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ABSTRACT

We show that the two-dimensional structure of a rigidly rotating self-gravitating body is accessible with relatively good precision
by assuming a purely spheroidal stratification. With this hypothesis, the two-dimensional problem becomes one-dimensional, and
consists in solving two coupled fixed-point equations in terms of equatorial mass density and eccentricity of isopycnics. We propose a
simple algorithm of resolution based on the self-consistent field method. Compared to the full unconstrained-surface two-dimensional
problem, the precision in the normalized enthalpy field is better than 10−3 in absolute, and the computing time is drastically reduced.
In addition, this one-dimensional approach is fully appropriate to fast rotators, works for any density profile (including any barotropic
equation of state), and can account for mass density jumps in the system, including the existence of an ambient pressure. Several tests
are given.
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1. Introduction

The structure of static polytropic stars, in the classical sense,
is traditionnally described by the Lane-Emden equation, which
admits a wide variety of solutions (e.g., Srivastava 1962; Sharma
1977; Seidov & Kuzakhmedov 1978; Liu 1996; Horedt 2004;
Mach 2012; Tohline 2021). With rotation, the shape and the
internal isobars deviate from sphericity, and it becomes dif-
ficult to anticipate precisely the topology of the gravitational
field lines and to make direct use of the Gauss theorem. The
context of slow rotation is attractive as it enables us to per-
form various kinds of analytical expansions, for instance in the
form of series (Chandrasekhar 1933; Chandrasekhar & Roberts
1963; Roxburgh & Strittmatter 1966; Kovetz 1968). Unfortu-
nately, the treatment required for moderate and fast rotations
is much harder; there is almost no analytical way (Roberts
1963). The Poisson equation must be solved numerically,
while the fluid boundary is not known in advance. Obvi-
ously, numerical methods offer a better range of options; for
instance, they can model almost any kind of rotation pro-
file, flattening, and equation of state (EOS) (e.g., James 1964;
Ostriker & Mark 1968; Hachisu 1986a); they include magnetic
fields (e.g., Tomimura & Eriguchi 2005; Lander & Jones 2009),
ambient pressure (e.g., Huré et al. 2018), mass density jumps
(Kiuchi et al. 2010; Kadam et al. 2016; Basillais & Huré 2021);
and they can reach three-dimensional configurations and multi-
plicity (Hachisu 1986b; Even & Tohline 2009). In this last con-
text, the self-consistent field (SCF) method of resolution, which
consists in finding a fixed point for the mass density ρ(r) from the
pertinent equation set, is very efficient when appropriately ini-
tialized and scaled, and it has largely been used to model stars,
binaries, and rings (Hachisu 1986a; Odrzywołek 2003). How-
ever, it is known from classical theories that, at slow rotations,
? A minimum driver program is available at https://github.com/
clstaelen/ssba

the equilibrium configurations remain very close to ellipsoids of
revolution (e.g., Véronet 1912; Chandrasekhar 1933), and take
a slightly sub-elliptical shape in a meridian plane between the
pole and the equator (see also, e.g., Cisneros Parra et al. 2015).
This assessment also applies for fast rotations, except close to
the mass-shedding limit (Staelen & Huré 2024).

Any assumption made upon the mass density structure or
on the symmetry is expected to reduce the mathematical com-
plexity of the problem, but it diverts from the exact problem.
This is the case when isobaric or isopycnic surfaces are locked
to spheroids (i.e., ellipses in the meridional plane). Actually,
under axial symmetry it is possible to benefit from Newton’s
and Maclaurin’s theories and to use the closed-form for the
potential of the homogeneous spheroid (Chandrasekhar 1969;
Binney & Tremaine 1987), and subsequently construct hetero-
geneous bodies by piling-up coaxial homogeneous spheroids
(see, e.g., Abramyan & Kaplan 1974; Montalvo et al. 1983). In
a series of papers (Huré 2022a,b; Staelen & Huré 2024, here-
after Papers I, II, and IV, respectively), we developed a theory
that solves the equilibrium of a heterogeneous body made of L
homogeneous layers bounded by spheroids with different eccen-
tricities, and in asynchronous rotational motion. As shown, it is
possible to determine a relationship between the rotation rate
Ωi of each layer i ∈ [1,L], the parameter set of the spheroids
Ei, and the mass-densities ρi involved. This theory is approxi-
mate, but works very well provided the interfaces between lay-
ers are close enough to be confocal with each other. In the limit
L → ∞, we showed that, for global rigid rotation, the eccen-
tricity ε = [1 − b2/a2]1/2 of isopycnic surfaces (with semima-
jor axis a and semiminor axis b) and the mass density profile ρ
obey a general integro-differential equation (IDE) (see Eq. (19)
in Paper IV and Eq. (3) below). This IDE works very well for
a wide range of rotation rates (or flattenings). It encompasses
Clairaut’s fundamental equation in the limit of small flatten-
ings, and behaves correctly even close to the mass-shedding
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limit. This is important in order to provide tools appropriate
to fast rotators, which may not be rare entities in the Universe
(Rampalli et al. 2023).

The assumption of spheroidal isopycnics is undoubtedly
strong, but it is not only motivated by mathematical simpli-
fications coming out. It is widely supported by the numeri-
cal experiments. Actually, the true surface of a rigidly rotat-
ing fluid is generally very close to spheroids for a wide range
of flattenings, even in the presence of mass density jumps.
For instance, for a polytropic gas with index n = 1 and
a polar-to-equatorial axis ratio Rp/Re = 0.95, the shapes
of isopycnics deviate in altitude from ellipses by less than
10−3 in relative from the center to the surface; the volumes
differ by a similar value. For some problems, the devia-
tions are too large and the hypothesis of spheroidal stratifi-
cation must be abandoned (e.g., Zharkov & Trubitsyn 1970;
Hubbard 2013; Cisneros Parra et al. 2015; Nettelmann 2017;
Debras & Chabrier 2018). However, there are many situations
where, on the contrary, such a precision is sufficient, for instance
for the construction of mass–radius relationships or for dynami-
cal studies (e.g., Hadjifotinou 2000; Kluźniak & Rosińska 2013;
Mishra & Vaidya 2015; Venditti et al. 2020).

In this article we propose a direct exploitation of the IDE
derived in Paper IV, looking for self-consistent solutions. As
the underlying equation set is reduced to the Bernoulli equa-
tion combined with the Poisson equation, the solution neces-
sarily has a limited range of applications, as quoted above. Our
approach cannot compete with sophisticated models for the stel-
lar structures for instance (see, e.g., Rieutord et al. 2006, 2016;
Espinosa Lara & Rieutord 2013; Houdayer & Reese 2023, for
the state of art). Our main aim is to analyze the performance
of the spheroidally stratified barotrope (SSB) approximation,
which to our knowledge has never been reported. By construc-
tion, the IDE concerns only equatorial values. When it is com-
bined with the centrifugal equilibrium along the polar axis, we
obtain a type of equatorial projection of the original bidimen-
sional equation set. This opens the possibility to determine the
two-dimensional structure of a fully heterogeneous rigidly rotat-
ing body from a one-dimensional approach. This is explained in
Sect. 2. An attractive point is that the IDE is valuable regardless
of the EOS, leaving a certain flexibility in terms of applications.
We discuss in Sect. 3 a simple iterative algorithm to solve this set
of projected equations. The cycle is based on the classical self-
consistent field (SCF) method. In the present case, we have to
solve two coupled fixed-point problems, one for the eccentricity
profile ε(a) and one for the mass density profile ρ(a), in the range
a ∈ [0,Re]. The full 2D structure is reconstructed by unfolding
the equatorial solution {ρ(a), ε(a)}. Several tests are proposed
in Sect. 4, including static, slowly rotating, and highly rotat-
ing configurations, as well as Hachisu’s equilibrium sequences
(Hachisu 1986a). For this purpose, a numerical reference is
needed to compare the approximate solution to the real one.
We use the DROP code, which computes the equilibrium con-
figurations in full 2D (Huré & Hersant 2017; Basillais & Huré
2021), the Poisson being solved by the multigrid-method from
finite-difference equation. Using the spectral version of the code
would not help much as we are dealing with deviations that
are not tiny, typically on the order of 10−4. In Sect. 5 we
show how to account for mass density jumps, which enables
us to model multi-domain bodies. Two examples are discussed,
namely the pressurized n = 5 polytrope and the Earth’s interior,
by using the nonrotating Preliminary Reference Earth Model
(Dziewonski & Anderson 1981). A summary is found in the last
section.

2. Theoretical background

Basically, a star is an equilibrium state between gas pressure,
gravity forces, and centrifugation. In the barotropic approxima-
tion, the relevant equation set is

H + Φ + Ψ = Cte,

∇2Ψ = 4πGρ,
f (H, ρ) = 0,

(1a)

(1b)
(1c)

where Ψ is the gravitational potential, Φ = −
∫

dR Ω2R is
the centrifugal potential, Ω is the local rotation rate, P is the
pressure, ρ is mass density of the fluid, and H =

∫
dP/ρ is

the enthalpy (the self-gravitating flow is isentropic). The link
between H and ρ in Eq. (1c) is usually done via the EOS, namely
P(ρ). This set represents a conservative form for the flow, is
independent of time, ignores viscosity, and supposes that rota-
tion is constant along cylinders, coaxial with the rotation axis
(e.g., Tassoul 1978; Amendt et al. 1989), which means that Φ
depends on the cylindrical radius R only. In the present article
we consider axially symmetric configurations in the framework
of the nested spheroidal figure of equilibrium (NSFoE) reported
in Papers I and II, which assumes that, in a layered system, all
the surfaces bounding the homogeneous layers (L in total, ρi is
the mass density of layer i) are perfect spheroids Ei(ai, bi). In the
meridional plane, these surfaces are ellipses with equation

R2

a2
i

+
Z2

b2
i

= 1, (2)

where ai ∈ [0,Re], bi ∈ [0,Rp] and Re and Rp are the equatorial
and polar radii of the body, respectively. In these conditions, the
equilibrium (if it exists) is perfectly determined as a function of
the set {ρi, Ei}i∈[1,L].

2.1. Dimension reduction (equatorial projection)

In Paper IV we showed that, in the limit where the number L
of layers is infinite, Eqs. (1a) and (1b) can be formally solved
regardless of any EOS. In the special case of rigid rotation con-
sidered here, we obtain an IDE linking the eccentricity profile
ε(a) and the mass density profile ρ(a). In order to render the
problem scale-free, the semimajor axis a of a given isopycnic
surface is expressed in units of the equatorial radius $ = a/Re ∈

[0, 1], and ρ̂ = ρ/ρc is the dimensionless mass density (ρc is the
central mass density). In these conditions, the IDE reads

dε2

d$
=

2
∫ ρ̂($)
ρ̂(0) dρ̂($′)χ($′, $; ε)∫ ρ̂(1)
ρ̂(0) dρ̂($′)µ($′, $; ε)

, (3)

where χ and µ are continuous smooth functions in the whole
domain $ ∈ [0, 1]. These are defined in Paper IV (see also
Appendix A, respectively Eqs. (A.3) and (A.4)). As explicitly
stated, χ and µ depend on the radius $ and on the eccentric-
ity profile ε($). We can safely replace Eqs. (1a) and (1b) by
Eq. (3), and express Eq. (1a) along the polar axis. This is possi-
ble as the gravitational potential is known. As the constant in the
RHS, we can take the value of the LHS at the pole, which is the
most straightforward. After some algebra (see Appendix C for a
proof), we find for the dimensionless enthalpy

Ĥ($) = Ĥ(1) + 2π
∫ ρ̂(1)

ρ̂(0)
dρ̂($′)

[
η($′, 1; ε) − η($′, $; ε)

]
,
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Fig. 1. Schematic of the unfolding process. The one-dimensional equa-
tion set is first solved for the mass density ρ and eccentricity ε along the
equatorial axis in the full interval [0,Re]. Then, the two-dimensional
structure is reconstructed by propagating, for each radius (a, 0), the
solution (enthalpy, mass density, or pressure) along the ellipse E(a, b)
up to the polar axis at (0, b) (see Sect. 2.2).

where Ĥ = H/GρcR2
e , and η is reported in Appendix A (see

Eq. (A.5)). It follows that Eq. (1), in the framework of the theory
of NSFoE, becomes

Ĥ($) = Ĥ(1)+

2π
∫ ρ̂(1)

ρ̂(0)
dρ̂($′)

[
η($′, 1; ε) − η($′, $; ε)

]
dε2

d$
=

2
∫ ρ̂($)
ρ̂(0) dρ̂($′)χ($′, $; ε)∫ ρ̂(1)
ρ̂(0) dρ̂($′)µ($′, $; ε)

,

f
(
Ĥ($), ρ̂($)

)
= 0,

(4a)

(4b)

(4c)

where the last equation is the EOS. We note that, if the mass
density profile happens to be known in advance (e.g., deduced
from observational data) or prescribed, Eq. (4a) is not needed
anymore (see, e.g., Sect. 5.3). We immediately see that the prob-
lem is now fully one-dimensional. It means that we can compute
the 2D structure of a rotating gaseous body from a 1D approach.
This dimension reduction thus relies on a SSB approximation.

2.2. Unfolding and global quantities

Once the 1D solution {ρ̂($), ε($)} is calculated, we can recon-
struct any bidimensional map by unfolding the mass density, at
each radius a, along the corresponding ellipse E(a, b) up to the
polar axis at (0, b), as depicted in Fig. 1. In spherical polar coor-
dinates (r, θ, ϕ), we actually have

ρ̂(r, θ) = ρ̂($), (5)

where the two coordinates are easily determined by using the
parametric formula

r2 = R2
e$

2
[
1 − ε2($) sin2(β)

]
,

tan(θ) =
1

ε̄($)
cot(β),

(6a)

(6b)

with θ ∈ [0, π/2] and β ∈ [0, π/2], and where

ε̄($) = [1 − ε2($)]1/2 (7)

is the axis ratio of the isopycnic E(a, b) considered.
The conversion to cylindrical coordinates is straightforward:

R = Re$ cos(β) and Z = Re$ε̄($) sin(β). We can subsequently
deduce all global quantities (e.g., mass, volume).

In ($, β, ϕ) coordinates, the volume element writes

dV
R3

e
= 2π

$2 cos(β)
ε̄($)

[
ε̄2($) −

1
2

sin2(β)
dε2

d$

]
d$dβdϕ. (8)

For most global properties of the system, the integrations over β
are trivial. For instance, the mass M and the moment of inertia I
are reduced to a single integral over $ and we have

M
ρcR3

e
= 4π

∫ 1

0
d$

$2ρ̂($)
ε̄($)

[
ε̄2($) −

1
6

dε2

d$

]
,

I
ρcR5

e
=

8
3
π

∫ 1

0
d$

$4ρ̂($)
ε̄($)

[
ε̄2($) −

1
10

dε2

d$

]
.

(9)

According to Paper IV, the rotation rate Ω is given by

Ω̂2 = −2π
∫ ρ̂(1)

ρ̂(0)
dρ̂($′)κ($′, $; ε), (10)

where Ω̂ = Ω/
√

Gρc and κ is defined by Eq. (A.6) (see again
Paper IV). It is worth recalling that, as the theory of NSFoE
is an approximate theory, Eq. (10) is expected to exhibit slight
variations with the radius (see below), and should rigorously be
denoted Ω̂2($).

2.3. Comments

As can be seen in Paper IV, the three functions χ, µ, and η
have small amplitude, but all take real, negative values in the
range of $ of interest. It is therefore clear that, if the inte-
gral in Eq. (4a) happens to be essentially negative, then the
mass density can become negative, in which case the computed
solution cannot be compatible with a physical solution. Den-
sity inversions are eventually acceptable, but ρ ≥ 0 is a firm
condition. A similar remark holds for Eq. (10). For Eq. (4b),
things are less restrictive. Actually, negative values of ε2 corre-
spond to prolate spheroids. This is not a problem because there
is a mathematical continuity in the gravitational potential when
the eccentricity becomes a purely imaginary number (i.e., when
ε = 0+ → i0+; Binney & Tremaine 1987). From a numerical
point of view, however, the requires a dedicated treatment, and
it seems preferable to consider the axis ratio, namely ε̄($) ≶ 1
instead of ε (see below, and Appendix B).

3. Solution with a SCF-algorithm. Implementation
and example

3.1. Cycle and convergence criterion

It is well known that Eqs. (1a) and (1b) correspond to a fixed-
point problem: ρ = f (ρ) in terms of the mass density profile.
Clearly, the equation set Eq. (4) has a similar structure, but we
have two coupled fixed-point problems of the form ρ̂

(t) ← f1
(
ρ̂(t−1), ε̄(t−1)

)
,

ε̄(t) ← f2
(
ρ̂(t−1), ε̄(t−1)

)
,

(11a)

(11b)

It is therefore natural to proceed in the same manner as for the
standard SCF method: we guess the profiles for the mass density
and the axis ratio, namely ρ̂(0)($) and ε̄(0)($), and let the profiles
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evolve until stabilization. This can be accomplished following
the iterative scheme, for t ≥ 1:
1. ε̄(t) is obtained from Eq. (7), after integrating Eq. (4b);
2. Ĥ(t) is computed according to Eq. (4a);
3. ρ̂(t) is obtained from Eq. (4c).

We see that there are two other options (with no significant
impact on the performance of the cycle), depending on the order
of assignments; in other words, ε̄ in Eq. (11b) can be computed
using the ρ-profile updated from Eq. (11a), or ρ in Eq. (11a)
can be computed from the ε̄-profile updated from Eq. (11b).
At convergence, two successive profiles must be numerically
unchanged, in which case the cycle ends. As we traditionally
use double precision computers, we take1,2 δ(t) . 10−14, where

δ(t) ≡ max
(
∆(t)ρ̂,∆(t)ε̄

)
, (12)

where we define still for t ≥ 1 and $ ∈ [0, 1]

∆(t)ρ̂ = sup
∣∣∣ρ̂(t)($) − ρ̂(t−1)($)

∣∣∣ , (13)

and use a similar definition for ∆(t)ε̄.

3.2. Boundary conditions

In the standard (single-domain) case, and in the absence of exter-
nal pressure (see Sect. 5.2), we can take Dirichlet boundary con-
ditions (BCs) at the outer boundary $ = 1{
ρ̂(1) = 0
ε̄(1) = ε̄s

, (14)

where ε̄s = Rp/Re is the axis ratio of the outermost surface. At
the center of the body, we have
ρ̂(0) = 1

dε̄2

d$

∣∣∣∣∣∣
$=0

= 0
. (15)

Unfortunately, ε̄(0) cannot be easily deduced.

3.3. Method and implementation (quadrature schemes,
$-grid, and seeds)

We see that Eq. (4) involves derivatives and quadratures, and
there are different ways to estimate ρ($) and ε̄($) for given BCs.
Here we decided to recast Eq. (4b) in integral form, i.e.,

ε̄2($) = ε̄2
s −

∫ 1

$

(
dε̄2

d$

)
d$, (16)

where the term in parentheses is simply the right-hand side of
Eq. (4b) within a minus sign. So, we have only to deal with
quadratures. The eccentricity being unknown at the center, we
chose to integrate downward, from the surface to the center, with
Eq. (14) as Dirichlet BCs. The computational grid is made of
N + 1 equally spaced nodes: $i ∈ {0, 1

N , . . . , $i = i
N , . . . , 1}.

We used the trapezoidal rule as the quadrature rule, which is
second-order in the step size (more efficient schemes can be used

1 In practice, this level of stability is easily reached. However, it needs
to be raised if the numerical resolution is very high.
2 This may appear useless or excessive. In some cases, however, the
cycle first converges toward one state and then “bounces” to reach a
completely different one. Reaching machine precision offers better con-
fidence in the solution.

at this level). According to Eq. (14), still assuming null ambient
pressure, we take Ĥ(0)($) = Ĥc(1 −$2),

ε̄(0)($) = 1 − (1 − ε̄s)$2

(17a)

(17b)

as the starting guess. Initially, we thus have Ĥ(0)(0) = Ĥc at the
center, and ε̄(0)(0) = 1. These quadratic profiles seem appropriate
for a wide range of configurations, although the solutions gen-
erally have a nonzero central eccentricity. Obviously, the BCs
must be applied at each step in the cycle.

3.4. A note about the equation of state

The EOS is the fundamental ingredient. Without loss of gen-
erality, we consider a polytropic gas where the pressure is a
power law of the mass density, which leads to the expression
H = K(n + 1)ρ1/n, where K is a positive constant and the poly-
tropic index n > 0 is finite. In this case the relationship between
Ĥ and ρ̂ is

Ĥ
Ĥc

= ρ̂1/n, (18)

where Ĥc = K(n + 1)/Gρ1−1/n
c R2

e (this relation assumes ρ̂ ≥ 0).
The mass density ρ̂(t) inside the cycle, including the seed, is
deduced from the EOS through Eq. (4c).

3.5. Example of cycle convergence

The first example is for ε̄s = 0.9 and n = 3, and the grid has
N + 1 = 257 equally spaced nodes. This configuration corre-
sponds, for instance, to a radiation-pressure-dominated ideal gas
or to a white dwarf with fully degenerate extremely relativistic
electrons. With this parameter, we are already beyond slow rota-
tors. We ran the code based on the SSB approximation. Figure 2
shows the evolution of ρ̂($) and ε2($) during the cycle, as well
as the deviations ∆ρ̂ and ∆ε2 from one step to the other. Figure 2f
gives the convergence parameter δ(t) defined by Eq. (12) from
the beginning to convergence. We see that δ(t) decreases expo-
nentially with the step t and the algorithm converges quickly on
a solution. Convergence is reached after 70 cycles with the cur-
rent criterion. After step 20, we already have δ(t) ∼ 10−5, which
is on the order of the accuracy of the numerical scheme (i.e.,
1/N2 ∼ 10−5 with 257 nodes). The next steps are necessary to
reach the threshold of 10−14. We show in Fig. 2c the rotation rate
computed from Eq. (10). Unsurprisingly, there is a slight varia-
tion with the radius, on the order of 10−2 in relative. This is due
to the approximate nature of the theory of NSFoE. The func-
tion κ involved when computing Ω2 changes sign for most pairs
($′, $), which in some cases results in subtracting two quan-
tities close to each other, thereby amplifying errors. This effect
can be reduced by increasing the numerical resolution. Actually,
a test with N = 1024 shows a mean value 〈Ω̂2〉 ≈ 1.3014 ×
10−2 and an amplitude around 10−3 in relative, which is more
reasonable.

We list in Table 1 the main global quantities at equilib-
rium, namely the mass M, the moment of inertia I, the volume
V , the angular momentum J, the gravitational energy W, the
kinetic energy T , the internal energy U, and the virial param-
eter VP = W + 2T + U. We see that VP/|W | is on the order
of 10−4 in absolute, which is very good. We also list the val-
ues output by the DROP code, which solves Eq. (1) in full 2D

A59, page 4 of 14



Staelen, C. and Huré, J.-M.: A&A, 684, A59 (2024)

0.0

0.2

0.4

0.6

0.8

1.0

 0  0.2  0.4  0.6  0.8  1

(a)

t=
0

t=
1

t=
2

t=
5

t=
7
0

Initial seed
Converged

solution

ρ(t)(ϖ)/ρc vs ϖ

-16

-14

-12

-10

-8

-6

-4

-2

 0

 0  0.2  0.4  0.6  0.8  1

(d)t=1
t=5
t=10

t=20

t=40

t=60t=70

Δρ(t)(ϖ)/ρc (log.) vs ϖ

0.90

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1.00

 0  0.2  0.4  0.6  0.8  1

(b)

t=0

t=1

t=2

t=5

t=70

ε- (t)(ϖ) vs ϖ

-16

-14

-12

-10

-8

-6

-4

-2

 0

 0  0.2  0.4  0.6  0.8  1

(e)t=1

t=5

t=10

t=20

t=40

t=60
t=70

Δε- (t)(ϖ) (log.) vs ϖ

1.302

1.303

1.304

1.305

1.306

1.307

1.308

1.309

1.310

1.311

1.312

 0  0.2  0.4  0.6  0.8  1

(c)Arithmetic mean
J 2/I 2

Ω2(ϖ)/(Gρc) ×102 vs ϖ

-16

-14

-12

-10

-8

-6

-4

-2

 0

 0  10  20  30  40  50  60  70

(f)

RMS error (log.) vs step t

Fig. 2. Radial profiles for ρ̂ (panel a) and ε̄ (panel b) during the SCF
cycle for a few selected steps t (labeled on the curves) of the SCF cycle,
and absolute deviations (panels d and e) between steps t − 1 and t. Also
shown are the square of the rotation rate (panel c) computed at conver-
gence from Eq. (10) and its mean value (orange), and the convergence
parameter δ computed from Eq. (12) as a function of step t (panel f).

(Huré & Hersant 2017; Basillais & Huré 2021). We see that the
agreement between the two methods is quite good, with devia-
tions on the order of a few 10−3 in relative, while the resolution
is moderate.

3.6. Example of two-dimensional reconstruction
(deprojection)

Once a solution in the form of a pair of profiles ρ̂($) and ε($)
is known, we can reconstruct the 2D structure by using Eq. (2).
For this second example, we ran the SCF code under the same
conditions as above, but for ε̄s = 0.75 and n = 1.5, which could
correspond to a fast-rotating fully convective star. We note that
ε̄s ≈ 0.74 for Achernar (Domiciano de Souza et al. 2014). We
can compare the ρ-map obtained in this way to the field output
by the DROP code. This is shown in Fig. 3. We see that the largest
differences are mainly located close to the surface, as the true
solution is slightly sub-elliptical. The deviations do not exceed
about 3× 10−3 in absolute (this value is on the order of the virial

Table 1. Global quantities computed for configuration A discussed in
Sect. 3.3 with the SSB approximation for N = 256 (last column).

Configuration A DROP(†) code This work

ε̄s ← 0.900 ← 0.900
n ← 3.0 ← 3.0
M/(ρcR3

e) 5.9999 × 10−2 6.0062 × 10−2

I/(ρcR5
e) 3.9410 × 10−3 3.9475 × 10−3

V/R3
e 3.7436 3.7699

Ω̂2 1.3006 × 10−2 1.3024 × 10−2

(?)1.3014 × 10−2

J/(Gρ3
cR10

e )1/2 4.4945 × 10−4 4.5051 × 10−4

−W/(Gρ2
cR5

e) 5.8487 × 10−3 5.8599 × 10−3

T/(Gρ2
cR5

e) 2.5629 × 10−5 2.5707 × 10−5

U/(Gρ2
cR5

e) 5.7976 × 10−3 5.8077 × 10−3

|VP/W | 4 × 10−5 1 × 10−4

Notes. The rotation rate is a mean value (see text). Also listed (second
column) are values output from the DROP code at a resolution 257 ×
257.← input data; (†) see Huré & Hersant (2017) and Basillais & Huré
(2021); (?) value obtained for N = 1024.

Table 2. Same caption and same conditions as for Table 1, but for a fast
rotator.

Configuration B DROP(†) code This work

ε̄s ← 0.750 ← 0.750
n ← 1.5 ← 1.5
M/(ρcR3

e) 4.3026 × 10−1 4.3397 × 10−1

I/(ρcR5
e) 7.4701 × 10−2 7.5961 × 10−2

V/R3
e 3.0297 3.1415

Ω̂2 2.2662 × 10−1 2.2808 × 10−1

(?)2.2807 × 10−1

J/(Gρ3
cR10

e )1/2 3.5561 × 10−2 3.6278 × 10−2

−W/(Gρ2
cR5

e) 1.8344 × 10−1 1.8584 × 10−1

T/(Gρ2
cR5

e) 8.4644 × 10−3 8.6630 × 10−3

U/(Gρ2
cR5

e) 1.6651 × 10−1 1.6790 × 10−1

|VP/W | 1 × 10−5 3 × 10−3

parameter, see below). This result is remarkable, in particular
because the surface is the place where the mass density is small
and vanishes. The best agreement is observed at the center, at
the pole, and at the equator, with absolute deviations of about
10−5. The main quantities are reported in Table 2. We see that
most global quantities are correctly reproduced within a percent,
which is satisfying for a rotator this fast.

3.7. Varying the surface axis ratio and the polytropic index:
Computing vs. precision

We performed similar comparisons by varying the surface axis
ratio ε̄s and the polytropic index n, again with a moderate numer-
ical resolution corresponding to N = 256. The results are gath-
ered in Table F.1, where we list the mass, the rotation rate, the
relative virial parameter and the root mean square (RMS) dif-
ference between the two structures (mass, density). There are
three series. For the first the index and the resolution are held
fixed (n = 1.5, N = 256) and the surface eccentricity increases
to the critical rotation, at about ε̄s ≈ 0.62. In the second series
the surface eccentricity and the resolution are fixed (ε̄s = 0.95,
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Fig. 3. Color-coded mass density map (log. scale) computed from
Eq. (4) that takes advantage of dimension reduction (top) and absolute
difference (log. scale) with the reference DROP code (bottom), for con-
figuration B. The parameters are ε̄s = 0.75 and n = 1.5, with 257 nodes
per direction (see also Table 2).

N = 256) and n varies from 0.5 to 4. In the last series, the con-
figuration is fixed (ε̄s = 0.95, n = 1.5) and we increase the res-
olution from 32 to 2048. We see that the agreement is good:
the maximum RMS value is 4 × 10−3 and the mass and rota-
tion rate are well reproduced within a percent. From the virial
parameters and the RMS, two trends are seen. First, the method
is less and less accurate as the axis ratio decreases, especially for
a “hard” EOS. This is expected because the true surface devi-
ates more from a perfect spheroid as the rotation becomes faster.
Second, the method is increasingly accurate as the polytropic
index increases (“soft” EOS), even close to critical rotations. As
n increases, the density becomes peaked at the center, and the
contribution to the mass (and potential) of the “wings” becomes
small to negligible. This is visible in Fig. 2a, for instance. For
n = 3 the mass density vanishes quickly toward the surface
(ρ̂ . 10−3 at $ & 0.7).

The computing time reported in the table is obtained on
a standard laptop, without any specification optimization. For
n = 1.5 and ε̄s = 0.95, the number of iterations is about 30
and is not sensitive to N. We find ∼ (N/581.295)1.930 s for con-
vergence with the SSB approximation, to be compared to the full
2D problem ∼ (N/77.824)3.089 s.

4. More tests

In order to better see the power of the method and its flexibil-
ity, we present in this section several tests, including static and
rotating configurations (see next section for systems with mass
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Fig. 4. Mass density profile obtained by solving Eq. (4) with the SCF
algorithm (N = 256) in the static case (ε̄s = 1) and for n = 1, com-
pared to the corresponding exact solution of the Lane-Emden equation
(left panel). Also shown is the absolute deviation between these two
solutions, for several values of N (right panel); see also Table 3.

Table 3. Mass and moment of inertia for the static polytropic sys-
tem with n = 1 (second column), and values computed from the SCF
method, using the 2D code (third column) and after dimension reduc-
tion (fourth column).

Exact DROP code This work

M/(ρcR3
e) 1.27324 1.27322 1.27323

I/(ρcR5
e) 0.33280 0.33279 0.33279

Steps for convergence 29 20
Virial parameter 0 4 × 10−6 2 × 10−5

density jumps). The convergence criterion and the numerical res-
olution are (unless stated otherwise) the same as in Sect. 3.5.

4.1. Static case with index unity

We consider here a static gas with polytropic index n = 1 (see
Sect. 1). All isobars are spherical and ε = 0 for any $. In
this case the solution of the Lane-Emden equation is analytical3,
namely

ρ̂($) =
sin(π$)
π$

, (19)

which enables a direct comparison. The theory of NSFoE is
exact for spherical configuration because the confocal parame-
ters are null, which is therefore the case of Eq. (4). If we inject
ε($) = 0 in the four functions κ, χ, µ, and η, an expansion is
required in the limit ε→ 0. We find that ε = 0 is in fact a regular
singular point, and it follows that κ = χ = 0 (see Appendix D).
Thus, we recover that the body is nonrotating and that all isopyc-
nics are spherical. We have applied the SSB approximation. The
results are shown in Fig. 4. The main output data are listed in
Table 3. We see that the deviation from the analytical solution
is of order 10−5, and it decreases as N increases. This occurs
because deviations are directly linked to the order of the quadra-
ture scheme in this case.

3 This is also the case for n = 0 and n = 5, but n = 0 represents a
homogeneous object and this test was already considered in Paper IV.
The case with n = 5 has an infinite radial extent and mass; see Sect. 5.2.
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Fig. 5. Mass density profile and squared eccentricity profile (left panels)
obtained by solving Eq. (4) with the SCF algorithm, and comparison
with the exact nonrotating first-order solution from Clairaut’s funda-
mental equation (right panels).

4.2. The case of slow rotation

In the limit of slow rotation, various approximations can be
found (see, e.g., Chandrasekhar 1933). Of particular interest
is Clairaut’s theory, which is first-order accurate in the square
of the eccentricity, ε2 � 1. It happens that there are a
few closed-form solutions to Clairaut’s second-order differen-
tial equation compatible with physically realistic BCs. Among
them, Tisserand (1891) and Marchenko (2000) have a Legendre-
Laplace solution for n = 1: the solution is the same as for the
nonrotating case (i.e., a sine cardinal for the mass density)4. For
Eq. (19), the eccentricity profile reads

ε̄2($) = 1 −
(
1 − ε̄2

s

) (π2$2 − 3) sin(π$) + 3π$ cos(π$)
3$2 [π$ cos(π$) − sin(π$)]

. (20)

We ran the code for n = 1 and ε̄s = 0.99. The results are dis-
played in Fig. 5. We see that the mass density profile of the rotat-
ing case departs only slightly from a sine cardinal (the deviation
is of order 10−3). More importantly, the actual method yields an
eccentricity profile that is very close to Eq. (20), within a few
10−5 in absolute, which is highly satisfying. This confirms the
efficiency of the SSB approximation at slow rotation. Figure 6
displays the mass density structure and the deviation from the
reference structure, with a RMS value of 2 × 10−6.

4.3. A case of moderate rotation

An interesting test concerns the transition from slow to moderate
rotators. We performed a new run for n = 1 and ε̄s = 0.95 (which
is close to the axis ratio of Jupiter, for instance). The results are
shown in Fig. 7 after reconstruction of the 2D map for the mass

4 As Clairaut’s equation is first order accurate in ε2, only the zeroth-
order on ρ̂ is needed to have ε2 in the limit of slow rotations.
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Fig. 6. Same as Fig. 3, but for ε̄s = 0.99 and n = 1.
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Fig. 7. Same as Fig. 3, but for ε̄s = 0.95 and n = 1.
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density. We see that the deviation is again maximum at the surface,
midway between the pole and the equator. The highest value of the
RMS for the mass density is about 3×10−4, while the mean value
is about 7× 10−5. At the center, near the pole and the equator, the
precision is excellent, with more than six correct digits.

4.4. Reproduction of Hachisu’s (j2, ω2) sequences of
equilibrium

In the 1980s Hachisu and collaborators perfomed a wide explo-
ration of figures of equilibrium through a series of fundamental
papers (Hachisu 1986a,b). They computed sequences of axially
symmetrical equilibria by varying the surface axis ratio ε̄s, both
for stars and rings (out of range here). The configurations are
gathered in the ( j2, ω2)-plane, where ω and j are the normalized
rotation rate Ω and angular momentum J, respectively, defined
as

j2 =
J2

4πGM3V1/3

ω2 =
Ω2

4πGMV−1

. (21)

Hachisu (1986a) showed that, in contrast to the Maclaurin
uncompressible sequence, all sequences are open, depending on
the polytropic index n > 0 of the gas: the larger the value of n,
the larger the gap. Figure 8 shows a few points of the sequences
obtained with the SSB approximation for n = {0.1, 0.5, 1.5, 3, 4},
together with the data extracted from Hachisu’s paper (same axis
ratio). Values obtained in full 2D with the DROP code are also
plotted for comparison. We see that the agreement is excellent,
except for points close to critical rotations. This is obviously due
to the deviation of the external surface to a spheroid: the vol-
ume is overestimated in this case, which causes a double shift
in the diagram, toward higher ω-values and lower j-values. The
best results are obtained for weakly compressible gas. The virial
parameters, on the other hand, are better and better as n increases
(see Sect. 3.6).

5. Cases with mass density jumps

5.1. Changes

Bodies made of different inhomogeneous domains separated by
mass density jumps are of immense interest. Such cases are stud-
ied in Paper IV. We now consider K domains where the mass

density ρk($) varies (domain no. 1 is for the innermost domain
and k = K is for the outermost one). Then we can write the full
mass density profile from the center to the surface as

ρ̂($) =

K∑
k=1

[
ρ̂k($) − ρ̂k+1($)

]
H($k −$), (22)

where $k is the position, along the equatorial axis, of the
mass density jump between domains k and k + 1, and H is
Heaviside’s distribution. For convenience we set ρK+1 = 0 to
keep a single sum in Eq. (22). The radial derivative is then given
by the expression

dρ̂
d$

=

K∑
k=1

[dρ̂k

d$
−

dρ̂k+1

d$

]
H($k −$)

−

K∑
k=1

[
ρ̂k($) − ρ̂k+1($)

]
δ($k −$), (23)

where δ is Dirac’s distribution. So, for any continuous function
f ($′, $) in the interval [0, 1]2, we have∫ ρ̂(1)

ρ̂(0)
dρ̂($′) f ($′, $) =

K∑
k=1

∫ ρ̂k($k)

ρ̂k($k−1)
dρ̂k($′) f ($′, $)

−

K∑
k=1

αk − 1
αk

ρ̂k($k) f ($k, $), (24)

where $0 = 0 again for convenience, and the mass density jump
αk is defined by

αk =
ρk($k)
ρk+1($k)

. (25)

It follows that the structure of a rigidly rotating body made of
several inhomogeneous domains can be treated with dimension
reduction by solving Eqs. (4a) and (4b), where all the integrals
are estimated from Eq. (24).

5.2. Presence of an ambient pressure

As the present formalism relies mainly on a barotropic EOS, we
assume the external pressure to be constant along the outermost
surface of the object: Pamb. Thus, this value corresponds to a
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Fig. 9. Mass density profile obtained by solving Eq. (4b) with the
SCF algorithm and N = 256, with configuration ε̄s = 1, n = 5,
and ρ̂amb = 0.04 (configuration C), compared to the exact solution of
Schuster (left panel), and the absolute deviation between these two solu-
tions for several values of N (right panel).

Table 4. Data associated with Fig. 9 (static pressurized case).

Exact This work

M/ρcR3
e 0.60718 0.60720

I/ρcR5
e 0.15262 0.15262

Steps for convergence 21
Virial parameter 0 2 × 10−5

cutoff for the mass density at ρ̂amb, and then to a mass density
jump at $ = 1. In the case of a single domain object (K = 1 and
$1 = 1 here), we have

ρ̂($) = ρ̂1($)H(1 −$), (26)

where ρ̂1(1) = ρ̂amb. An interesting test case for ambient pressure
is the n = 5 polytrope. The analytical solution in the nonrotating
case is due to Schuster (e.g., Horedt 2004; see note 3). In the
present context, the solution must be truncated at the right isobar
P(1) = Pamb. The analytical solution becomes

ρ̂($) =
1

[1 +$2(ρ̂−2/5
amb − 1)]5/2

, (27)

which verifies ρ̂(0) = 1 and ρ̂(1) = ρ̂amb. We computed the solu-
tion from the SSB approximation. We note that the method is
not appropriate for the case ρ̂amb = 0 because the mass and espe-
cially the radius are infinite for Pamb = 0. The reconstructed mass
density map is displayed in Fig. 9, and the main data are listed in
Table 4. As for the n = 1 static case, we see that the agreement is
excellent and the deviation from the exact solution depends just
on the resolution, as expected. We note that the virial parameter
was adapted to the context of an ambient pressure. We have

VP = W + 2T + U − Uamb, (28)

where Uamb = 3PambV (see, e.g., Cox & Giuli 1968).
In the rotating case, Schuster’s solution is not adapted any-

more, and we switch back to the DROP code for the reference. For
this illustration we consider the configuration given in Table 5. It
is an intermediate rotator with the same index and ambient pres-
sure as before. A comparison between the full 2D solution and
the reconstructed density field, as well as the difference between
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Fig. 10. Same as Fig. 3, but for ε̄s = 0.90, n = 5.0, and ρ̂amb = 0.04
(configuration C); see also Table 5.

Table 5. Same caption and same conditions as for Table 2, but for the
rotating case with ambient pressure.

Configuration C DROP(†) code This work

ε̄s ← 0.900 ← 0.900
n ← 5 ← 5
ρ̂amb ← 0.04 ← 0.04
M/(ρcR3

e) 5.2781 × 10−1 5.2871 × 10−1

I/(ρcR5
e) 1.3129 × 10−1 1.3169 × 10−2

V/R3
e 3.7596 3.7699

Ω̂2 7.7911 × 10−2 7.8114 × 10−2

(?)7.8109 × 10−2

J/(Gρ3
cR10

e )1/2 3.6648 × 10−2 3.6805 × 10−2

−W/(Gρ2
cR5

e) 2.2649 × 10−1 2.2709 × 10−1

T/(Gρ2
cR5

e) 5.1147 × 10−3 5.1434 × 10−3

U/(Gρ2
cR5

e) 2.7139 × 10−1 2.7190 × 10−1

Uamb/(Gρ2
cR5

e) 5.5118 × 10−2 5.5283 × 10−2

|VP/W | 5 × 10−5 8 × 10−4

the two maps, is shown in Fig. 10. We see that the RMS error5

is on the order of 10−4. The main global quantities are given
in Table 5. The agreement is once again very good, with local
deviations on the order of 10−4 on the density profile. For global
properties, the relative deviations are on the order of 10−3.

5 As the true boundary of the fluid is slightly sub-elliptical, some nodes
are out of the fluid in the 2D problem, while ρ̂ = ρ̂amb. To avoid an
excessive overestimation of the RMS error, we subtracted the ambient
mass density from both maps to obtain this value.
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Fig. 11. Main outputs for the Earth using the PREM. From left to right: normalized mass density of the PREM (Dziewonski & Anderson 1981)
which is used as an input in this work, and the gradient of the eccentricity squared, squared eccentricity, and normalized pressure determined from
the SSB approximation.

5.3. The Earth as a an example

Dziewonski & Anderson (1981) obtained a seismologic model
for the internal structure of the Earth, named the Preliminary
Reference Earth Model (PREM). They derived profiles for the
mass density, pressure, and gravitational field of the Earth under
the hypothesis of a purely spherical planet. In this section we
use the mass density profile of the PREM as an input to model
a rotating Earth with the SSB approximation; it is plotted in
Fig. 11a. It is clear that nonspherical effects have an impact on
the mass density distribution. However, the Earth is a slow rota-
tor, so the deviation is expected to be on the order of 1 − ε̄s ∼

3×10−3 in relative. The PREM is a model withK = 10 domains,
and as many mass density jumps6. As ρ̂($) is an input, the SSB
approximation developed in this work returns to a single fixed-
point problem where only step (i) of the cycle is needed (i.e.,
we iterate only on Eq. (4b)). Only 15 iterations are required by
the SCF method (with N = 1024 per domain). We show the
results for dε2/d$ and ε2($) in Figs. 11b and c, respectively. We
also report the eccentricity profile computed by Ragazzo (2020),
who solved Clairaut’s equation with the same piece-wise pre-
scription for the mass density. We see that both solutions are in
excellent agreement. The pressure profile P($) at equilibrium
is visible in Fig. 11d (see Appendix E for this calculation). It
compares very well to the PREM values (the central dimension-
less value is ∼0.782 comparted to 0.784 for the PREM). The
relative deviations do not exceed ∼3 × 10−3, which is on the
order of the flattening of the outermost surface. This departure
is not due to the spheroidal approximation made in this work
(as |VP/W | ∼ 7 × 10−7), but to the fact that the observed mass
density profile has been spherically averaged by the PREM and
that centrifugal effects have not been taken into account in their
calculations of the pressure profile.

The global properties deduced from SSB approximation are
reported in Table 6. However, the data in this table must be
rescaled prior to any comparison with observational data. For
this purpose we chose to use the mass and equatorial radius
given by Chambat et al. (2010), and reported in Table 7. We then
deduced ρc = 13 083.8 kg m−3, whose value remains close to
the PREM value of 1.3088 × 104 kg m−3. Table 7 compares the
momentum of inertia, rotation rate, and first two gravitational
moments. We see that the normalized moment of inertia and the
rotation rates are in good agreement with the observational data,
again within ∼3 × 10−3 in relative. Regarding the gravitational
6 As the atmosphere is not taken into account in the PREM, a mass
density jump is present at the outermost surface: from liquid water to
the outer space.

Table 6. Output dimensionless quantities obtained for the rotating Earth
from the SSB approximation, for N = 10240 in total.

This work

ε̄s ← 0.99665
M/(ρcR3

e) 1.7592
I/(ρcR5

e) 5.8188 × 10−1

Ω̂2 6.1199 × 10−3

P̂c 7.8200 × 10−1

J/(Gρ3
cR10

e )1/2 4.5521 × 10−2

−W/(Gρ2
cR5

e) 2.0631
T/(Gρ2

cR5
e) 1.7805 × 10−3

U/(Gρ2
cR5

e) 2.0596
|VP/W | 7 × 10−7

Table 7. Physical properties of the Earth rescaled; Rv = Reε̄
1/3
s is the

mean volumetric radius (≈6.371 × 106 m).

Second-order
Data Observed(†) Clairaut(†) This work

M [kg] 5.97218 × 1024

Re [m] 6.378137 × 106

I/MR2
v 3.3069 × 10−1 3.3151 × 10−1

Ω [s−1] 7.2921 × 10−5 7.3104 × 10−5

J2 1.0826 × 10−3 1.0712 × 10−3 1.0771 × 10−3

−J4 1.620 × 10−6 2.96 × 10−6 2.8233 × 10−6

Notes. (†)See Chambat et al. (2010) and references therein.

moments, we see that J2 is close to the observed value, roughly
within 1%. The result is worse for J4, a deviation reaching 75%.
A similar discrepancy is found by Chambat et al. (2010), who
solved the second-order Clairaut’s equation with a different (yet
similar) mass density profile for the Earth. As quoted by these
authors, this deviation from the observed gravitational moments
is due to nonhydrostatic characteristics of the Earth, which are
not taken into account in our equation set.

6. Summary

In this article we showed that the 2D structure of a rotating self-
gravitating fluid can be determined with good precision from
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the theory of Nested Spheroidal Figures of Equilibrium, which
assumes that isopycnics are perfect spheroids. The method uses
the general IDE established in Staelen & Huré (2024), connect-
ing the local eccentricity ε of isopynics to the local mass den-
sity ρ. As this equation involves only the equatorial radius, it
can be coupled to the centrifugal balance along the polar axis,
providing a specific one-dimensional projection of the genuine
bi-dimensional problem. As shown, the new problem consists
in solving two fixed-points problems coupled together. From
the equatorial solution {ρ(a), ε(a)}, which can be determined by
a simple SCF method, we recover the full structure by propa-
gating the mass density along the ellipse, from the equator to
the pole, and for any equatorial radius a ∈ [0,Re]. We pro-
vided a series of examples supporting the efficiency and ver-
satility of this SSB approximation. In particular, the method
is well suited to systems made of heterogeneous domains sep-
arated by mass density jumps. It can account for an ambient
pressure. The method is also flexible in terms of barotropic
EOS. Here we used a polytrope, but any kind of P(ρ)-relation
is usable. The main results of this paper can be summarized as
follows:

– The SSB approximation is exact for nonrotating gas, because
the NSFoE is also exact in this case (all confocal parameters
are null). The method is then equivalent to a standard Lane-
Emden solver. The precision is then fully governed by the
numerical schemes implemented.

– For slow rotators (i.e., small flattenings), the method has an
excellent precision. Depending on the EOS, the solution can
reproduce the full 2D mass density profile, typically within
10−5 in absolute (dimensionless profile), even at low to mod-
erate numerical resolution.

– For fast rotators (i.e., large flattenings), the SSB approxima-
tion furnishes good and reliable results, whatever the EOS.

– For hard EOSs (typically 0 < n < 1), the deviation of the true
surface from a spheroid is very small, but there is a signifi-
cant amount of matter close to the surface. The precision of
SSB approximation is very good provided the system stays
far from the critical rotation state. Near the sequence end-
ings, the precision is acceptable, with typically 1% in the
mass density (RMS value).

– For soft EOSs (n > 1) the precision is very good because the
amount of matter located close to the surface has a negligible
contribution to the total mass (and gravitational potential),
although the deviation of the true surface from a spheroid is
significant.

– Compared to the full 2D problem in which the surface and
isoycnics are not constrained, the mass density in the vicinity
of the center computed with the SSB approximation has an
excellent precision. This is also true for values close to the
pole and to the equator.

– The computing time is reduced by at least two orders of
magnitude with respect to the full 2D problem. This is a
direct consequence of dimension reduction. This enables us
to reach very high numerical resolutions in a short time,
which is particularly attractive for generating grids of models
for instance.
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Appendix A: The functions χ, µ, ν, and η

We define for convenience

e2(c) =
$′2ε2($′)
$2[1 + c]

, (A.1)

and ē(c) =
√

1 − e2(c) ≥ 0, where the continuous confocal parameter c ≡ c($′, $) is given by

c($′, $) =
$′2ε2($′)

$2 − ε2($). (A.2)

In these conditions, and given the functionA(ε̄) defined by Eq.(B.1), χ is defined as

χ($′, $; ε) =


$′3ε̄($′)

$4

[
A

(
ē(0)

)
−
A

(
ē(c)

)
√

1 + c

]
, $′ < $

0, $′ ≥ $

, (A.3)

µ is defined as

µ($′, $; ε) =


$′ε̄($′)A

(
ē(c)

)
$ε2($′)

√
1 + c

−
$′ε̄($′)

$ε2($′)ε̄($)
, $′ < $

ε̄($′)
ε2($′)

A
(
ε̄($′)

)
−

1
ε2($′)

, $′ ≥ $

, (A.4)

η is defined as

η($′, $; ε) =


$′$

ε̄($′)
ε2($′)

[
A

(
ē(c)

)√
1 + c − ε̄($)

]
$′ < $

$2[1 + c]
ε̄($′)
ε2($′)

A
(
ε̄($′)

)
−$2 ε̄

2($)
ε2($′)

, $′ ≥ $

, (A.5)

and κ is defined as

κ($′, $; ε) =


$′ε̄($′)
$ε2($′)

{ [
1 − 2e2(0)

]
A

(
ē(0)

)
− 2ε̄($) − ē(0) + 2A

(
ē(c)

)√
1 + c

}
, $′ < $

3 − 2ε2($)
ε2($′)

[
ε̄($′)A

(
ε̄($′)

)
− 1

]
+ 1, $′ ≥ $

. (A.6)

Appendix B: A single function for the prolate and oblate cases

As can be seen in Paper IV, which is devoted to oblate configurations, all functions κ, χ, µ, (and η) depend on ε, which appears in
the argument of an arcsin function. During the numerical tests, we dealth with transition states where the deep isopycnic surfaces
are slightly prolate, resulting in a purely imaginary eccentricity. This naturally creates numerical issues, which can be circumvented
by a simple prolongation since arcsin(z) = arcsinh(iz)/i, where i is the imaginary unit and z is a complex number (see, e.g.,
Gradshteyn & Ryzhik 2014). So, for the numerical computation we define

A(ε̄) =



arcsin(
√

1 − ε̄2)
√

1 − ε̄2
, 0 < ε̄ < 1,

1, ε̄ = 1,

arcsinh(
√
ε̄2 − 1)

√
ε̄2 − 1

, ε̄ > 1,

(B.1)

which enables us to make the transition from oblate to prolate configurations. It can be verified (see Appendix A), by introducing
this functionA in all integrand kernels defined in Paper IV, that only real terms like ε̄ or ε2 finally survive, whatever the case, either
oblate or prolate.
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Appendix C: The enthalpy profile

Along the polar axis R = 0, the Bernoulli equation Eq. (1a) reads

H(0,Z) + Ψ(0,Z) = Cte. (C.1)
In order to estimate Ψ(0,Z), we need to go back to Paper II. The gravitational potential of a heterogeneous system made of L
homogeneous spheroidal layers is given in that article by Eq. (14). At point A j, at the intersection between the polar axis and the
interface between layers j and j + 1, it reads

Ψ|A j

−2πGa2
j

=

j∑
i=1

(ρi − ρi+1)
ε̄i

ε3
i

(1 + ci, j) arcsin

 qi, jεi√
1 + ci, j

 − qi, jεiε̄ j


+

j∑
i=1

(ρi − ρi+1)
ε̄i

ε3
i

(1 + ci, j) arcsin (εi)
(
q2

i, jε
2
i + ε̄2

j

)
−
εiε̄

2
j

ε̄2
i

 , (C.2)

where a j is the equatorial radius of layer j, ε j is its eccentricity, ρ j is its mass density, ε̄ j =
√

1 − ε2
j , qi, j = ai/a j, and ci, j = q2

i, jε
2
i −ε

2
j .

Oblate spheroids were assumed in Paper II, but it can be generalized to any spheroid by introducing the function A defined in
Appendix B. In the continuous limit L → ∞, we have

Ψ(R = 0,Z)
GρcR2

e
= 2π

∫ 1

0
dρ̂($′)η($′, $; ε). (C.3)

As H(0,Z) is a function of $ only, we define Ĥ($) = H(0,Z)/(GρcR2
e). By Eq.(C.1), we have

Ĥ($) + 2π
∫ 1

0
dρ̂($′)η($′, $; ε) = Ĥ(1) + 2π

∫ 1

0
dρ̂($′)η($′, 1; ε), (C.4)

where the constant Cte was evaluated at the pole of the whole object (i.e., at $ = 1). We then see that Eq. (C.4) thus yields Eq. (4a).

Appendix D: The spherical limit

For ε2 � 1, we have

A(ε̄) ≈ 1 +
ε2

6
(D.1)

for both ε̄ < 1 and ε̄ > 1. So we can expand functions κ, χ, µ, and η at zeroth order to obtain these functions at ε̄ = 1 (i.e., in the
nonrotating spherical case). We have κ($′, $) = 0, which naturally imposes Ω̂2 = 0 (see Eq. (10)), which means that the body is
nonrotating, as expected. Regarding the functions χ and µ appearing in the expression for dε2/d$, we have χ($′, $) = 0 and

µ($′, $) =


−
$′3

3$3 , $′ < $

−
1
3
, $′ ≥ $

. (D.2)

This thus imposes dε2/d$ = 0 with BC ε2(1) = 0. We then recover ε2($) = 0 (i.e., all isopycnic surfaces are spherical, as expected).
Finally, the function η needed to compute the enthalpy field becomes

η($′, $) =


2$′3

3$
, $′ < $

$′2 −
$2

3
, $′ ≥ $

, (D.3)

Appendix E: Pressure from the enthalpy field

For any isentropic barotrope, the enthalpy and the pressure are related by

dĤ = dP̂/ρ̂, (E.1)

where P̂ = P/(Gρ2
cR2

e) is the dimensionless pressure. So, the pressure profile is given by

P̂($) = P̂(1) −
∫ 1

$

d$′ρ̂($′)
dĤ
d$′

. (E.2)

We can compute the enthalpy gradient from Eq.(4a). We can show that

dĤ
d$

= −2π
[
2$ε̄2($) −$2 dε2

d$2

] ∫ ρ̂(1)

ρ̂(0)
dρ̂($′)µ($′, $). (E.3)
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Appendix F: Varying the surface axis ratio and the polytropic index: Computing versus precision

Table F.1. Data obtained from dimension reduction compared to values obtained for the full 2D problem with the DROP code, obtained for several
surface axis ratios ε̄s and polytropic indices n. The computing times spent to achieve convergence are purely indicative, and may vary a little with
the computer load.

N n ε̄s iterations comp. time (s) M/(ρcR3
e) Ω2/(Gρc) |VP/W | RMS

this work 256 1.5 0.950 32 0.199 6.492 × 10−1 5.314 × 10−2 1 × 10−4 4 × 10−5

DROP code 32 37.0 6.490 × 10−1 5.310 × 10−2 1 × 10−5

256 1.5 0.900 33 0.217 5.979 × 10−1 1.034 × 10−1 5 × 10−4 2 × 10−4

44 48.4 5.973 × 10−1 1.032 × 10−1 1 × 10−5

256 1.5 0.850 35 0.230 5.452 × 10−1 1.501 × 10−1 1 × 10−3 4 × 10−4

42 46.6 5.437 × 10−1 1.497 × 10−1 1 × 10−5

256 1.5 0.800 37 0.249 4.906 × 10−1 1.921 × 10−1 2 × 10−3 7 × 10−4

42 46.1 4.881 × 10−1 1.912 × 10−1 1 × 10−5

256 1.5 0.750 39 0.261 4.339 × 10−1 2.280 × 10−1 3 × 10−3 1 × 10−3

44 48.0 4.302 × 10−1 2.266 × 10−1 1 × 10−5

256 1.5 0.700 43 0.285 3.747 × 10−1 2.561 × 10−1 5 × 10−3 2 × 10−3

56 59.7 3.698 × 10−1 2.538 × 10−1 2 × 10−5

256 1.5 0.650 50 0.327 3.126 × 10−1 2.736 × 10−1 6 × 10−3 2 × 10−3

56 58.2 3.071 × 10−1 2.704 × 10−1 2 × 10−5

256 1.5 0.617 50 0.324 2.701 × 10−1 2.777 × 10−1 6 × 10−3 2 × 10−3

74 73.3 2.648 × 10−1 2.740 × 10−1 2 × 10−5

this work 256 0.5 0.950 16 0.102 2.162 1.189 × 10−1 5 × 10−4 7 × 10−4

DROP code 23 28.5 2.162 1.189 × 10−1 3 × 10−4

256 1.0 0.950 24 0.152 1.197 8.259 × 10−2 1 × 10−4 7 × 10−5

51 56.4 1.197 8.253 × 10−1 2 × 10−5

256 2.0 0.950 40 0.244 3.359 × 10−1 3.089 × 10−2 1 × 10−4 3 × 10−5

44 47.3 3.358 × 10−1 3.087 × 10−2 1 × 10−5

256 2.5 0.950 51 0.306 1.610 × 10−1 1.589 × 10−2 8 × 10−5 4 × 10−5

50 53.5 1.610 × 10−1 1.589 × 10−2 3 × 10−5

256 3.0 0.950 70 0.425 6.859 × 10−2 7.032 × 10−3 8 × 10−5 5 × 10−5

65 68.1 6.853 × 10−2 7.023 × 10−3 4 × 10−5

256 3.5 0.950 88 0.516 2.402 × 10−2 2.507 × 10−3 1 × 10−4 1 × 10−4

88 91.0 2.398 × 10−2 2.501 × 10−3 7 × 10−5

256 4.0 0.950 127 0.750 5.861 × 10−3 6.163 × 10−4 4 × 10−4 2 × 10−4

128 130 5.818 × 10−3 6.112 × 10−4 2 × 10−4

this work 32 1.5 0.950 31 0.004 6.505 × 10−1 5.336 × 10−2 5 × 10−4 5 × 10−4

DROP code 34 0.067 6.483 × 10−1 5.307 × 10−2 8 × 10−4

64 1.5 0.950 31 0.014 6.496 × 10−1 5.320 × 10−2 2 × 10−4 1 × 10−4

34 0.497 6.489 × 10−1 5.308 × 10−2 2 × 10−4

128 1.5 0.950 31 0.050 6.493 × 10−1 5.315 × 10−2 1 × 10−4 6 × 10−5

35 5.10 6.490 × 10−1 5.310 × 10−2 5 × 10−5

512 1.5 0.950 31 0.783 6.493 × 10−1 5.314 × 10−2 1 × 10−4 4 × 10−5

33 346 6.490 × 10−1 5.311 × 10−2 3 × 10−6

this work 1024 1.5 0.950 31 2.97 6.492 × 10−1 5.314 × 10−2 1 × 10−4

this work 2048 1.5 0.950 31 11.9 6.492 × 10−1 5.314 × 10−2 1 × 10−4
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