, this paper proposes 
transposing the A-V formulation into a 2D axisymmetric case, as depicted in Figure 1.  
 
 
 
 
 

  
3D  2D axisymmetric 

 
Figure 1: Illustration of the magnetoelectric composite disk in both 3D and 
2D axisymmetric cases, represented in cylindrical coordinates!𝑒! , 𝑒", 𝑒#$. 

The composite disk consists of one piezoelectric layer (P) and two 
magnetostrictive layers (M), with the radius denoted as R. The thicknesses 
of the magnetostrictive and piezoelectric layers are denoted as 𝑡$ and 𝑡%, 

respectively. 
 
  The paper is structured into five sections. In Section II, we introduce the nonlinear model of the 
magnetostrictive material, which includes comparisons between Galfenol and Terfenol-D, along with 
experimental results for validation. Section III elaborates on the complete finite element formulation of the 
2D axisymmetric multiphysics magnetoelectric problem. In Section IV, we compare the simulation results 
in the TT-mode with experimental data from the literature. Finally, Section V offers the study's conclusion. 

II. THE NONLINEAR MAGNETO-ELASTIC MODEL 
To introduce this section, it's important to highlight that in problems involving MECs, the ferroelectric 
properties of the piezoelectric material, such as permittivity and piezoelectric coefficients, are typically 
considered linear. In contrast, the ferromagnetic properties of the magnetostrictive material, which include 
permeability and piezomagnetic coefficients, demonstrate nonlinearity concerning magnetization and 
magnetostriction. This nonlinearity stems from the fact that the properties of the magnetostrictive material at 
a specific location are influenced by the state variables at that location. As a result of spatial variations in 
stress and magnetic field, these material coefficients exhibit spatial non-uniformity and are influenced by the 
applied static field. 
 
Hence, when evaluating the magnetoelectric response, it is imperative to account for the non-uniformity 
within the composite stemming from material's nonlinearity. To address this challenge, the applied magnetic 
excitation 𝑯 (A/m) in the field problem is split into a small harmonic component 𝒉#" while maintaining an 
optimal static bias 𝑯!". This approach necessitates a two-step solution within the modeling framework. In 
the initial phase, which pertains to the static regime, incremental piezomagnetic and permeability coefficients 
of the magnetostrictive material are computed for each material zone at the chosen static bias point. Typically, 
this phase employs a nonlinear model based on a magneto-elastic framework [13-19]. 
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The second step pertains to the harmonic regime, where the frequency-dependent magnetoelectric voltage 
coefficient 𝛼&$ is determined using a small signal linear approximation around the optimal static bias 𝑯!". 
This is accomplished through a nonlinear process, such as the Newton-Raphson method or a piecewise linear 
decomposition [19] applied in this context. Here, we utilize the piecewise linear decomposition proposed in 
[19]. 
 

A. The magnetization model. 
 
In the existing literature, several magneto-elastic multiscale anhysteretic models, based on Gibbs free energy, 
have been put forward for integration into the finite element modeling framework [19-23]. These models 
offer diverse approaches, including the utilization of an analytical expansion with higher-order terms in the 
Taylor series [14], the application of the Discrete Energy-Averaged Model (DEAM) [15-16], or the adoption 
of simplified magneto-elastic Gibbs free energy relations where bulk magnetization and strain are derived as 
expected values from a large number of potential moment orientations, using an energy-based probability 
density function [19][24-26]. Each approach has its own merits and limitations, and the choice is contingent 
upon the specific requirements of the analysis. 
 
Regardless of the chosen model, the primary focus remains on two crucial coefficients: the incremental 
piezomagnetic coefficient tensor and the permeability coefficient tensor. These coefficients play a vital role 
in characterizing the nonlinear behavior of the magnetostrictive material within the magnetoelectric 
composite structure. 
 
Here, we propose a simplified method for the direct determination of these tensors. This approach is based 
on a model that relies on the following magnetoelastic constitutive law for the magnetic induction 𝑩 
(Wb/m2): 
 

𝑩(𝐻, 𝑇) = 𝜇𝑯+ 𝑑𝑻       (1) 
where 𝜇 (H/m) and 𝑑 (nA/m) represent the permeability and the piezomagnetic coefficients of the material.  
𝑻 represents the stress inside the material such as 𝑑𝑻 = 𝜇'𝑴(𝑇).  
 
In considering 𝜇𝑯 = 𝜇',𝑯 +𝑴(𝐻). the constitutive law can be rewritten as follows: 

 
𝑩(𝐻, 𝑇) = 𝜇!-𝑯 +𝑴(𝐻, 𝑇)/      (2) 

 
where 𝜇' is the vaccum permeability (H/m). 
 
When a magnetostrictive material is exposed to both stress and a magnetic field, specifically along the easy 
axis direction (z-direction), its magnetization and magnetostriction anhysteretic behaviors under pre-stresses 
can be determined by averaging across all potential directions, as outlined by [26]. Despite recent proposals 
for analytical solutions to magnetization and magnetostriction anhysteretic behaviors [19], their expressions 
pose a numerical challenge due to the utilization of the Dawson function, resulting in a divergence issue, 
particularly concerning the coupling value between magnetic field and mechanical stress [19]. Preceding this, 
a simplified model (3-a) from [27] has been proposed by accounting for only six domains as possible 
directions and an equivalent stress 𝑇()  equivalent to the magnitude of the total stress 𝑻 . The detailed 
demonstration is provided in Appendix A. 
 

𝑴(𝐻, 𝑇) = 𝑀"
#$%&((𝑯)

+,#&((𝑯)- !
"#$(&.()

          (3) 
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where, 𝜅 = 𝐴*𝜇'𝑀* , 𝛼 = +
,
𝜆*𝐴* ,  𝑀*  and 𝜆*  are the magnetization and magnetostriction saturations. The 

parameter 𝐴* (mJ/m3) can be related to the initial anhysteretic 𝜒'= 𝜕𝐻𝑴)𝑯=𝟎 susceptibility such as [26-27]:  
 

𝐴" =
./*
0*1+!

       (4) 

 
In practical terms, when subjected to a pre-stress, the initial anhysteretic susceptibility undergoes changes. 
Therefore, we suggest incorporating the pre-stress effect into the κ parameter by considering 𝜅(𝑇) =
𝐴*(𝑇)𝜇'𝑀* where 𝐴*(𝑇)  is a function of the stress 𝑻. Figure 2 illustrates the extraction of 𝐴*(𝑇)	using the 
analytical solution proposed in [19] for a Terfenol-D material under various pre-stresses 𝑻.  

 
 Figure 2: Evolution of the 𝐴*(𝑇) parameter under pre-stresses 𝑻 with the 

analytical solution from [19] 

 
We can notice that the parameter 𝐴*(𝑇) can be expressed such as:  
 

𝐴"(𝑇) = −1.13𝐴𝑠(0)/𝑇2       (5) 
 
with 𝑇- = 𝑻/[1	MPa] and the coefficient 1.13 can vary depending on the material under study. 
 
 
Equation (2) can be viewed as the combined contribution of the ferromagnetic component with tanh(𝜅𝑯) 
and the magnetostriction component with ,

./0(2.4)
. Therefore, we can adopt the following simplified 

approach: 
 

𝑴(𝐻, 𝑇) = 𝑀"tanh(𝜅(𝑇)𝑯)      (6) 
 
An alternative method, suggested by [28] has introduced the same expression. Drawing inspiration from 
Curie's Law 𝑴(𝐻, 𝜃) = 𝑀*tanh(𝜅(𝜃)𝑯) , which reveals the correlation between magnetization and 
temperature 𝜃  by 𝜅(𝜃) = 𝑯/(η𝜃)  with η =  𝑘6/𝑚  , where 𝑚  is the magnetic moment and 𝑘6  is the 
Boltzmann's constant, we propose a comparable form of 𝜅(𝑇) = 1/(ηT) as recommended in [28] to associate 
the connection between magnetization and the magnitude of the total equivalent stress 𝑻.  Additionally, 
during the manufacturing of the disks, they undergo annealing under strong uniaxial compressive loads 
exceeding 200 MPa. Therefore, it is necessary to consider an intrinsic stress 𝑇'  [29], in addition to the 
externally applied stress 𝑇. Thus, the total stress 𝑇 must be substituted by (𝑇 + 𝑇'), in this way 𝜅(𝑇) =
1/η(𝑇 + 𝑇').  
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Through identification, the η parameter can be expressed by the relation: 
 

η = 3
4+(5)0*1+(6-6*)

      (7) 

 
Furthermore, the annealing process can induce a kinking phenomenon [28-30] due to the higher 
magnetocrystalline anisotropy of the sample. In this scenario, sharp regions in magnetization arise from the 
rapid growth of domains aligned parallel to the field at the expense of domains oriented perpendicular to it; 
this occurs through the motion of domain walls [31]. In such cases, as proposed by [29] for a material like 
Galfenol, the magnetization can be further modeled by incorporating a fractional fourth-order function term, 
as follows: 
 

𝑴(𝐻, 𝑇) = Λ +𝑀"tanh(	𝑯𝜁(𝑇))     (8) 

where 	Λ = 7𝑯9(4)
:;(𝑯9(4))𝟒

. 𝛿 and 𝜏 represent constant parameters depending on the measurement data. 
 
In this context, for materials exhibiting a kinking phenomenon the η ,κ and τ parameters must be determined 
through curve fitting. 
 
 
 

B. The incremental piezomagnetic and permeability coefficients 
 
If the magnetoelastic excitation aligned with the easy axis magnetization, specifically in the z-direction 
(designated as the 3rd index), the piezomagnetic coefficient	𝑑++

< and the permeability coefficient 𝜇++4 are 
defined as follows: 
 

𝑑..
8 = 𝜕6𝑩|8 = 𝜕6𝑴|8(𝐻, 𝑇)	      (9) 

  
𝜇..6 = 𝜕8𝑩|6 = 𝜇! + 𝜕8𝑴|6(𝐻, 𝑇)       (10) 

 
By substituting 𝜃 = 𝑯𝜁(𝑇), we obtain: 
 

         𝑑..8 = 𝜇! D𝜕6Λ|8 −
(91+)
6:

sech	(𝜃);I           (11) 

𝜇..6 = 𝜇! D𝜕8Λ|6 + 1 +
(91+)#<+&	(9)!

8
I           (12) 

 
The expressions of 𝜕4Λ|< and 𝜕<Λ|4 given in Appendix B represent the derivative forms of the fractional 
fourth-order function term Λ.  
 
The permeability and piezomagnetic matrices can be expressed as follows, respectively: 

𝜇=>4 	= 𝜇𝑜T
𝜇??4 	 0 0

0 𝜇,,4 0

0 0 𝜇++4
U       (13) 

 

where  𝜇??4 = 𝜇,,4 = 𝜇++4,  
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𝑑,-
. =

⎣
⎢
⎢
⎢
⎢
⎢
⎡ 0 0 𝑑/0.

0 0 𝑑/1
.

0
0

𝑑02.
0

0
𝑑13.
0
0

𝑑//
.

0
0
0 ⎦
⎥
⎥
⎥
⎥
⎥
⎤

      (14) 

where 𝑑+?
< = 𝑑+,

< = −𝑑++
</2  and 𝑑?@

< = 𝑑?A
< 

 
To complete the piezomagnetic tensor, it is necessary to express the shear coefficient 𝑑?A

<. As mentioned in 
[31], determining the shear coefficient 𝑑?A

< is not straightforward. Here, we present an approach to 
approximate it by considering the relationship between the shear direction and 𝑚B = 𝑀B/𝑀* the direction 
cosines of the magnetization. For an isotropic magnetoelastic material, this relationship is expressed as [32]: 
 

𝑠3. = 3. 𝜆"𝑚3𝑚.       (15) 
 
where 𝜆* is the magnetostriction saturation and 𝑚+ =

𝑴𝟑(𝑻,𝑯)
F?

= 𝑴(𝑻,𝑯)
F?

.  
 
The differential form of the shear direction according 𝐻?  is given by :  
 

𝑑𝑠3. = L@",-
@A,

M . L@A,
@8,

M + L@",-
@A-

M . L@A-
@8,

M     (16) 

 
Where X !*BC

!GDEB,C
Y = 3. 𝜆*𝑚B  and for a magnetically isotropic material, the cross-term !GC

!<B
= 0 and !GB

!<B
=

!FB
F?!<B

= HB
F?

, with 𝜒? is the magnetic susceptibility expressed as : 
 

 𝜒3 =
0,,(

0*
− 1        (17) 

 
The piezomagnetic coefficient 	𝑑,A

< can be expressed as follows: 
𝑑3G

8 = 𝟐𝜕8,𝑠3.P6 = 2L@",-
@A,

M . L@A,
@8,

M = 6. 𝜆"𝑚.
/,
1+
= 6. 𝜆"

𝑴(𝑻,𝑯)
1+!

L0--
(

0*
− 1M  (18) 

 
In our nonlinear process, the incremental coefficients of interest are instead 𝑞BI< = 𝑐BIJK< 𝑑BI

<  and	𝜇=>L =
𝜇=>4(1 − 𝑘,).  
 
where 𝑐BIJK<  represents the elastics constants and 𝑘 is the magneto-elastic coupling factor of the material such 
as 0.3<𝑘 <0.7 for Galfenol [34-35] or 0.7< 𝑘< 0.75 for Terfenol-D [36].  Here, we considered 𝑘 = 0.34 and 
𝑘 = 0.54 for Galfenol and Terfenol-D respectively.  
 

C. Validation of the nonlinear model 
Figures 3 and 4 demonstrate the good agreement between the proposed model (solid lines) and the 
measurements conducted on cylindrical rods of Galfenol and Terfenol-D (indicated by diamond markers) as 
reported in [30] and [37]. These measurements were performed while considering the respective annealed 
built-in stresses, 𝑇' = -50 MPa and 𝑇'= -12 MPa. Consistent with the methodology outlined in reference [30], 
the -50 MPa value for Galfenol is established by initially considering the model with applied pre-stresses, 
specifically -5.5 MPa. Upon analyzing the Terfenol-D curves, adjustments were made, considering the -12 
MPa value determined. 
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Figure 3: Magnetization curves under different uniaxial pre-stress 𝑇 . Solid lines: 
proposed model @ 𝑇4  = -50 MPa with 𝜅 = -898640, 𝜏  =0.8415, η = -1.1555e-04. 
Diamond markers: measurements from [30] 

 

 
Figure 4: Magnetic induction curves under different uniaxial pre-stress 𝑇 . Solid 
lines: proposed model @ 𝑇4  = -12 MPa with 𝜅 = 0, 𝜏 =0, η= -0.0020. Diamond 
markers: measurements from [37] 

 
Figures 5 to 10 illustrate the model's predictions for the incremental coefficients 𝑑++

< and 𝜇++M4 = 𝜇++4/𝜇𝑜 
as well as 𝑑?A

<  for both Galfenol and Terfenol-D. The values are consistent with those found in the literature 
[38-39]. These results illustrate the model's ability to capture the behavior of these coefficients. This 
consistency with prior research findings reinforces the accuracy of the model's predictions, highlighting its 
potential as a valuable tool for analyzing and understanding the piezomagnetic behavior of Galfenol and 
Terfenol-D. 
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Figure 5: Prediction of incremental coefficient 𝑑//

.  @ 𝑇4  =- 50 MPa with 𝜅 = -
898640, 𝜏 =0.8415, η= -1.1555e-04and under different applied stresses [30] for the 
Galfenol 

 
 

 
Figure 6: Prediction of incremental coefficient 𝜇5//6 @ 𝑇4 =- 50 MPa with 𝜅 =-898640, 
𝜏 =0.8415, η= -1.1555e-04 and under different applied stresses [30] for the Galfenol 
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Figure 7: Prediction of incremental coefficients 𝑑//

. @ 𝑇4 =- 50 MPa with 𝜅 = 0, 𝜏 =0, 
η= -0.0020and under different applied stresses [37] for the Tefernol-D 

 
 
 

 
Figure 8: Prediction of incremental coefficient  𝜇5//6@ 𝑇4 =- 50 MPa with 𝜅 = 0, 𝜏 =0, 
η= -0.0020and under different applied stresses [37] for the Tefernol-D 
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Figure 9: Prediction of incremental coefficients 𝑑02

.  @ 𝑇4 =- 50 MPa with 𝜅 =-898640, 𝜏 
=0.8415, η= -1.1555e-04 and under different applied stresses [30] for the Galfenol 

 
 

 
Figure 10: Prediction of incremental coefficients 𝑑02

. @ 𝑇4 =- 12 MPa with 𝜅 = 0, 𝜏 =0, η= 
-0.0020 and under different applied stresses [37] for the Terfenol-D 

 
 

III. FINITE ELEMENT FORMULATION 
The finite element formulation of MECs coupled problem is derived by combining the equilibrium 

equations of elasticity (Newton's laws), magnetism (Ampère's law), and electricity (Gauss's law).  
 

div𝑻 + 𝒇 = 𝜌J𝜕K;𝒖            (19) 
   curl	𝑯 = 𝑱                                   (20)       
  	div	𝑫 = 𝜌                            (21) 
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where 𝑻 (N/m2) represents the mechanical stress tensor, 𝒖 the mechanical displacement, 𝜌N the mass density 
of the material, 𝒇 (N/m3) the external applied volume force, 𝑯 (A/m) denotes the magnetic field, 𝑱 (A/m2) 
represents the current density, 𝑫 (C/m2) represents the displacement field, and 𝜌 (C/m3) is volume density of 
the free electric charge. In our case, the source terms (𝒇, 𝜌)  set to zero due to the absence of external applied 
volume force, and the piezoelectric layer is treated as a perfect dielectric without any free electric charge. 

The constitutive relations under the small signal linear approximation are a combination of the magneto-
elastic and electro-elastic constitutive laws: 

 
 

𝑻 = 𝑐%,6: 𝑺 − 𝑒O𝑬 − ℎO𝑩      (22) 
𝑯 = 𝑣L𝑩 − ℎ𝑺      (23) 
𝑫 =	𝜀L𝑬 − 𝑒𝑺      (24) 

 
    

where 𝑺(-) denotes the mechanical strain, 𝑬(V/m) represents the electric field, 𝑣L (m/H) and 𝜀L (F/m) are the 
reluctivity and permittivity tensors under strain 𝑺 constant, respectively. The coefficients ℎ (A/m) and 𝑒 
(C/m2) represent the incremental piezomagnetic and piezoelectric tensors around the bias point. The tensors 
𝑐% and 𝑐6 correspond to the piezoelectric and magnetostrictive elastic stiffness constants under constant 
electric field, 𝑬, and magnetic field, 𝑩, respectively. The symbol ()O signifies the transpose operator.   
 

 It is important to note that, 	ℎBI
< = 𝑞BI<𝑣BIL,  and 𝑐BIJK6 = 𝑐BIJK< + ,𝑞𝑖𝑗

𝐻.𝑡𝜈=>L𝑞𝑖𝑗
𝐻, where 𝑞,-. = 𝑐𝑖𝑗𝑘𝑙𝐻 𝑑,-

. is the 
piezomagnetic (N/Am) tensor coefficients and 𝑐< is the magnetostrictive elastic stiffness constant material 
tensor under constant magnetic field, 𝑯. The matrices and tensors involved in these relations can be found in 
Appendix C and the coefficients 𝑑,-. and 𝜈=>L = ,𝜇=>L.

U? are extracted from the nonlinear model as proposed 
in section II.  
 
 

The incremental coefficients are derived through the utilization of the nonlinear model outlined in the 
preceding section B. Integrating them into the FEM process is achieved through a nonlinear piecewise linear 
procedure. 

 
By substituting equations (22),(23),(24) into equations (19), (20) and (21) , the resulting system of 

equations is as follows: 
 

div	(𝑐%,6: 𝑺 − 𝑒O𝑬 − ℎO𝑩) − 𝜌𝑣𝜕𝑡
2𝒖	 = 𝟎	   (25) 

curl(𝑣L𝑩 − ℎ𝑺) = 𝑱      (26) 
div	(	𝜀L𝑬 − 𝑒𝑺) = 0      (27) 

 
In the static regime, the current term 𝑱 corresponds to the current source 𝑱𝒔. However, in the harmonic regime, 
it is a combination of the eddy current 𝑱𝒆 and the current source 𝑱𝒔, with  𝑱𝒆	expressed as follows:  
 

𝑱𝒆 = −𝜎(𝜕𝑨 𝜕𝑡⁄ + grad∅G)     (28) 
where 𝜎	 (S/m) is the electrical conductivity,  𝑨 (Wb/m) the magnetic vector potential and ∅G(𝑉) is an 
electric scalar potential.  
For the axisymmetric case in cylindrical coordinates w𝑒X , 𝑒Y , 𝑒Zx, only the 𝜑 components in the magnetic 
problem need to be considered.  Consequently, the electric potential variable ∅G  disappears, and in the 
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harmonic regime, the current density is expressed as 𝑱𝒆 = −𝜎 𝜕𝑨 𝜕𝑡⁄ = 𝑗𝜔𝜎𝑨  [38]. In the mechanical 
problem, the symmetry about the z-axis implies that the stresses are independent of the 𝜑 resulting in all 
derivatives with respect to 𝜑 vanishing.  
  
The finite element formulation is performed in employing the weighted residuals method:  
 

∫ 𝑤3. (div(𝑐L,M: 𝑺 − 𝑒K𝑬 − ℎK𝑩) + 𝑗ω;𝜌J𝒖)𝑑Ω = 0N       (29) 

∫ 𝑤;. (curl(νcurl𝐀) + curl(−ℎ𝑺) − 𝑗𝜔𝜎𝑨)𝑑ΩN = 0    (30) 

 ∫ 𝑤.. div(−𝜺grad∅ − 𝑒𝑺)𝑑Ω = 0N      (31) 
 

where 𝑤B[?,,,+ are the associated test functions and Ω is the problem domain.  
 

Here, the unknown variables of the 2D axisymmetric coupled problem are:    
 
- The new variable 𝐴̅ = 𝑟𝐴Y component of  𝑨  
- The radial 𝑢X (r direction) and axial 𝑢Z (z direction) components of the displacement 𝒖.  
- The electric scalar potential ∅ due to piezoelectric effect according to the r and z directions.  
 

 
The fields 𝑺, 𝑬 and 𝑩 can be expressed in terms of the state variables with the mechanical displacement 𝒖, 
the magnetic vector potential 𝐴̅ and the electric scalar potential ∅.  
 
In 2D coordinates, the relations are given by:  
              
The strain 𝑺 = 𝔇𝒖 in the mechanical domain is given by:  

 

𝑺 = q

𝑆O
𝑆P
𝑆Q
𝑆OQ

s = 𝔇𝒖 = u

𝜕 𝜕𝑟⁄ 0
1/𝑟 0
0

𝜕 𝜕𝑧⁄
𝜕 𝜕𝑧⁄
𝜕 𝜕𝑟⁄

y z
𝑢O
𝑢Q| = 𝐺R(𝒖)     (32) 

 
where 𝐺𝑢 =𝔇= sym=grad>= 1

2 ?grad+grad
t
@.  

 
The magnetic induction 𝑩 = curl(𝑨) in the magnetic domain is given by: 

𝑩 = 𝜉grad	𝐴𝜑 = 1
𝑟 𝜉grad	𝐴

G = H𝑩𝒓𝑩𝒛
I = 1

𝑟 J
− 𝜕𝐴

<

𝜕𝑧
𝜕𝐴<
𝜕𝑟

L 	= 1
𝑟 𝐺= ?𝐴

G@   (33) 

where 𝐺=̅ = 𝜉grad,	 with 𝜉 = [0 1,−1 0]6represents a rotation matrix in cylindrical coordinates.  
 
The electric field 𝑬=−grad∅ in the piezoelectric domain is given by: 
 

𝑬 = H𝑬𝒓𝑬𝒛
I = −J

𝜕∅
𝜕𝑟
𝜕∅
𝜕𝑧

L= 𝐺∅=∅>      (34) 

where 𝐺∅ = −grad 
 
After applying the classical mechanical, magnetic and electrical Neumann conditions ∫ 𝑤. 𝑛. 𝑻fg 𝑑Γ = 0, 
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∫ 𝑤. 𝑛 ∧ Hfg 𝑑Γ = 0, ∫ w. 𝜺 h∅
h-hg 𝑑Γ = 0	,	in each boundary domain 𝜕Ω problem, the general finite element 

formulation derived from equations (22-a-b-c) is simplified as:, 
∫ L𝔇𝑤3: 𝑐L,M: 𝔇𝒖 +𝔇𝑤3: 𝑒Kgrad(∅) − 𝔇𝑤3:

S
O

K
curl(𝑨) − 𝑗ω;𝑤3𝜌J𝒖M𝑑Ω = 0N   (35) 

∫ Lcurl(𝑤;).
J.

O
. curl(𝑨) − curl(𝑤;). ℎ.𝔇𝒖 − 𝑗𝜔𝑤;.

T
O
. 𝑨M 𝑑ΩN = 0	 	 	 (36)	

∫ (grad∅. 𝜀Ugrad(𝑤.) + 𝔇𝒖𝑒grad(𝑤.)	)N 	𝑑Ω = 0    (37) 
 
When employing the Galerkin approach, namely	𝑤? = 𝑢∗, 𝑤, = 𝑟𝐴Y∗ = 𝐴̅∗ and 𝑤+ = ∅∗, along with the 2D 
relations (35), (36), and (37), we obtain finally: 

∫ �𝐺j∗ 	𝒖∗𝑐%,6𝐺j𝒖 + 𝐺j	𝒖∗𝑒O𝐺∅∅ − 𝐺j	𝒖∗
k
X

O
𝐺l̅𝐴̅ + 𝑗ω,𝒖∗𝜌N𝒖� 𝑑𝛺n = 0  (38) 

 

∫ �. 𝐺l̅𝐴̅∗.
NW

XX
. 𝐺l̅𝐴̅ − 𝐺l̅𝐴̅∗.

k
X
. 𝐺j𝒖 − 𝑗𝜔𝐴̅∗.

o
XX
𝐴̅� 𝑑𝛺n = 0         (39)	

 
∫ (𝐺∅∅∗. 𝜀L. 𝐺∅∅ + 𝐺∅∗∅∗. 𝑒. 𝐺j𝒖)𝑑𝛺n = 0                  (40) 

 
A remark regarding formulation (26-e). In the case of a magnetic-only problem, the choice of the test function 
would have been 𝑤, = 𝐴̅∗  (not 𝑟𝐴𝜑∗ ) with 𝐺4̅∗ = 𝜉grad	𝐴̅ 	= 𝑟. 𝐺4̅ , leading to the well-known following 
formulation ∫ ?. 𝐺=̅𝐴̅∗.

@!

!
. 𝐺=̅𝐴̅ − 𝑗𝜔𝐴̅∗.

A
!
𝐴̅@ 𝑑𝛺B = 0 [40]. In the context of a magnetoelectric problem, it is crucial to 

maintain symmetry in the expression of the magneto-elastic and elasto-electric coupling matrices. As for the 
expression of the elasto-electric coupling, symmetry is preserved  (38) and (40), namely 𝐺∅∗∅∗. 𝑒. 𝐺D𝒖 =
𝑠𝑦𝑚(𝐺D	𝒖∗𝑒E𝐺∅∅) ; however, to maintain that of the magneto-elastic coupling 𝐺=̅𝐴̅∗. F! . 𝐺D𝒖 = 𝑠𝑦𝑚?𝐺D	𝒖∗

F
!

E
𝐺=̅𝐴̅@ 

between (38) and (39) , it is essential to use the test function 𝑤, = 𝑟𝐴Y∗ = 𝐴̅∗. 

A. Boundary conditions  
 
The elastic, electric and magnetic boundary conditions of the solution domain associated in the resolution of 
the system in 2D axisymmetric are, respectively, illustrated in Figure 11.  
Let, Ωj, Ω∅and Ωl	denote the mechanical, the electrical and magnetic domains respectively, with boundaries 
denoted as Γ7, Γ∅ and Γl. The Dirichlet boundary condition for the electrical field is given by: 
 

∅ = 0 on Γ∅       (41) 
 
In the magnetic problem, the external magnetic source 𝑱𝒔  is implicitly incorporated by imposing the 
following Dirichlet conditions at Ωl	[42-43]: 
 

𝐴� = 0 on Γl(𝑟 = 0) and 𝐴� = a𝑜 on Γl(𝑟 = 𝑟G#q)     (42) 
 

As a result, by imposing these Dirichlet conditions, a uniform axial magnetic flux 𝐁𝒐  (depicted by green 
arrows in Figure 11) is guaranteed along the transverse direction z of the composite, serving as the magnetic 
source. In a 2D context, the magnetic flux is defined as 𝑎[ = 𝐵[∆Q with ∆O= (𝑟A\] − 𝑟A^2). Consequently, the 
small signal field ℎ\_ or the static bias 𝐻@_ is defined as: 
  

ℎ\_	𝑜𝑟	𝐻𝑑_	 = 𝐵[/𝜇[ = 𝑎[/(∆𝑟𝜇[)   (43) 
 
For example, in considering ℎ#" = 79.57	kA/m, i.e. 1 Oe, it is necessary to impose 𝑎t = 1.6 Wb/m.  
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Figure 11: Illustration of the magnetic, electric, and elastic boundary conditions 
 

B. Discretization procedure  
In this proposed FEM analysis, the linear triangular element <𝑖𝑗𝑚> is utilized for nodal discretization of all 
fields. The shape functions for this element are defined as follows: 
 

𝑁j = �
𝑁B 0 𝑁I 0 𝑁G 0
0 𝑁B 0 𝑁I 0 𝑁G

�       (44-a) 

 
𝑁l,∅ = 𝑁 = [𝑁B 𝑁I 𝑁G]     (44-b) 

 
where 𝑁J[B,I,G = ?

,u
(𝛼J + 𝛽J𝑟 + 𝛾J𝑧). Here, Δ represents the cross-sectional area of a triangular element. 

Expressions of descriptions of  𝛼J, 𝛽J and 𝛾J are given in Appendix D.  
 
The unknown variables of the problem are discretized using nodal degrees of freedom (DoF), represented as  
A( = 𝑁J𝐴̅,  𝒖𝒆 = 𝑁J𝒖 and ∅( = 𝑁J∅, where A(, 𝒖𝒆 and ∅( are unknown variables in each finite element. 
Following the finite element discretization of the weak forms (38),(39) and (40), the resulting system equation 
in the harmonic regime (𝜕 𝜕𝑡⁄ → 𝑗𝜔) is given by:  
 

𝜕O,[𝑀]{𝑋} + 𝜕O[𝐶]{𝑋} + [𝐾]{𝑋} = {𝐹}   (45) 
 

[𝐾 − 𝜔,𝑀 + 𝑗𝜔𝐶]{𝑋} = {𝐹}     (46) 
 

with [K] = ª
Kjj 𝐾j∅ 𝐾jl
𝐾j∅O −𝐾∅∅ 0
𝐾jlO 0 Kll

« ,	 [𝑀] = ¬
𝑀jj 0 0
0 0 0
0 0 0

­ , [𝐶] = ¬
𝐶jj 0 0
0 0 0
0 0 𝐶ll

­,	  {𝑋} = ®
𝒖𝒆
∅(
A𝒆
¯  and {𝐹} =

®
0
0
𝑎'
¯ 

 
in reduced form:  
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ª
𝒦jj 𝐾j∅ 𝐾jl
𝐾j∅O −𝐾∅∅ 0
𝐾jlO 0 𝒦ll

« ®
𝒖𝒆
∅(
A𝒆
¯ = ®

0
0
𝑎'
¯     (47) 

   
where,  in static regime (𝜕 𝜕𝑡⁄ = 0) 𝒦jj = 𝐾jj , 𝒦ll = 𝐾ll  and 𝑎' impose the static bias 𝑯!"  magnetic 
field, whereas in dynamic regime 𝒦jj = 𝐾jj + 𝑗𝜔𝐶jj − 𝜔,𝑀jj , 𝒦ll = 𝐾ll + 𝑗𝜔𝐶ll and 𝑎'impose the 
small harmonic 𝒉#".  
 
Here, the resolution is carried out using the centroidal point method [41] defined by (𝑟̅, 𝑧̅), where 𝑟̅ =
XD;X`;Xa

+
 and 	𝑧̅ = ZD;Z`;Za

+
. By employing this method, the integral domain is transformed to ∫ dΩG =

2𝜋∫ 𝑟G𝑑rdz∆ . The expressions of  𝐺l = 𝜉grad[𝑁J], 𝐺j = sym(grad[𝑁J]	), and 𝐺∅ = grad[𝑁J]	are given in 
Appendix E.   
 
 
 
 In this way, the sub-matrices are defined as: 

[𝐾$$] = ∑ 2𝜋 ∫ [𝐺$]E[Λ]GI [𝐺$]𝑟G𝑑rdz,			Λ = J
𝑐J,L    if  𝑚 = 𝑢
𝜀M    if  𝑚 = ∅

	𝑣M 𝑟⁄    if  𝑚 = 𝐴
         (48) 

  

[𝐾$N] = ∑ 2𝜋 ∫ [𝐺,]E[Θ]EGI k𝐺-l𝑟G𝑑rdz, Θ = He  if    𝑚 = 𝑢 , 𝑛 = ∅
ℎ  if   𝑚 = 𝑢 , 𝑛 = 𝐴         (49) 

 
[𝑀DD] = ∑ 2𝜋 ∫ [𝑁D]E𝜌$GI [𝑁D]𝑟̅𝑑rdz             (50) 

 
[𝐶DD] = 2𝜍[𝑀DD]𝜔N = 𝛼[𝑀DD] + 𝛽[𝐾DD]         (51) 

 
[𝐶==] = ∑ 2𝜋∫ ?O

!̅
@ [𝑁]EGI [𝑁]𝑟̅𝑑rdz = ∑ 2𝜋 ∫ σ[𝑁]EGI [𝑁]𝑑rdz    (52) 

 
𝐶𝐴𝐴 denotes the eddy current losses, and 𝐶jj is the mechanical damping matrix, where ς is a modal damping 
parameter, and 𝜔- = 𝐾jj/𝑀jj	is the natural angular frequency. The parameter 𝜍 can be represented by the 
Rayleigh damping coefficients 𝛼 and 𝛽, given as 𝜍 = 2

,vb
+ wvb

,
.  The 𝛼 and 𝛽 multiplier terms lack physical 

significance; they are simply required to define a general damping proportional to the linear combination of 
the mass and stiffness matrices. 
 
Typically, in a mechanical oscillation system, for weak to moderate Rayleigh damping the parameter ς is 
correlated with the mechanical quality factor 𝑄G("k, expressed as: 

𝑄G("k = 1/(2	𝜍)      (53) 
 

The value of 𝑄G("k cannot be directly calculated; instead, it needs to be measured at resonance using the 
formula 𝑄G("k =

vc
ud

. Here, 𝜔X = 𝜔-´1 − 𝜍,   is the angular frequency resonance and Δv  represents the 

bandwidth of the amplitude resonance of the magnetoelectric coefficient 𝛼&$ = 𝛿𝑉 𝛿ℎ#" 	⁄  measured at 1/√2 
of its peak. 
 
 As mentioned in [44], typically in piezoelectric transducer vibration occurs the viscous damping, namely 
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𝛼 = 0. This assumption holds true for a magnetoelectric composite. In this context: 
 

𝛽 = ?
xaefgvc

        (54) 

 

C. Electrodes effect and impedance load implementation 
 

The formulation has incorporated distinct degrees of freedom (DoFs) for the upper and lower electrodes of 
the piezoelectric layer. This inclusion guarantees a clear equipotential connection at both the top and bottom 
of the layer, ensuring continuity for the unknown electric scalar potential ∅. 

 
In the harmonic regime, an electrical load impedance Z can be introduced to simulate the input impedance 
of an electronic device connected between the electrodes. This impedance can be integrated into the solution 
system through the application of Ohm's law:  

𝜙𝐾yx − 𝑍̅𝐼 = 0       (55) 
where 𝐼 = !x

!O
= 𝑗𝜔𝑄 and 𝑍̅ = 2𝜋𝑍 is the reduced impedance to consider the transformation domain  ∫ dΩG =

2𝜋∫ 𝑟G𝑑rdz∆ .  
 
where 𝑄 represents the total electrical charge across the electrodes and becomes an additional unknown in 
the resolution system. 𝐾yx is an incidence matrix where the elements are set to 1 or -1 depending on whether 
the related node is associated with the top electrode or the bottom electrode, while the remaining elements 
are set to 0 [43]. 

 
The matrix elements of the final system in harmonic regime (30) are:  
 

[𝑀] = x
𝑀DD 0 0 0
0 0 0 0
0
0

0
0

0
0

0
0

y, [𝐶] = x

𝐶DD 0 0 0
0 0 0 0
0
0

0
0

𝑍̅
0

0
𝐶==

y, [𝐾] =

⎣
⎢
⎢
⎡
𝐾DD 𝐾D% 0 𝐾DP
𝐾D%E 𝐾%% 𝐾%Q 0

𝐾DPE
𝐾Q%
0

0
0

0
𝐾PP⎦

⎥
⎥
⎤
 {𝑋} = ª

𝒖𝒆
∅𝑒
𝑄
A𝒆

«, {𝐹} = ª

0
0
0
𝑎0

«         (56) 

 
In reduced form:  

⎣
⎢
⎢
⎡
𝒦DD 𝐾D% 0 𝐾DP
𝐾D%E 𝐾%% 𝐾%Q 0

𝐾DPE
𝐾Q%
0

−𝑗𝑍̅𝜔
0

0
𝒦PP⎦

⎥
⎥
⎤
x

𝒖𝒆
∅I
𝑄
A𝒆

y = x

0
0
0
𝑎U

y        (57) 

D. The nonlinear static piecewise procedure 
 
The piecewise nonlinear process is applied in the static regime under a bias point (𝐻' , 𝑇'), leveraging the 

proposed nonlinear model outlined in the preceding sections A and B. The steps of the piecewise linear 
solution are outlined in Figure 11 and can be summarized as follows: 

 
Initially, the nonlinear model is employed to determine the incremental coefficients 𝑞,-., 𝜈=>Land 𝑐=>z{6 for 

each finite element of the magnetostrictive material. Following this, the incremental magnetostrictive 
constitutive equations are systematically solved using the Jacobian matrix 𝑗𝑎𝑐 under the bias point (𝐻' , 𝑇') 
[12].  
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𝑗𝑎𝑐 = º
𝑐6 = h𝑻

h𝑺
»
(<h,4h)

−ℎ = h𝑻
h𝑩
»
(<h,4h)

−ℎO = h𝑯
h𝑺
»
(<h,4h)

𝑣L = h𝑯
h𝑩
»
(<h,4h)

¼     (58) 

 
After that, the system in static regime (𝜕O = 0) the magnetoelectric problem [𝐾]{𝑋} = {𝐹}	can be solved 
such as:  
 

ª
Kjj 𝐾j∅ 𝐾jl
𝐾j∅O −𝐾∅∅ 0
𝐾jlO 0 Kll

« ®
𝒖𝒆
∅(
A(
¯=®

0
0
𝑎'
¯     (59) 

 
Finally, the incremental solutions ∆S and ∆B, obtained from equations (23) and (24), are utilized to update 

the incremental set bias points (∆𝑯, ∆𝑻) as follows:  

¾∆𝑻∆𝑯¿ = 𝑗𝑎𝑐 ¾∆𝑺∆𝑩¿ = ¾ 𝑐
6 −ℎ

−ℎO 𝑣L
¿ ¾∆𝑺∆𝑩¿		 	 	  (60) 

The process is iterated until the maximum step condition is reached. At the end of the process, the obtained 
incremental coefficients at the desired excitation static magnetic bias point 𝑯!" are stored and utilized for 
harmonic analysis. 
 

 
 

Figure 11: Flowchart of piecewise linear solution process to compute the magnetostrictive coefficient for simulation of magnetoelectric material. 
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IV. NUMERICAL EXAMPLES 
This section presents two numerical examples comparing the proposed FEM multiphysics model (solid lines) 
implemented with Matlab® with measurement data (dotted lines) obtained from MEC disks in TT mode, as 
documented in the literature [7], [9-10]. The first numerical example centers on a Galfenol/BTO/Galfenol 
composite disk, as outlined in [9-10]. This disk features a 1mm thickness for each layer, with Galfenol having 
a 6mm radius and BTO a 5mm radius. Detailed material properties and parameter values are available in 
Appendix F. The meshing and the field distributions are given in Figure 12.  
 

    
Meshing, 3214 finite elements The magnetic potential A source  

The magnitude of the induced 
displacement inside the 

composite 𝒖 

The induced electric scalar 
potential ∅ 

Figure 12: Illustration of the meshing of problem and field distributions from simulation results  
 
 
 
Figures 13 and 14 show the comparison between simulation results and measurements for the 
Galfenol/BTO/Galfenol disk. In Figure 13, simulation results are attained by assuming identical incremental 
coefficient values for each finite element that is a common a regrettably practice in the literature. In Figure 
14, the incremental coefficients are calculated using the nonlinear piecewise procedure, guaranteeing 
accurate values through an adequate number of iterations. It is evident that both cases exhibit strong 
agreement between simulations and measurements. Nevertheless, the results obtained through the piecewise 
nonlinear procedure provide a more accurate consideration of folding effects namely the edge effects on the 
structure. This underscores the significance of employing a nonlinear approach to effectively capture the non-
uniform distribution of incremental coefficients within the material. 
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        (a) 𝑞// @ all Hext (b) 
 
13: (a) Uniform distribution of an incremental coefficient 𝑞// values for each finite element, (b) A Magnetoelectric voltage of 
Galfenol/BTO/Galfenol ME disk as a function of the static bias 𝑯VWunder various electrical resistance load values for 𝒉PW =1 
Oe @ 1 kHz. Data measurement from [10] and FEM simulations are performed without the nonlinear piecewise procedure.  

 
 

 
    𝑞// @ 100 Oe          𝑞//@ 
700 Oe 

 
(a)  (b) 

Figure 14: (a) Distributions of incremental coefficient 𝑞// calculated with the nonlinear piecewise procedure in each finite 
element for both cases @ 100 Oe and 700 Oe, (b) Magnetoelectric voltage of Galfenol/BTO/Galfenol ME disk as a function of 

the static bias 𝑯VWunder various electrical resistance load values for 𝒉PW =1 Oe @ 1 kHz. Data measurement from [10] and FEM 
simulations are performed with the nonlinear piecewise procedure. 

 
Figure 15 illustrates the frequency dependence of the ME voltage coefficient 𝛼&$ for 𝒉PW =1 Oe under 𝑯VW=1000 Oe. 
The solid lines represent the results obtained from the proposed FEM multiphysics model, while the dot lines 
represent the measurement data. Notably, a good agreement is observed between the simulation results and 
the measurements. 
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Figure 15: 𝛼�X  in function of frequency. Data measurement from [9] and FEM 
simulations performed for 𝒉PW =1 Oe under 𝑯VW=1000 Oe.  

 
The second numerical example centers on the Terfenol-D/PZT/Terfenol-D composite disk discussed in [7]. 
In contrast to the first example, the radius of each layer sample is now equal, measuring 4 mm, while the 
thicknesses vary. The PZT layer has a thickness of 0.8 mm, and the Terfenol-D layer has the same thickness 
of 0.8 mm. For this example, the piecewise nonlinear procedure was employed, built upon the Terfenol-D 
model depicted in section C. Detailed material properties and parameter values can be found in Appendix F. 
 
Figure 16 presents the frequency-dependent behavior of the ME electric coefficient 𝛼&%  for 𝒉PW  =1 Oe under 
𝑯VW=120 Oe. e. A comparison between the proposed FEM multiphysics model (solid lines) and the measurement 
data (dotted lines) from [7] reveals an excellent agreement. 
 

 
Figure 16: 𝛼�J  in function of frequency. Data measurement from [7] and FEM 
simulations performed for 𝒉PW =1 Oe under 𝑯VW=120 Oe. 

 
Figures 17 and 18 illustrate the frequency-dependent behavior of the magnetoelectric coefficient 𝛼&%  under 
various resistance load values and the accompanying shift in resonance frequency. The simulation results 
generated by our proposed FEM multiphysics model (solid lines) closely match the measurements [7], 
displaying a comparable trend as the electric load diminishes. This alignment underscores the importance of 
our model's conclusions, as impedance matching plays a pivotal role in the design and utilization of MECs 
devices. 

0 20 40 60 80 100 120
Freq (kHz)

0

5

10

15

20

25

30

V (m
v 

/O
e)

Measurement data
FEM model

-50 0 50 100 150 200 250 300
Freq (kHz)

0

2

4

6

8

10

12

14

16

E (V
/c

m
.O

e)

Measurement data
FEM model



 

 

21 

 
Figure 17: 𝛼%! in function of frequency under different resistive loads 

 
 

 
Figure 18:  The resonance frequency under different resistive loads 

 

V. CONCLUSION 
This study introduced a 2D axisymmetric finite element multiphysics analysis to assess the performance 

of laminated ME disks. The analysis encompassed two key phases: a static magnetic biasing analysis that 
considered the non-linear behavior of the magnetostrictive material using a magneto-elastic approach, and a 
harmonic performance analysis built on the assumption of small signal behavior through a linear model. The 
numerical investigations of tri-layer laminated ME disks demonstrated strong agreement with experimental 
results. The 2D analysis emerged as a valuable tool for evaluating the performance of ME composite disks 
in the context of energy conversion. 

 
Additionally, the study explored a nonlinear magnetostrictive model integrated with a 2D axisymmetric finite 
element method. It introduced a nonlinear piecewise process, which offers advantages in terms of 
computational efficiency and straightforward incorporation of nonlinearity. Future extensions of this research 
could encompass the application of the proposed solver to more extensive nonlinear multi-physics problems, 
the integration of parallel computing, and enhancements in computational efficiency and convergence rate. 
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APPENDIX 
 
Appendix A  
Magnetization for an isotropic magnetic material subjected to a magnetic field 𝑯 the direction z (H=Hz) in an orthonormal coordinate system 
(O,x,y,z) by considering only six domains as possible directions [27].  
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Appendix B 
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Appendix D  
𝛼, = 𝑟-𝑧$ − 𝑧-𝑟$, 
𝛽, = 𝑧- − 𝑧$, 
𝛾, = 𝑟$ − 𝑟-, 
 
 
Appendix E 
 
𝐺3 = 𝜉grad[𝑁4], 𝐺5 = sym(grad[𝑁4]	), 𝐺∅ = grad[𝑁4]. 
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Appendix F 
 
Galfenol: 
Density	(𝜌) = 9200 kg.m-3 
Elastic constants (pm2/N): 𝑠00*  =220, 𝑠11* = 190, 𝑠01*  =-82.5  
Magnetization saturation Ms=1.65/𝜇; = 1316 kA/m 
Electrical conductivity: 𝜎 = 1.67e6	S/m 
Reluctivity: 𝜈<=2 = H𝜇<=2I

>0
 is extracted from the nonlinear model proposed in section II 

Piezomagnetic coefficients (N/Am): 𝑞(?* = 𝑐(?4@* 𝑑(?
* , where 𝑑(?

* is extracted from the nonlinear model proposed in section II 
  
 
Terfenol-D: 
Density	(𝜌) = 9200 kg.m-3 
Elastic constants(pm2/N):  𝑠00*  =27, 𝑠11* = 42, 𝑠01*  =-19  
Magnetization saturation Ms=1.125/𝜇; = 895.25 kA/m 
Electrical conductivity: 𝜎 = 1.1765e6	S/m 
Reluctivity: 𝜈<=2 = H𝜇<=2I

>0
 is extracted from the nonlinear model proposed in section II 

Piezomagnetic coefficients (N/Am): 𝑞(?* = 𝑐(?4@* 𝑑(?
* , where 𝑑(?

* is extracted from the nonlinear model proposed in section II 
 
BTO: 
Density	(𝜌) = 6020 kg.m-3 
Elastic constants (pm2/N): 𝑠00!  =8.6, 𝑠11! = 8.93, 𝑠01!  =-2.86  
Piezoelectric coefficients (C.m-2):  𝑒10=-4.4 , 𝑒11=18.6, 𝑒11=1.5 
Permittivity: 𝜀10 = 𝜀11 = 1582𝜀A 
Electrical conductivity: 𝜎 = 1e − 7	 S/m 
 
PZT-5A: 
Density	(𝜌) = 7750 kg.m-3 
Elastic constants pm2/N: 𝑠00!  =16.4, 𝑠11! = 18.8 , 𝑠01!  =-7.22 
Piezoelectric coefficients (C.m-2):  𝑒10=-7.2, 𝑒11=15.12, 𝑒0B=13.2 
Permittivity: 𝜀10 = 𝜀11 = 1750𝜀A 
Electrical conductivity: 𝜎 = 1e − 7	S/m 

 


