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Bezručovo nám. 13, 746 01 Opava, Czech Republic

Received 18 September 2023 / Accepted 9 December 2023

ABSTRACT

Context. The Galactic Center supermassive black hole is well known to exhibit transient peaks of flux density on a daily basis across
the spectrum. Recent infrared and millimeter observations have strengthened the case for the association between these flares and
circular orbital motion in the vicinity of the event horizon. The strongly polarized synchrotron radiation associated with these events
leads to specific observables called QU loops, that is, looping motion in the Stokes QU plane of linear polarization. These patterns
have been observed by the Submillimeter Array, VLTI/GRAVITY, and ALMA.
Aims. We want to deepen the understanding of the QU loops associated with orbiting hot spots. To this end, we computed such
loops in Minkowski and Schwarzschild spacetimes in order to determine which aspects of the observed patterns are due to special- or
general-relativistic phenomena.
Methods. We considered a parcel of energized plasma in circular motion in Minkowski spacetime and in Keplerian orbit in the
Schwarzschild spacetime. We computed, using the Gyoto ray-tracing code, the polarized radiative transfer associated with this or-
biting hot spot and derived the evolution of the flux density, astrometry, and Stokes Q and U parameters.
Results. We show that QU loops in Minkowski spacetime at low or moderate inclination i . 45◦ (where i = 0◦ is a face-on view)
share all the qualitative features of Schwarzschild QU loops. There exist QU loops for all setups considered (including for the face-on
view and vertical magnetic field), there may be one or two QU loops per orbital period for a vertical magnetic field configuration, and
there are always two QU loops in case of a toroidal magnetic field. The simplicity of Minkowski spacetime is a key asset for allowing
us to provide analytical formulas that explain the details of this behavior. Moreover, we analyzed the flux variation of the hot spot and
show that it is dictated either by the angular dependence of the radiative transfer coefficients or by relativistic beaming. In the former
case, this can lead to extreme flux ratios, even at a moderate inclination. Finally, we highlight the increasing mirror asymmetry of the
Schwarzschild QU track with increasing inclination and show that this behavior is a specific Schwarzschild feature caused by light
bending.
Conclusions. Although special-relativistic effects have not been extensively discussed in this context, they are a crucial part in gen-
erating the observed QU loops. However, general-relativistic light bending leads to a specific observable feature encoded in the
asymmetry of the observed loops, and this feature might allow the spacetime curvature to be quantified.
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1. Introduction

The emission from the close surroundings of the Galactic super-
massive black hole Sagittarius A* (Sgr A*) is variable at all
wavelengths with a degree of variability that depends strongly on
frequency, from tens of percents in the radio waveband to a fac-
tor of more than 100 in X-rays (Genzel et al. 2010). The source
exhibits local maxima of variable emission, from radio frequen-
cies to X-rays, called radiation flares. The typical timescale
of these events is on the order of tens of minutes (see e.g.
Genzel et al. 2010; Morris 2023). The physical nature of these
events remains unclear even after 20 years of study since the
first detected events (Baganoff et al. 2001; Genzel et al. 2003).
Many models have been proposed (we refer to Vincent et al.
2014 for a review). Among them, the class of hot spot mod-
els (Broderick & Loeb 2006; Hamaus et al. 2009, and references

therein) is of particular interest. The underlying assumption of
this model is that Sgr A* flares are caused by the radiation emit-
ted by transient localized (at least initially) compact (few gravi-
tational radii) orbiting (in the disk plane or along the jet funnel)
parcels of energized plasma in the inner region of the accretion-
ejection flow surrounding the black hole. This model is of partic-
ular relevance given the detections of orbital motions consistent
with circular trajectories very close to the event horizon asso-
ciated with infrared and X-ray flares (GRAVITY Collaboration
2018, 2023; Wielgus et al. 2022b). Such hot spots might
be the end product of the acceleration of particles in the
inner regions of the flow by magnetic reconnection (see e.g.
Ripperda et al. 2022; El Mellah et al. 2023). It has recently been
shown that hot spots generated by magnetic reconnection may
account for photometric and astrometric infrared observations
(Aimar et al. 2023a).
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The polarization properties of infrared and millimeter flares
have been studied since the early 2000s. Eckart et al. (2006)
observed swings of the electric vector position angle (EVPA)
of up to 40◦ in 10 min during an infrared flare observed by the
NAOS/CONICA adaptive optics instrument, while Trippe et al.
(2007) measured a swing reaching 70◦ within 15 min with the
same instrument. Trippe et al. (2007) note that these swings
are consistent with a hot spot model with an orbital radius on
the order of the innermost stable circular orbit (ISCO) asso-
ciated with the black hole, which corresponds to a Keplerian
period on the order of 30 min for a non-spinning black hole
of ∼4 × 106 M�. The change of polarization angle has been
linked to the variation of the relative orientation between the
direction of emission reaching the distant observer and that of
the ambient magnetic field as the spot orbits around the black
hole. The hot spot model was further discussed in the context
of these infrared polarized flare observations by Meyer et al.
(2006). Compatible infrared flare observations and similar con-
clusions were obtained by Nishiyama et al. (2009). At radio fre-
quencies, Marrone et al. (2006) reported a 50◦ EVPA swing over
2.5 h during a millimeter flare observed by the Submillimeter
Array and noticed a roughly periodic evolution of the angle with
time. When representing the evolution in the QU plane corre-
sponding to the Stokes Q and U linear polarization parameters,
the authors obtained a loop pattern exhibiting two full orbits in
the QU plane – the first so-called QU loop reported in the liter-
ature. The authors argued that this signature might be associated
with a hot spot orbiting at a radius larger than the ISCO of the
black hole.

Two different instruments have recently observed QU loops:
the Very Large Telescope Interferometer GRAVITY beam
combiner and the Atacama Large Millimeter Array (ALMA).
Regarding the first instrument, GRAVITY Collaboration (2018;
see also GRAVITY Collaboration 2023) observed a series of
polarized infrared flares. The QU pattern traced a single loop
during the observed astrometric orbital period. The authors
showed that this pattern is consistent with a hot spot orbiting
at a radius close to the ISCO of a non-spinning black hole. For
the second instrument, Wielgus et al. (2022b) observed a QU
loop with ALMA at millimeter wavelengths following an X-ray
flare reported by Chandra (Wielgus et al. 2022a). The authors
showed that the data are consistent with a hot spot orbiting at a
radius about two times the ISCO of a non-spinning black hole,
with the QU loop period interpreted as the Keplerian period of
the hot spot. The hot spot interpretation is not unique though,
as the EVPA swings have been interpreted by Yusef-Zadeh et al.
(2007) not in terms of an orbiting hot spot but rather within the
framework of an ejected expanding blob of plasma. This alterna-
tive model has recently been discussed by Michail et al. (2023).

In this article, we investigate the polarized synchrotron
radiation emitted by orbiting hot spots. In this context, the
orientations of the magnetic field has a crucial impact on the
observables. Indeed, the electric vector (the on sky orientation
of which is encoded in the QU loop) is oriented along the cross
product K×B, where K is the photon’s direction of emission and
B is the magnetic field vector, both expressed in the comoving
frame of the emitter. There is a growing body of evidence that
the magnetic field in the close surroundings of Sgr A* is rather
ordered and dynamically important (i.e., the plasma dynamics
are sensitive to the magnetic field) and has a dominant poloidal
component (i.e., in a plane orthogonal to the equatorial plane of
the black hole). The hot spot modeling of infrared data performed
by GRAVITY Collaboration (2018, 2020c) favors a strong
poloidal field. The QU loop observed by Wielgus et al. (2022b)

favors a vertical field, while the persistence of the rotation mea-
sure, the sign of the circular polarization, and the magnitude of the
linear polarization fraction all favor a structured magnetic field of
persistent topology (see also Wielgus et al. 2023). The analysis
of Michail et al. (2023) favors a magnetic field orientation aligned
with the angular momentum vector of the accretion flow, that is,
vertical for an accretion flow centered on the equatorial plane of
the black hole. The analysis of the spatially resolved event horizon
scale images of Sgr A* obtained by the Event Horizon Telescope
(EHT; Event Horizon Telescope Collaboration 2022a,b) further
supports the magnetically arrested disk (MAD) accretion flow
model interpretation (Event Horizon Telescope Collaboration
2022c) characterized by dynamically important magnetic
fields with a strong vertical component near the event horizon
(Narayan et al. 2003). Furthermore, ordered magnetic fields in
the compact region around Sgr A* were revealed by pre-EHT
very long baseline interferometry polarimetric observations
(Johnson et al. 2015).

We aim to study the properties of QU loops asso-
ciated with hot spots around black holes. Such investi-
gations have been the subject of recent intense theoreti-
cal efforts (GRAVITY Collaboration 2020c, 2023; Gelles et al.
2021; Narayan et al. 2021; Vos et al. 2022; Najafi-Ziyazi et al.
2023). Through this work, we intend to contribute to this emerg-
ing topic by mainly focusing on the impact of special relativ-
ity on the observables. We develop a thorough analysis of QU
loops in Minkowski spacetime and show that these flat space-
time loops share the main features of their general-relativistic
counterparts, demonstrating that QU loops are strongly affected
by the relativistic velocities of their emitter and the associated
special-relativistic light aberration. We also develop an analyti-
cal understanding of the properties of these QU loops. We then
compute QU loops in the Schwarzschild spacetime, comparing
them to their Minkowski counterparts and to the relevant litera-
ture. The main aim of this article is to elucidate which aspects
of these observable patterns are due to special-relativistic effects
and which are due to general-relativistic effects. This is impor-
tant for initiating the study of QU loops as a potential probe of
strong gravity.

The paper is organized as follows. Section 2 describes our
hot spot model. Section 3 introduces in detail the topic of QU
loops and all the necessary concepts. Section 4 is the main
section of the article and is dedicated to the properties of
Minkowski QU loops. Section 5 describes Schwarzschild QU
loops. Section 6 compares Schwarzschild and Minkowski loops,
while Sect. 7 gives our conclusions and perspectives.

2. Modeling hot spot observables

In this section we present our model of a rotating hot spot around
a compact object. We discuss the spacetime geometry, the shape,
physical characteristics and emission of the hot spot, and the
radiative transfer integration by means of relativistic ray tracing.
We consider physically motivated values of the model parame-
ters. (For a more extensive discussion of the impact of the indi-
vidual parameters on the QU loop patterns, see Vos et al. 2022.)

2.1. Spacetime geometry

The main aim of this article is to discuss the respective influ-
ence of special- and general-relativistic effects on the polarized
signatures associated with orbiting hot spots. To that end, we
perform calculations in Minkowski and Schwarzschild space-
times. We considered that the spacetime is described in spherical
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coordinates (t, r, θ, ϕ). We assumed that the spacetime is static
and spherically symmetric, meaning that we do not discuss any
impact of the compact object’s spin in this article. The metric
line element thus reads

ds2 = gtt dt2 + grr dr2 + gθθ dθ2 + gϕϕ dϕ2 (1)

= gtt dt2 + grr dr2 + r2
(
dθ2 + sin2 θ dϕ2

)
,

where gµν = ∂µ · ∂ν are the metric coefficients, which can be
expressed as the dot products between the natural basis vec-
tors associated with the spherical coordinates, ∂µ. The two static
spacetimes (Minkowski, Schwarzschild) that we consider are
thus fully defined by their metric coefficients gtt and grr.

2.1.1. Minkowski spacetime

As a flat manifold, Minkowski spacetime has little a priori rel-
evance for interpreting data originating from the close environ-
ment of a supermassive black hole. However, by studying QU
loops in this context, we aim at revealing key observable fea-
tures that can be discussed and interpreted and will enable us to
tell which aspects are specific to spacetime curvature and which
aspects are already present in a flat spacetime. The Minkowski
metric is defined with

gtt = −1, grr = 1. (2)

2.1.2. Schwarzschild spacetime

The Schwarzschild metric in Schwarzschild coordinates is

gtt = −

(
1 −

rS

r

)
, grr =

(
1 −

rS

r

)−1
, (3)

where rS = 2M is the location of the Schwarzschild
event horizon. The Jebsen-Birkhoff1 theorem (Jebsen 1921;
Birkhoff & Langer 1923) ensures that the Schwarzschild geom-
etry uniquely describes the spacetime outside of any spherically
symmetric object in vacuum. We note that throughout this arti-
cle we use a system of units where the gravitational constant G
and light speed c have unit values so that the gravitational radius,
GM/c2, is simply equal to M.

2.2. Hot spot geometry and physical quantities

We considered two spatial positions P0(x0, y0, z0) and P(x, y, z),
where the Cartesian coordinates are related to the spherical ones
by means of standard Euclidean formulas. We defined the coor-
dinate distance between P0 and P as the Euclidean distance
defined by d2 = (x − x0)2 + (y − y0)2 + (z − z0)2. The center
of our hot spot is located at a constant radius r0 in the equatorial
plane θ0 = π/2 with a varying azimuthal angle ϕ0. The hot spot
is described by specifying the profiles of the electron number
density ne, the temperature of the electrons Te, and the magni-
tude and direction of the ambient magnetic field B. All of these
quantities are measured in the rest frame of the orbiting hot spot,
which hereafter we refer to as the “emitter’s frame”. We assumed

1 The famous Birkhoff theorem of general relativity published by
Birkhoff in 1923 was first published two years before by the Norwegian
physicist Jebsen (see Voje Johansen & Ravndal 2006, for an historical
account).

the following profiles for the physical quantities:

ne = ne0 exp
(
−

d2

2σ2
r

)
, (4)

Te = Te0 exp
(
−

d2

2σ2
r

)
,

B2

4π
= ηmpc2 ne,

where d2 is the squared coordinate distance (as defined at the
beginning of this section) to the center of the hot spot (x0 =
r0 cosϕ0, y0 = r0 sinϕ0, z0 = 0); ne0 and Te0 are the density and
temperature at the center of the hot spot; and σr is the Gaus-
sian standard deviation, which is related to the full width at half
maximum, that is, the effective diameter Dhs of the hot spot,
by Dhs ≈ 2.35σr; η is the magnetization parameter; and mp is
the proton rest mass. We assumed a constant ratio between the
particle rest-mass and magnetic energy densities. Furthermore,
we assumed that the hot spot is described by a spatial Gaussian
profile around its center, while its properties remain constant in
time.

The values assumed for the parameters introduced so far are
listed in Table 1. We note that the magnetic field maximum mag-
nitude (B0 = 140 G, a consequence of the simple prescription
given by the third line of Eq. (4)) is rather high as compared
to the typical value that can be derived from the synchrotron
cooling time (see e.g. Aimar et al. 2023a), but the precise value
of this magnitude, unlike the magnetic field orientation, does
not impact the results of this article, as it only scales the abso-
lute value of the flux density. We also note that we fixed the
magnetization to η = 1, which corresponds to a strongly mag-
netized flow, in agreement with hints that Sgr A* is likely a
magnetically arrested flow (e.g. GRAVITY Collaboration 2018;
Event Horizon Telescope Collaboration 2022c; Wielgus et al.
2022b). The central density and temperature were chosen
to ensure a near infrared maximum dereddened flux (cor-
rected from the strong extinction toward the Galactic Cen-
ter) of ≈10 mJy at low inclination (the inclination angle coin-
cides with the spherical θ angle of the observer; see Fig. 3
for a definition of θ) for a vertical magnetic field. This
value corresponds to a rather bright infrared flare (see the
percentiles of the Sgr A* dereddened flux distribution pro-
vided in Table 1 of GRAVITY Collaboration 2020a) and can
be compared first to the dereddened flux density of S2 that
reaches ≈16 mJy (GRAVITY Collaboration 2020a) and second
to the brightest infrared flare ever observed, which reached
≈60 mJy (Do et al. 2019). We note that other configurations with
different magnetic field geometry can lead to much higher fluxes
that are not in agreement with observations. Nonetheless, we
kept the central density and temperature fixed in order to ease
the interpretation of the impact of the magnetic field geometry
on the observables.

2.3. Hot spot motion

The hot spot center located at r0 is assumed to follow a circular
time-like geodesic, that is, a Keplerian orbit of the spacetime
considered. Its four-velocity thus reads

u = ut
(
∂t + Ω∂ϕ

)
, Ω =

uϕ

ut . (5)

The expressions of ut and Ω depend on the spacetime metric.
That of Ω is well known for the Schwarzschild spacetime exp-
ressed in Schwarzschild coordinates, ΩSchwarzschild = M1/2 r−3/2
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Table 1. Parameters of our model.

Symbol Value Property

M 4.3 × 106 M� Compact object mass
D 8.28 kpc Compact object distance
a 0 BH spin parameter
r0 8 rg Hot spot orbital radius
σr rg Hot spot Gaussian extension
ne0 2 × 106 cm−3 Max number density of electrons
Te0 1011 K Max electron temperature
B0 140 uG Max magnetic field
η 1 Magnetization
κ 4 Index of κ electron distribution
i [90◦−180◦] Inclination angle
λobs 2.2 µm Observing wavelength
f 200 µas Field of view
N × N 128 × 128 Image resolution

Notes. The mass and distance to Sgr A* are
from GRAVITY Collaboration (2020b, 2021). The orbital radius is
close to that found by GRAVITY Collaboration (2018), Wielgus et al.
(2022b). The density and temperature were chosen to ensure a 2.2 µm
dereddened flux on the order of 10 mJy. The magnetic field is linked
to the density through the assumption of Eq. (4) and is listed here for
completeness. We note that the inclination angle i corresponds to the
Boyer-Lindquist θ angle (illustrated in Fig. 3) of the observer. In the
text, the complementary angle ι = π − i is often used.

(e.g. Bardeen et al. 1972). Given that this expression coincides
with the Newtonian result, we used the same expression in
Minkowski, even though there is no reason for the hot spot to fol-
low orbital motion in a flat spacetime (in the absence of a central
massive object). Hence, we only considered Minkowski space-
time to determine which features of the observables are specific
to a curved spacetime and which features are already present in
a flat geometry. With an expression for Ω, it is straightforward
to derive the expression of ut by using the normalization of the
four-velocity u · u = −1. We ultimately obtained

ut =

√
r

r − M
, Ω = M1/2 r−3/2, [Minkowski] (6)

ut =

√
r

r − 3M
, Ω = M1/2 r−3/2. [Schwarzschild]

2.4. Magnetic field configuration

We have so far only defined the magnitude of the magnetic field
through Eq. (4). We proceed in this section to specify its direc-
tion. Hence, we needed to define a unit space-like vector normal
to the hot spot four-velocity given that the magnetic field vector
lies in the rest space of the emitter.

We considered only two different configurations: vertical and
toroidal. These two configurations are inspired by two plausible
magnetic configurations that could exist around Sgr A*. Either
the environment is weakly magnetized and the magnetic field
lines follow the motion of the matter swirling toward the black
hole, in which case the magnetic field is mostly toroidal (this
would correspond to a SANE – standard and normal evolution
– situation) or the environment is strongly magnetized and the
magnetic field does not follow the motion of the matter, in which
case it would have a strong vertical component as in MAD states.

Thus, we defined

B̄ = (0, Br, Bθ, 0), [Vertical] (7)

B̄ = (Bt, 0, 0, Bϕ), [Toroidal]

where the upper bar means that the vector is a unit vector, with
the constraints that

B̄ · B̄ = 1, B̄ · u = 0. (8)

The second condition implies that the magnetic field B̄ lies in the
local rest space of the emitter, that is, the space orthogonal to its
four-velocity. We thus defined the magnetic field as measured by
the emitter. These conditions immediately led to

B̄ = cos θ er − sin θ eθ, [Vertical] (9)

B̄ =
1√

−
(
gtt + Ω2gϕϕ

) (√
−
gϕϕ

gtt
Ω∂t +

√
−
gtt

gϕϕ
∂ϕ

)
, [Toroidal]

where Ω is the Keplerian rotation velocity defined in Eq. (6), and
we used the orthonormal basis associated to the natural coordi-
nate basis ∂µ

et =
∂t
√
−gtt

, er =
∂r
√
grr

, eθ =
∂θ
√
gθθ

, eϕ =
∂ϕ
√
gϕϕ

. (10)

This basis coincides with the locally non-rotating
frame (Bardeen et al. 1972) of the Schwarzschild space-
time. We note that although the hot spot’s center r0 orbits in
the equatorial plane, the full hot spot is a three-dimensional
structure in space and is not restricted to the equatorial plane.
This is why the magnetic field is defined for all θ and not only
for θ = π/2.

2.5. Radiative transfer

The hot spot is assumed to emit synchrotron radiation, and the
emitting electrons are considered to follow a κ distribution, that
is, a mix between a thermal core and a power-law tail. This
distribution is well adapted to simulate the state of electrons
locally accelerated (for instance through magnetic reconnection)
that radiate during Sgr A* flares. The κ distribution is thus a
more physical assumption, particularly for the infrared emis-
sion during a flare, than the thermal spectrum considered by
Wielgus et al. (2022b) and Vos et al. (2022). This distribution
reads

ne(γ) = N γ(γ2 − 1)1/2
(
1 +

γ − 1
κθe

)−(κ+1)

(11)

where γ is the Lorentz factor of the electrons; N is a normal-
izing coefficient chosen such that the integral of ne(γ) over all
γ is equal to the total number density of the hot spot; and
θe = kTe/mec2 is the dimensionless electron temperature, with
k and me being the Boltzmann constant and electron rest mass.
We chose a parameter κ = 4. This translates to an infrared
spectral index of α = 0 where νFν ∝ να, which is reasonable
for bright flares (Gillessen et al. 2006). We utilized the emis-
sion, absorption, and Faraday rotation and conversion coeffi-
cients for κ-synchrotron as derived by Marszewski et al. (2021).
These coefficients have rather complicated and lengthy expres-
sions that we do not fully repeat here. However, it is useful for
the forthcoming discussion to indicate that the emission coeffi-
cients for the various Stokes parameters are expressed as

jν ∝
nee2νc

c
X−(κ−2)/2
κ sin θB,

{
∝ sin2 θB,
∝ ν−1,

[for κ = 4] (12)

A194, page 4 of 19



Vincent, F. H., et al.: A&A, 684, A194 (2024)

where Xκ = ν[νc(θeκ)2 sin θB]−1, νc is the cyclotron frequency,
and θB is the angle between the magnetic field direction and the
direction of emission. The proportionality factor in the above
expressions depends on κ and on the particular Stokes parameter
that is considered. This expression coincides with the so-called
high-frequency emission coefficient reported in Eq. (44) of
Marszewski et al. (2021), which applies to our typical condi-
tions. The strong directional dependence of this expression, evi-
dent in the sin θB term, is crucial for the forthcoming discussion.
We note that for κ = 4, the expression behaves as sin2 θB, so it
cancels in the direction of emission along the magnetic field lines
and reaches its maximum in the direction normal to the mag-
netic field. We also note that the frequency dependence of the
emission coefficient follows ν−1. While the Faraday effects are
generally negligible for modeling infrared flares, they become
important at millimeter wavelengths, for which significant Fara-
day rotation is most likely associated with the compact emission
region, contributing non-trivially to the observed complex linear
polarization (Wielgus et al. 2023).

2.6. Polarized ray tracing

We computed the polarized flux emanating from the orbiting hot
spot by using the Gyoto code (Vincent et al. 2011; Aimar et al.
2023b). We considered an observer located at a distance D =
8.28 kpc (GRAVITY Collaboration 2021). The compact object’s
mass was fixed to M = 4.3 × 106 M� (GRAVITY Collaboration
2020b). The inclination (corresponding to the spherical coor-
dinate θ, as defined in Fig. 3; it is 0◦ or 180◦ for a face-on
view, and 90◦ for an edge-on view) is varied in [90◦, 180◦],
with 90◦ corresponding to an edge-on view, and 180◦ to a face-
on view. This range encompasses the best-fit inclination for
Sgr A* of ≈160◦ derived by GRAVITY Collaboration (2018),
Wielgus et al. (2022b). Inclinations higher than 90◦ recover a
clockwise on sky motion of the hot spot, consistent with obser-
vations.

Null geodesics were traced backward from the observer’s
screen toward the hot spot, and the full polarized radiative trans-
fer was solved. We assumed the observer to be located at an
azimuthal angle ϕ = −π/2, defined in Fig. 3. We accounted for
the finite velocity of light (the so-called slow-light paradigm).
The final product of the computation was a set of maps of the
specific Stokes parameters (Iν,Qν,Uν), introduced in Sect. 3.1,
for the various orbital phases of the hot spot. We discard
Stokes V (circular polarization) in this article, although it was
formally computed. Stokes V is generally much lower than
the linear polarization component, and it is not observed by
GRAVITY. Nonetheless, it may be an interesting additional
observable related to QU loops observed at millimeter wave-
lengths (Yfantis et al. 2024). We always considered a resolution
of N × N = 128× 128 pixels, and a field of view of f = 200 µas.
The observing wavelength was set to λobs = 2.2 µm, coinciding
with that of the GRAVITY instrument. All parameters discussed
in this section are listed in Table 1.

3. Polarization signature of hot spots

Before turning to the detailed properties of QU loops, which
are discussed in the context of Minkowski spacetime in the next
section, we introduce all relevant material for the following dis-
cussions in this section. We define the Stokes Q and U parame-
ters, the electric vector position angle, and intuitively introduce
the concept of QU loops associated with orbiting hot spots.

3.1. Stokes Q and U parameters, observed EVPA

We considered a fully linearly polarized wave incident on the
observer’s screen. This is a simplification in the sense that syn-
chrotron radiation is mostly linearly polarized but has non-zero
circular polarization. Given that in this article we do not discuss
circular polarization, we only introduce here the linearly polar-
ized part of the radiation encoded in the Stokes Q and U param-
eters. We note that our ray-tracing calculations consider the full
synchrotron radiative transfer, including a non-zero Stokes V .

The electric field describing the incident wave on the
observer’s screen is

E = E (cos χo eδ + sin χo eα) (13)

where (eα, eδ) are the unit vectors in the plane of the screen of the
observer pointing toward the east and north directions respec-
tively (see Fig. 1 for an illustration). The angle χo, called the
observed electric vector position angle (EVPA), lies east of north
from the north direction, following the International Astronomi-
cal Union convention (IAU 1973). The index o is there to remind
that this angle is defined in the observer’s frame, hence the name
of observed EVPA. We introduce an emission EVPA defined in
the emitter’s frame in the next section.

The linear polarization information is encoded in the
observed EVPA, but this angle is not directly observable. In
order to only introduce observable quantities, it is useful to intro-
duce the following Stokes parameters

Q = E2
δ − E2

α, (14)

U = E2
d − E2

a,

where the various Ei represent the coordinate of the electric vec-
tor along the corresponding directions illustrated in Fig. 1. These
are observable quantities equal to differences of intensities along
specific on sky directions. Equations (13) and (14) immediately
led to

Q = E2
(
cos2 χo − sin2 χo

)
= I cos 2χo, (15)

where I = E2 is the total intensity, or Stokes I, parameter.
Expressing the electric vector on the basis of (ea, ed) associated
with the directions (a, d) rotated by 45◦ with respect to (α, δ) –
see Fig. 1 – it is straightforward to obtain

U = I sin 2χo, (16)

so that the observed EVPA is simply obtained with

χo =
1
2

atan2 (Q,U) , (17)

and the magnitude of the electric field follows

E2 = Q2 + U2. (18)

The EVPA lies in the range

χo ∈ [−π/2, π/2] (19)

and is defined modulo π, given that it only encodes the oscillation
direction of the electric field.
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Fig. 1. Electric field, observed EVPA, and Stokes Q and U. All quan-
tities are defined in the observer’s frame, as measured by the distant
observer. The observed electric field associated with the wave received
at the observer’s screen is the black arrow with a position angle east of
north corresponding to the observed EVPA. For a fully linearly polar-
ized wave, there is a bijection (up to a sign ambiguity) between provid-
ing the electric vector magnitude and direction on screen and the pair
of Stokes parameters (Q,U). The electric vector magnitude is given
by Eq. (18), while its orientation follows χo = 1/2 atan2(Q,U), see
Eq. (17). It is easy to check from the definitions of Eq. (14) that the
north-south and east-west directions coincide with positive and nega-
tive Stokes Q (and zero Stokes U), respectively, while the diagonals
correspond to positive and negative Stokes U (and zero Stokes Q),
respectively.

3.2. Emitter’s and observer’s bases, emission EVPA

The natural basis for expressing synchrotron emission in the
emitter’s frame is the orthogonal triad made of the following
three vectors, all defined in the emitter’s frame: (1) the direction
of photon emission K measured by the emitter, (2) the magnetic
field vector B⊥ projected orthogonally to K, and (3) the emitter’s
frame polarization vector F, which reads

F = K × B. (20)

We call these vectors (e1, e2, e3) = (F,−B⊥,K), and we refer to
them as the emitter’s polarization basis. They are illustrated by
the black vectors in Fig. 2. It is in this emitter’s basis that the
polarized synchrotron radiative transfer coefficient are given.

However, the observable Stokes parameters are defined in
the observer’s polarization basis, (eα, eδ), corresponding to the
unit vectors in the east and north directions on the observer’s
sky. We thus needed to integrate the polarized radiative transfer
equation in this observer-related basis and therefore transformed
from the emitter’s basis to the observer’s basis. To do this, we
needed to parallel transport the (eα, eδ) basis from the observer
to the emitter along the photon’s geodesic. The resulting vec-
tors, parallel transported to the emitter’s frame, are illustrated by
the green vectors in Fig. 2. Parallel transport of a polarization
vector is simplified in the Kerr metric because of the existence
of the Walker-Penrose constant (Walker & Penrose 1970). How-
ever, Gyoto simply solves the general parallel transport equa-
tion, remaining agnostic about the particular spacetime used.
The angle χe between the parallel-transported north direction
and the polarization vector F allowed us to rotate between the
synchrotron-adapted emitter’s basis and the observer’s basis. We

B⟂

e2

e1=F=K x B⟂

ew

eδ

eα

χe

e3=K

[parallel-transported East]

[parallel-transported North]

[Emitter's frame]

Fig. 2. Emitter’s and observer’s polarization bases. All vectors dis-
cussed here are expressed in the emitter’s frame. The direction of emis-
sion is K, while B⊥ is the ambient magnetic field projected normal to
K. The emitter’s frame polarization vector reads F = K × B = K × B⊥.
The vectors (e1, e2, e3) = (F,−B⊥,K) form the emitter’s orthogonal
basis, naturally adapted for expressing synchrotron radiative transfer.
The polarization basis of the observer (eα, eδ), corresponding to unit
vectors in the east and north directions, has been parallel transported
to the emitter’s frame. The vector ew = −eα is along the west direction
such that (ew, eδ,K) forms the observer’s orthogonal triad. The emission
EVPA is the angle χe = (eδ,F) evaluated east of north lying between the
observer’s and emitter’s bases. It is expressed by Eq. (21).

call this angle the emission EVPA, hence the index e in our
notation. This wording emphasizes that this angle is expressed
in the emitter’s basis and allowed us to make an explicit differ-
ence with the observed EVPA, χo, introduced above. There is
in general no equality between χe and χo for the simple reason
that χe evolves along the geodesic as radiative transfer equations
are integrated in the region containing plasma. However, for our
setup consisting of a very compact emission region with nearly
homogeneous conditions of motion and magnetic field, the emis-
sion and observed EVPA are very nearly equal. The distinction
that we introduced between χe and χo is thus not important for
our results (and we often simply refer to the EVPA without pre-
cision), but we consider that it is still important to make the
distinction.

The emission EVPA can be easily computed in the emit-
ter’s frame from the projections of the vector B⊥ on the parallel-
transported observer’s polarization basis axes:

χe =
π

2
− atan2 (B⊥ · ew,B⊥ · eδ) , (21)

where ew = −eα is the unit vector in the west direction parallel
transported to the emitter. We note that B⊥ is not a unit vector in
general, contrary to ew and eδ, but this does not change the result
of the atan2 function in Eq. (21). The emission EVPA is a crucial
quantity for integrating the polarized radiative transfer. We refer
to Aimar et al. (2023b) for details.

3.3. Newtonian QU loops

We considered a hot spot orbiting around a black hole with a
toroidal ambient magnetic field observed face-on by an infinitely
distant observer, as illustrated in Fig. 3. At this moment in our
work, we did not consider any (special or general) relativistic
effect (i.e., no lensing, no aberration, no relativistic Doppler, or
beaming effects). The radiation is emitted by the hot spot in the
vertical direction along the vector K. It is easy to visualize that
one complete rotation of the hot spot leads to a complete rotation
of the polarization vector F in the plane of the sky, as illustrated
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Fig. 3. QU loop illustration in a non-relativistic context. Top panel: geometry of the problem. The black hole is represented by the black disk. The
hot spot (red disk) orbits in the equatorial XY plane around the black hole (black disk). The Z axis is normal to the equatorial plane. We consider an
observer looking face-on at the black hole located toward the negative Z axis. The north direction of the observer’s screen is assumed to lie along
the −Y axis. The θ and ϕ angles of the spherical coordinates are represented. The hot spot rotates in the positive ϕ direction. The green vector K
represents the direction of emission of the photon (we discarded any relativistic effect here), and the blue vector B is the magnetic field, assumed
to be toroidal. The polarization vector F = K×B is shown in pink. Successive positions of the hot spot are labeled from 1 to 5. Bottom-left panel:
rotation of the polarization vector on the sky plane of the observer with the Stokes directions of Fig. 1 overlaid. Bottom-right panel: associated
QU plane and QU loops. The polar coordinates in this plane are (ρ = FLP =

√
Q2 + U2, φ = 2χo), where FLP is the linearly polarized flux and χo

is the observed EVPA.

in Fig. 3. The bottom-right panel of this figure shows that this
leads to a double loop in the QU plane. Hence, at the most basic
level, QU loops are a non-relativistic feature and simply a man-
ifestation of an axisymmetric structure of the observed system.
For instance, QU loops are obtained in the orbital phase evolu-
tion of the flux of light scattered by an exoplanet’s atmosphere
illuminated by stellar light (e.g. Chakrabarty & Sengupta 2021).

When considering the same setup as described above but tak-
ing a vertical magnetic field instead, our non-relativistic point of
view leads to the conclusion that the polarization vector would
consistently be zero (K and B being parallel) as the hot spot
rotates, leading to no QU loop. As we show in the next section,
adding only special relativistic effects (i.e., still no light bend-
ing) allows for the recovery of QU loops in all cases, includ-
ing for a face-on observer with an ambient vertical magnetic
field.

4. QU loops in Minkowski spacetime

In this section, we derive an analytical understanding of QU
loops in Minkowski spacetime, and in particular, we clarify in
what cases the rotating hot spot generates one or two loops in
the QU plane. Using Minkowski spacetime is helpful to gaining
insight into a simplified framework without accounting for the
light bending occurring in a curved spacetime. A non-intuitive
conclusion of this section is that all features of QU loops dis-
cussed in the literature in the Schwarzschild or Kerr contexts
are actually already present in Minkowski. The crucial advan-
tage of the flat geometry is that exact analytical formulas can be
derived to explain the QU loops. The next three subsections are
devoted to deriving an analytical expression of the evolution of
the emission EVPA depending on whether the magnetic field is
vertical or toroidal. This analytical model is then compared to
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numerical simulations, which also constitutes a test of our polar-
ized ray-tracing code.

4.1. Direction of emission and aberration

We consider in this section a hot spot orbiting in Minkowski
spacetime. For the time being, we do not specify the magnetic
field orientation and only focus on the direction of emission in
the emitter’s frame.

The Minkowski four-velocity of the emitter (that is, of the
hot spot) defined in Eq. (6), reads

u = A
(
et + r−1/2

0 eϕ
)
, A =

√
r0

r0 − M
, (22)

where we replaced the natural basis vectors ∂µ by the orthonor-
mal basis vectors using Eq. (10).

We considered an observer with an inclination of 90◦ ≤ i ≤
180◦. We call ι = π − i, which thus lies between 0 and 90◦. We
emphasize that the observer is located at ϕ = −π/2, that is, in
the YZ plane (see Fig. 3). The four-vector tangent to the photon
geodesic at emission reads

k = et + cos ι eθ − sin ι eY (23)
= et − sin ι sinϕ er + cos ι eθ − sin ι cosϕ eϕ,

where eY = sinϕ er + cosϕ eϕ is the unit vector along the Y axis,
illustrated in Fig. 3. The vector k is clearly a null vector of the
Minkowski spacetime. In the particular case of an exactly face-
on view, we have

k = et + eθ, (face − on) (24)

such that the spatial component of the four-vector points toward
the negative Z axis, that is, toward the face-on observer.

Our final goal is to compute the emission EVPA, so we did
not need this null four-vector but rather its space-like projection
orthogonal to the four-velocity of the emitter, that is, in the rest-
frame of the emitter. This reads

K = k + (k · u) u. (25)

This simple relation is very crucial and contains virtually all the
results presented below. Even for a face-on observer, the actual
direction of photon emission does not lie along the vertical direc-
tion, contrary to what is illustrated in the non-relativistic Fig. 3.
It acquires a toroidal component by means of the projection writ-
ten above, stemming from the toroidal component of u. This is
simply the standard special relativistic aberration effect.

We can express

k · u = −A
(
1 +

sin ι cosϕ
√

r0

)
≡ −ω, (26)

where it is easy to check that ω coincides with the norm of K.
That is,ω coincides with the pulsation of the photon as measured
by the emitter.

4.2. Vertical magnetic field

In this section, we restrict the discussion to an ambient vertical
magnetic field. We wanted to derive an analytic expression of
the evolution of the emission EVPA with the orbital phase ϕ. For
simplicity, we considered a point-like hot spot in the equatorial

plane, so θ = π/2 in all of this section. The unit vector along the
magnetic field direction reads

B̄ = −eθ. (27)

Our goal was to express the emission EVPA from Eq. (21).
We started by writing

ew = eX = cosϕ er − sinϕ eϕ, (28)
eδ = − cos ι eY + sin ι eZ

= − cos ι sinϕ er − sin ι eθ − cos ι cosϕ eϕ,

where we note that we are working in the flat Minkowski space-
time, so the observer polarization basis is simply conserved
along the geodesic. Next, we needed only the expression of the
projection of the magnetic field orthogonal to the direction of
emission

B⊥ = B̄ −
(
B̄ · K̄

)
K̄, (29)

where K̄ = K/ω is the unit vector along K.
At this point, we had expressed all the quantities of inter-

est and could write the emission EVPA expression. The details
of the computation are not particularly illuminating, so we pro-
vide them in Appendix A. The final expression for the emission
EVPA reads

χe(ϕ) =
π

2
− atan2

(
cos ι sinϕ

A
ω
√

r0
, sin ι + cos2 ι cosϕ

A
ω
√

r0

)
.

(30)

We first checked what happens for an exactly face-on
observer, ι = 0. In this case, the expression simplifies consid-
erably to χe(ϕ) = π/2 − ϕ. It is clear from this expression that as
the hot spot rotates with ϕ varying on a 2π interval, so does the
emission EVPA. The emission EVPA thus covers two times its
domain of definition and so does the observed EVPA because the
two quantities are nearly equal for our setup (see above). So this
leads to a double QU loop being seen by the distant observer.

This is the first non-intuitive conclusion of our analysis.
When already in Minkowski, a face-on observer considering a
hot spot immersed in a vertical magnetic field will detect a dou-
ble QU loop signal. We note that the crucial difference between
the analysis developed in this section and the non-relativistic
analysis of Sect. 3.3 is the aberration affecting the apparent direc-
tion of light propagation. The vector K is not purely vertical, as
is represented in Fig. 3; it acquires a component in the equato-
rial plane when projecting orthogonally to the relativistic four-
velocity u of the emitter. Figure 4 illustrates this.

Next, we discuss a few important properties of Minkowski
QU loops in a vertical magnetic field before discussing simula-
tion results.

4.2.1. Emission EVPA symmetry

Our emission EVPA expression has the following property:

χe(ϕ) = π − χe(2π − ϕ) = −χe(2π − ϕ), (31)

where the second equality comes from the fact that the EVPA is
defined modulo π. This relation means that the first half of the
orbit ϕ ∈ [0, π] and the second half ϕ ∈ [π, 2π] have the same
EVPA evolution, up to a sign difference. Equivalently, the EVPA
orbital evolution is symmetric with respect to ϕ = π, up to a sign.
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Fig. 4. Effect of the spacetime geometry on the emission direction K.
A hot spot (red disk) is orbiting around a black hole (black disk). The
observer is located face-on toward the negative Z axis. In a Newtonian
spacetime, the direction of emission (i.e., the unit vector K along the
projection of the null four-vector k normal to the emitter’s four-velocity)
is exactly vertical toward the negative Z axis (dashed pale blue arrow).
This is the case illustrated in the non-relativistic Fig. 3. Special relativis-
tic light aberration leads to an additional azimuthal component (solid
light blue arrow). General relativistic light bending leads to an addi-
tional radial component (solid dark blue arrow). We note that the direc-
tion of emission in Schwarzschild spacetime is along the sum of the two
solid arrows, given that the special relativistic aberration is of course
also included in the Schwarzschild geometry. The various vectors are
approximately to scale for a Keplerian hot spot at a few gravitational
radii. The aberration and light bending effects are not small corrections
to an approximately vertical direction; they lead to strong distortions of
the apparent emission direction (on the of order tens of percents).

4.2.2. QU loop mirror symmetry

EVPA is not the only quantity that shows a symmetry in the
orbital evolution of the hot spot. The same goes for the photon’s
emitted energy ω. It is indeed obvious from Eq. (26) that

ω(2π − ϕ) = ω(ϕ). (32)

The same also goes for the angle

θB = acos
(
K̄ · B̄

)
(33)

between the magnetic field and the photon’s direction of emis-
sion. Indeed, Appendix A shows that for a vertical magnetic
field,

K̄ · B̄ = −
cos ι
ω(ϕ)

, (34)

where the ϕ dependence is made explicit. We thus have

θB(2π − ϕ) = θB(ϕ). (35)

The emitted flux depends only on the photon’s emitted
energy and on the direction of emission relative to the magnetic
field direction. Indeed, for our circular orbit, all other physical
quantities (density, magnetic field magnitude, temperature) are
constant. As a consequence, Eqs. (32) and (35) mean that the
emitted linearly polarized flux satisfies

FLP(2π − ϕ) = FLP(ϕ). (36)

Together with Eq. (31) and keeping in mind that for our setup,
the emission and observed EVPA are nearly equal, this relation
leads to the conclusion that the QU track in the Minkowski
spacetime is symmetric with respect to the horizontal axis.
Indeed, Fig. 3 shows that the linearly polarized flux and the dou-
ble of the observed EVPA (compare to Eq. (17)) are the polar
coordinates of the QU track. For the rest of this article, we refer
to this symmetry with respect to the horizontal Q axis as the QU
loop mirror symmetry.

4.2.3. Number of loops

The emission EVPA orbital evolution χe(ϕ) is dictated by
Eq. (30) and is symmetric with respect to ϕ = π up to a sign.
Thus, if the full allowed range of EVPA, [−π/2, π/2], is covered
in the first half of the orbit, then it will be covered again in the
second half, leading to two QU loops. This can happen provided
that the EVPA visits all possible values in [−π/2, π/2] during the
first orbit, so if its tangent reaches infinity. There will thus be two
QU loops provided that

B⊥ · ew

B⊥ · eδ
=

cos ι sinϕ A
ω
√

r0

sin ι + cos2 ι cosϕ A
ω
√

r0

(37)

varies between −∞ and +∞when ϕ varies between 0 and π. This
quantity will reach infinity provided that the denominator

sin ι + cos2 ι cosϕ
A

ω
√

r0
= 0, (38)

considered as an equation for the variable ϕ with a given inclina-
tion ι, has a root for some value of ϕ. We note that this is not as
trivial an equation as it might seem because ω depends on ι (see
Eq. (26)). By examining this function numerically, it is easy to
show that it has a root only when

ι < ι0(r0), (39)

which is the condition for obtaining two loops in a vertical mag-
netic field in Minkowski spacetime. This is illustrated in the left
panel of Fig. 5. The limiting angle ι0 depends on the orbital
radius r0, the dependence being illustrated in Fig. 6. We note
that the existence of such a limit angle behavior for the exis-
tence of one or two loops has already been discussed in the
Schwarzschild context by Gelles et al. (2021; see their Fig. 9),
but it was without the analytical treatment building on the sim-
plicity of the Minkowski geometry that we provide in this work.

This is the second conclusion of this section: QU loops of
the Minkowski spacetime in a vertical magnetic field share the
exact same property as already discussed in the Kerr context
by several authors (GRAVITY Collaboration 2020c; Gelles et al.
2021; Vos et al. 2022), that is, the existence of either one or two
loops depends on the inclination and on the orbital radius. To
our knowledge, the relation between this behavior and the spe-
cial relativistic aberration effect has not been discussed in the
literature to date.

4.2.4. Simulated QU loops

Figure 7 illustrates the various results discussed above by
showing the results of a polarized ray-tracing calculation in
Minkowski spacetime for a hot spot seen under an inclination
smaller and bigger than the critical angle ι0 ≈ 20◦ for r0 = 8M.
As predicted, we obtained two QU loops in one case and one QU
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loop in the other. The EVPA evolution very precisely follows the
analytical prediction of Eq. (30) at low inclination, which val-
idates our calculation. At the same time, this comparison rep-
resents a non-trivial consistency test of our polarized radiative
transfer. We note that this is a clear demonstration of the near
equality between the emitted and observed EVPA because the

colored dots and the red profile of the EVPA panel in Fig. 7
respectively represent an observed and emitted EVPA. We also
find it interesting to note that although the analytical and numeri-
cal EVPA profiles remain similar, they are clearly more different
at a higher inclination, ι = 30◦. This is not due to a limitation
of the precision of the numerical integration. Instead, the differ-
ences are related to the Roemer effect2 due to the finite velocity
of light that is not taken into account in the analytical profile. As
a consequence, the numerical data lead the analytical profile in
the first of the half orbit (where the hot spot is further away from
the observer), while the data lag behind the analytical profile in
the second half of the orbit (where the hot spot is closer to the
observer). As expected, we observed that the exact same behav-
ior occurs for a toroidal magnetic field. Moreover, the QU track
is mirror-symmetric, as predicted above.

We find it is interesting to note that the evolution of the
observed flux might seem counter-intuitive. Indeed, the source
approaches the observer on the left part of the trajectory (east
side). But the flux evolution (upper-right panel of Fig. 7) showed
that contrary to what relativistic beaming intuition would sug-
gest, the flux is actually at minimum on the approaching side.
This is a consequence of the sin θB dependence of the syn-
chrotron radiative transfer coefficients (see Eq. (12)). This angle
is close to 0 [π] on the left side of the sky plane (which corre-
sponds to an orbital phase of ϕ = π), as demonstrated by the ana-
lytical profiles in the left panel of Fig. 8. These profiles represent
the orbital phase evolution of θB = acos

(
K̄ · B̄

)
, the expression

of which is known analytically from the formulas provided in
Appendix A. We note that around ι = ι0 ≈ 20◦ (for r0 = 8M), the
influence of the θB dependence of the emission not only mitigates

2 The Roemer effect is related to the difference in light travel time
between various ray-traced geodesics. Parts of the emission region
located further from the observer lead to an increased light travel time
as compared to those located closer. For a face-on view, this effect has
little impact given that all points along the circular orbit of the hotspot
are located at the same distance from the observer. This is no longer so
at a higher inclination.
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Fig. 7. Minkowski QU loops in the vertical magnetic field. The top six panels were computed for ι = 10◦ < ι0, where ι0 is defined in Eq. (39) and
defines the highest angle for which there should be two QU loops. The bottom six panels were computed for ι = 10◦ > ι0. The six panels represent
the following quantities. Top-left: summed images of the hot spot in normalized intensity. We note that the color coding has been inverted to
improve readability (i.e., a darker color means more intense emission). Top-middle: astrometric track on sky. In this panel and the next ones, the
color codes (from violet to red) are for time, clockwise motion on sky. Top-right: total flux (colored dots), linearly polarized flux (FLP =

√
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averaging over the angular dependence of the radiative transfer coefficients (the sin θB dependence). We note that the density and temperature of the
hot spot have been chosen such that the low-inclination, vertical magnetic field near infrared flux peaks at around 10 mJy. Bottom-left: Q/I,U/I
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while the bottom one shows only one loop.

A194, page 11 of 19



Vincent, F. H., et al.: A&A, 684, A194 (2024)

the relativistic beaming but inverses the tendency by leading to
a light curve that peaks on the receding side. We checked that if
one averages over sin θB (that is, if one considers an isotropized
emission), the usual flux profile, peaking on the approaching
side, is recovered. The Doppler effect cannot be responsible for
this strong flux depletion at the orbital phase ϕ = π because the
emitted frequency is, at minimum, at the orbital phase ϕ = π
(see the top-left panel of Fig. 14), so the emitted Doppler-shifted
flux is actually maximized there (see Eq. (12)). Figure 8 shows
that this behavior is specific to the low inclination. Higher incli-
nation progressively leads to the more intuitive situation dom-
inated by relativistic beaming. It is very natural that a vertical
magnetic field seen at low inclination leads to θB angles around
0[π], where the sin θB dependence of the radiative transfer coef-
ficient has a strong impact, and that at high inclination, θB varies
around π/2, where this dependence is weaker. This is the third
conclusion of this section: In the Minkowski spacetime and for a
vertical magnetic field, the flux variation is driven by the angular
dependence of the synchrotron radiative transfer coefficients at
low inclination and by relativistic beaming at high inclination.

The linear polarization of our hot spot is always very high, of
order 75%, which is twice as high as the typically observed near
infrared values (e.g. GRAVITY Collaboration 2018). This is due
to the very simple setup that we consider, with a small isolated
emitting body. A more realistic scenario (see e.g. Appendix B
of GRAVITY Collaboration 2023), with a more extended or dis-
torted structure, and the addition of the quiescent accretion disk
component (e.g. Yfantis et al. 2024), would recover a more real-
istic level of linear polarization.

4.3. Toroidal magnetic field

The exact same computation that we presented in the last section
for a vertical magnetic field can be performed for a toroidal
magnetic field. Starting from Eq. (9) and specializing to the
Minkowski spacetime in the equatorial plane, we obtained

B̄ = A
(

et
√

r0
+ eϕ

)
, (40)

which is a unit space-like vector normal to u.
We refer the reader to Appendix A for the details of the com-

putation, and we simply give the final result here:

χe(ϕ) =
π

2
− atan2

(
sinϕ

[
C

Aω
√

r0
− 1

]
, cosϕ cos ι

[
C

Aω
√

r0
− 1

])
,

(41)

where C = 1/ω2
(
1/
√

r0 + sin ι cosϕ
)
.

Similar properties as in the vertical case can be derived in the
exact same way as presented in the previous section. In particu-
lar, the relation

χe(ϕ) = −χe(2π − ϕ) (42)

still holds, and so does the QU loop mirror symmetry, which is
due to the symmetry of the expression of the emission angle for
a toroidal magnetic field derived in Appendix A,

K̄ · B̄ = −
A

ω(ϕ)

(
1

√
r0 + sin ι cosϕ

)
, (43)

leading to the same property as in Eq. (35).

The number of QU loops can be studied following the same
reasoning as in the previous section. This led us to study the
range of variation of the simple expression

B⊥ · ew

B⊥ · eδ
=

sinϕ
cosϕ cos ι

, (44)

and in particular the roots of the denominator

cosϕ cos ι = 0, (45)

as ϕ varies in [0, 2π]. Here, there are obviously always two roots
at ϕ = π/2, 3π/2 whatever the inclination (see the illustration in
the right panel of Fig. 5), leading to the existence of two QU
loops for all inclinations.

Figure 9 shows simulations of Minkowski QU loops in a
toroidal magnetic field, and it confirms the existence of a dou-
ble loop for the same two values of inclinations that lead to
either one or two loops in the vertical field case, in perfect agree-
ment with the results above. The numerical profile of the EVPA
exactly matches the analytics at low inclination, and it is slightly
offset with respect to the analytics at higher inclination because
of the Roemer effect, as discussed for the vertical case. We note
that contrary to the vertical case, the flux evolution here appears
to follow the standard relativistic beaming intuition, with the
flux peaking at the approaching side and the flux ratio increasing
with the inclination. This is because the θB dependence is very
weak at low inclination ι . 45◦, as demonstrated by the right
panel of Fig. 8. In contrast, at high inclination, the θB depen-
dence becomes very strong and would counteract the beaming
effect. This dependence is very natural, as at low inclination, a
toroidal magnetic field leads to θB angles much closer to π/2 than
to 0[π], while at high inclination, the contrary is true. Compared
to the vertical magnetic field case, the dependence is reversed in
a toroidal magnetic field.

4.4. Impact of the background flow

In this article, we always discard the background accretion flow
responsible for the quiescent emission of Sgr A*. As long as the
flow is Faraday thin (which is the case in the infrared), adding
this contribution would simply lead to translating the QU loops
by a quantity (Qbg,Ubg) corresponding to the linear polarization
of the background flow. This translation would not alter any of
our findings.

5. QU loops in Schwarzschild spacetime

This section presents QU loop computations considering the
same setups as illustrated in the previous section but tak-
ing into account the spacetime curvature associated with the
Schwarzschild geometry. We stress that we considered only the
primary image and did not include the secondary or higher-
order images formed by the extremely lensed photons executing
at least half an orbit around the black hole (e.g., Johnson et al.
2020). These higher-order images do not change the main qual-
itative features of the QU loops but do have an impact at a finer
level, at the low and moderate inclinations that we consider here
(see for instance Gelles et al. 2021; Wielgus et al. 2022b). This
simplification allowed us to reduce the required imaging resolu-
tion.

Figures 10 and 11 show the Schwarzschild QU loops in the
case of a vertical and a toroidal magnetic field, respectively.
Interestingly, for most cases, there is no pronounced differ-
ence between the Schwarzschild QU loops and their Minkowski
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Fig. 8. Minkowski evolution of the angle θB (angle between magnetic field and emission direction in the emitter’s frame) for r0 = 8M. The various
colors encode various inclinations ι between 0◦ (face-on, dark blue) and 90◦ (edge-on, light blue), with a 10◦ step. The synchrotron emission is
suppressed at θB = 0[π], so we concluded that the orbital phase ϕ = π (corresponding to the left part of the image, i.e., toward the east direction)
is strongly suppressed around ι = ι0 ≈ 20◦. We emphasize that this angle ι0 depends on the orbital radius, and here r0 = 8M.

counterparts computed in the previous section. The main fea-
tures of the loops are already present in flat spacetime, and while
the light bending changes detailed values of the observables, it
has little impact on the general picture.

Regarding the flux variation, we note that the same behav-
ior was observed for the Schwarzschild-vertical cases as for
their Minkowski counterparts. The flux goes through its min-
imum at the hot spot approaching side due to the θB depen-
dence of the radiative transfer coefficients. We also note that
the Schwarzschild-vertical case seen at ι = 10◦ shows a smaller
flux variation than its Minkowski counterpart (factor of approx-
imately two versus a factor of approximately four peak-to-peak
ratio). This is because the value of θB is never as close to π in
the Schwarzschild case as in the Minkowski case. As a conse-
quence, the flux minimum is higher in the Schwarzschild case.
In contrast, for ι = 30◦, the value of θB in the Schwarzschild
case goes nearly through π, leading to a flux minimum approach-
ing zero, contrary to the Minkowski case that keeps θB further
from π. This explains the extreme flux ratio (factor of 50) for
the Schwarzschild-vertical case at ι = 30◦. The Schwarzschild-
toroidal case is also similar to the corresponding Minkowski
setup in the sense that the flux variation is dominated by rela-
tivistic beaming with the usual flux maximum at the approaching
side of the orbit. The flux ratios are similar for Minkowski and
for Schwarzschild, showing that the special-relativistic beaming
effect is the dominant flux-driving mechanism.

6. Comparing Schwarzschild and Minkowski QU
loops

Figure 12 shows a comparison of the QU loops computed in the
Schwarzschild and Minkowski spacetimes that were presented in
Figs. 7–11 as well as two higher inclination cases, ι = 45◦, 80◦.
This figure again shows that flat-space and curved-space QU
loops are very similar for most cases. However, there is one
important property that we demonstrated in the Minkowski case
(see Sect. 4.2.2), the QU loop mirror symmetry, that is lost in

Schwarzschild case as inclination increases. This is a direct con-
sequence of light bending. We note that the QU loop fitted to the
high-sensitivity ALMA observations appears strongly asymmet-
ric (Wielgus et al. 2022b).

For purposes of analysis, we considered a hot spot in
Schwarzschild spacetime and the wave vector connecting this
hot spot to the distant observer. The direction of this wave vec-
tor differs from the Minkowski case due to the existence of light
bending. We thus wrote

kS ≈ kM + δklensing, (46)

where kS is the Schwarzschild wave vector, kM is the Minkowski
wave vector, and δklensing is the shift due to light bending. We
note that this equation is not rigorous in the sense that we com-
pare vectors that belong to tangent spaces to different manifolds,
but it is still useful to get a sense of the effect of light bending.
The situation is illustrated in Fig. 13 for face-on and edge-on
inclinations. The lensing shift vector is a radial vector constant
with the orbital phase at zero inclination. This means that light
bending does not break the QU loop mirror symmetry at zero
inclination. Indeed, there are only three quantities that impact
the Stokes parameters, namely: the photon’s energy in the emit-
ter’s frame, ω = −k · u; the cosine of the direction of emission
in the emitter’s frame, cos θB = k · B/ω3; and the EVPA.

These quantities are independent of orbital phase at zero
inclination because of the constancy of the lensing shift vector
with the orbital phase, illustrated in the left panel of Fig. 13.
However, at edge-on inclination, the situation changes com-
pletely, and the lensing shift vector becomes very dependent on
the orbital phase (see the right panel of Fig. 13). This leads to
a strong dependence of the orbital phase on the three quanti-
ties discussed above and to the breaking of the QU loop mir-
ror symmetry. This is in perfect agreement with the results of
Fig. 12, which shows that the loop mirror symmetry still holds
at low inclination and becomes less conserved with increasing
inclination.
3 It is clear from Eq. (25) that K · B = k · B.
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Fig. 9. Same as Fig. 7 but for a toroidal magnetic field. Two QU loops are present for both inclinations, contrary to the vertical case of Fig. 7, in
agreement with our analytical derivation.

One point remains to be discussed, and that is why the QU
loop mirror symmetry breaks more quickly with increasing incli-
nation for a vertical magnetic field (in this case, the symmetry is
already lost at ι ≈ 30◦) than for a toroidal field (in this case, the
symmetry approximately holds until ι ≈ 80◦). This is related to
the orbital phase evolution of the three quantities listed above.
Figure 14 shows the orbital phase evolution of these quantities
at ι = 30◦ in Minkowski and Schwarzschild and for a vertical
or toroidal field. This figure demonstrates that the EVPA and

the emission direction are much more asymmetric for a verti-
cal field than for a toroidal field for this moderate inclination.
In the toroidal case, the evolution of these quantities, although
shifted in phase compared to the Minkowski case, remains rather
similar to the flat-spacetime setup. We checked that comput-
ing the QU track of a Schwarzschild-vertical setup at ι = 30◦
leads to a mirror symmetric QU loop, imposing by hand some
ad hoc symmetric evolution of the EVPA and of the emission
direction.
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Fig. 10. Same as Fig. 7 but in Schwarzschild spacetime for a vertical magnetic field. It might seem surprising that there is a small kick on the
astrometric path toward the southeast. This is due to the dependence of the radiative transfer coefficients on sin θB, where θB is the angle between
the direction of the magnetic field and the direction of emission (see Marszewski et al. 2021). The upper-left panel clearly shows a flux depletion
toward the southeast due to this effect. At this orbital phase, the direction of emission in the emitter’s frame, K, becomes vertical and parallel to
the magnetic field. Due to the combination of special-relativistic aberration and general-relativistic lensing effects, the direction of K varies with
the orbital phase. The QU loops of this figure should be compared to that of Fig. 7, as the similarity is striking.

7. Conclusion

This article has two main goals: (i) highlighting the role of
special-relativistic aberration in generating the observed QU
loops and (ii) identifying an observable feature directly pro-

duced by spacetime curvature. Regarding the first goal, we high-
lighted the crucial importance of special-relativistic effects in
generating the observable QU loops associated with the polar-
ized synchrotron flares of Sgr A*. We have shown that most
features discussed in the literature so far regarding QU loops
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Fig. 11. Same as Fig. 7 but in Schwarzschild spacetime for a toroidal magnetic field. The QU loops of this figure should be compared to that of
Fig. 9, as the similarity is striking.

(existence of loops, number of loops, dependence with inclina-
tion and orbital radius) are already present in the Minkowski
spacetime and are thus independent of light bending. The sim-
plicity of Minkowski spacetime is a great asset, as it allows for
the develop of a complete understanding of these features. Con-
cerning the second goal, we indicated a specific property that is
due to light bending: Minkowski QU loops are always mirror
symmetric in the sense that the two half orbits lead to the same

QU track. The axis of symmetry corresponds to the horizontal
Q axis in our configuration, with the angular momentum of the
hot spot projected onto the observer’s screen aligning with the
vertical direction. In general, this mirror symmetry is associated
with any line of symmetry in the QU plane, be it horizontal or
not, following the uncertain orientation of the observed system.

In contrast, and due to light bending, Schwarzschild QU
loops are generally not symmetric. Schwarzschild QU loops in
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vertical for the top row and toroidal for the bottom row. The inclination increases from left to right and is specified in the top-right corner of each
panel. We note that the various panels have different scalings.
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Fig. 13. Lensing and asymmetry of Schwarzschild QU loops. The left panel depicts the hot spot seen at zero inclination, and the right one is
edge-on. The green arrows show the wave vectors k in Minkowski spacetime that connect the hot spot to the observer. The blue arrows show the
corresponding wave vectors for the Schwarzschild case. They differ from Minkowski due to light bending, which adds a shift to the wave vector,
depicted in pink. This shift vector is constant with the orbital phase and along the positive radial direction at zero inclination. However, it varies
a lot with the orbital phase for the edge-on view, from zero at the closest point to the observer to purely vertical at the furthest point (i.e., “on the
other side of the black hole”). The difference in dependence of the shift vector with the orbital phase as a result of inclination has a considerable
impact on the Schwarzschild QU loop asymmetry (see text for details).

a toroidal magnetic field remain approximately (meaning to a
better accuracy than current observations could tell) symmetric
up to a very high inclination (within ≈10◦ of edge-on view).
Nonetheless, Schwarzschild QU loops in a vertical magnetic
field, which is the favored configuration for the likely MAD
Sgr A* flow, quickly lose their mirror symmetry with increas-
ing inclination and are already clearly asymmetric at a moderate

inclination of about 30◦. Thus, the asymmetry of the QU loops
might constitute a compelling probe that enables the quantifi-
cation of the spacetime curvature in the close environment of
Sgr A*. Future detailed studies of the QU loops could also con-
stitute a path for confirming the existence of secondary images
around black holes, which is another way to characterize curved
spacetimes.
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Fig. 14. Evolution of orbit-varying quantities for Stokes parameters.
The inclination is ι = 30◦. The various panels show the evolution with
the orbital phase ϕ of the various quantities that impact the Stokes
parameters: the EVPA (red), the photon’s emitted energy ω = −k · u
(red, in units of the observed energy), and the sine of the emission angle
sin θB (green). The left column was computed in Minkowski spacetime
and the right column in Schwarzschild. The top row was computed for
a vertical magnetic field and the bottom row for a toroidal field.

We find it is important to keep in mind not only the sim-
plicity of our modeling but also that astrophysical complexity
might obscure the spacetime curvature effect on the asymmetry
of the observed loop. A non-axisymmetric profile of the phys-
ical quantities (density, magnetic field, temperature) along the
hot spot orbit might break the QU loop mirror symmetry even in
the absence of curvature. Internal physics of the hot spot (e.g.,
cooling) may have a similar effect by introducing time depen-
dence to the emission coefficient. Non-circular motion, such as
an ejection along a jet sheath, might also impact the conclusion.
These possible limitations should be addressed in future works.
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Appendix A: Analytical expressions in Minkowski
spacetime

We reiterate the expressions of the emitter’s four-velocity
(Eq. 22)

u = A
(
et + r−1/2

0 eϕ
)
, A =

√
r0

r0 − M
; (A.1)

that of the wave vector (Eq. 23)

k = et − sin ι sinϕ er + cos ι eθ − sin ι cosϕ eϕ; (A.2)

that of the photon’s emitted energy (Eq. 26)

ω = −k · u = A
(
1 +

sin ι cosϕ
√

r0

)
; (A.3)

that of the projection of k orthogonal to u,

K = k + (k · u) u (A.4)
= (1 − ωA) et − sin ι sinϕ er + cos ι eθ
−

(
sin ι cosϕ + ωAr−1/2

0

)
eϕ;

and that of the observer’s basis vectors (Eq. 28)

ew = cosϕ er − sinϕ eϕ, (A.5)
eδ = − cos ι sinϕ er − sin ι eθ − cos ι cosϕ eϕ.

A.1. Vertical magnetic field

Considering a unit vertical magnetic field

B̄ = −eθ, (A.6)

we have

B̄ ·K = − cos ι, (A.7)

and the projection of B̄ normal to the unit vector K̄ = K/ω along
K reads

B⊥ = B̄ −
B̄ ·K
ω2 K (A.8)

=
cos ι
ω2

[
(1 − ωA) et − sin ι sinϕ er +

(
cos ι −

ω2

cos ι

)
eθ

−
(
sin ι cosϕ + ωAr−1/2

0

)
eϕ

]
.

The projections of this vector along the observer’s basis vectors
then read

B⊥ · ew = cos ι sinϕ
A

ω
√

r0
,

B⊥ · eδ = sin ι + cos2 ι cosϕ
A

ω
√

r0
,

from which the EVPA expression of Eq. 30 follows.
We also have

K̄ · B̄ =
K
ω
· B̄ = −

cos ι
ω

, (A.9)

where K̄ is the unit vector along K. We thus find the result of
Eq. 34.

A.2. Toroidal magnetic field

Considering now a toroidal magnetic field

B̄ = A
(

et
√

r0
+ eϕ

)
, (A.10)

we have

B̄ ·K
ω2 = −

A
ω2

(
1
√

r0
+ sin ι cosϕ

)
≡ −CA, (A.11)

where we introduce

C ≡
1
ω2

(
1
√

r0
+ sin ι cosϕ

)
, (A.12)

so we get

B⊥ = B̄ −
B̄ ·K
ω2 K (A.13)

= A
[

1
√

r0
+ C (1 − ωA)

]
et − AC sin ι sinϕ er + AC cos ι eθ

+ A
[
1 −C

(
sin ι cosϕ +

ωA
√

r0

)]
eϕ.

The projections onto the observer’s basis vectors then read

B⊥ · ew = A sinϕ
(
C

Aω
√

r0
− 1

)
, (A.14)

B⊥ · eδ = A cosϕ cos ι
(
C

Aω
√

r0
− 1

)
,

from which the EVPA expression of Eq. 41 follows. We also
have

K̄ · B̄ = −CωA, (A.15)

which is the result of Eq. 43.
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