
HAL Id: hal-04558369
https://hal.science/hal-04558369

Preprint submitted on 24 Apr 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

FO logic on cellular automata orbits equals MSO logic
Guillaume Theyssier

To cite this version:

Guillaume Theyssier. FO logic on cellular automata orbits equals MSO logic. 2024. �hal-04558369�

https://hal.science/hal-04558369
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr

FO logic on cellular automata orbits equals MSO logic

Guillaume Theyssier (I2M, CNRS, Université Aix-Marseille, France)

April 24, 2024

Abstract

We introduce an extension of classical cellular automata (CA) to arbitrary labeled graphs,
and show that FO logic on CA orbits is equivalent to MSO logic. We deduce various results
from that equivalence, including a characterization of finitely generated groups on which FO
model checking for CA orbits is undecidable, and undecidability of satisfiability of a fixed
FO property for CA over finite graphs. We also show concrete examples of FO formulas for
CA orbits whose model checking problem is equivalent to the domino problem, or its seeded
or recurring variants respectively, on any finitely generated group. For the recurring domino
problem, we use an extension of the FO signature by a relation found in the well-known
Garden of Eden theorem, but we also show a concrete FO formula without the extension
and with one quantifier alternation whose model checking problem does not belong to the
arithmetical hierarchy on group Z

2.

1 Introduction

Symbolic dynamics was historically introduced as the study of one-dimensional infinite words
representing discretized orbits of smooth dynamical systems through a finite partition of space
[35, 34]. It has since then been largely extended to higher dimensions and arbitrary Cayley graphs
of finitely generated groups, and seen rich developments going way beyond the initial motivations.
The field of symbolic dynamics would now be better described as the study of sets of configurations
(i.e. coloring of a graph) which can be defined by local uniform constraints (subshift of finite type,
sofic subshift, etc) and maps on configurations acting by a uniform and local update rule (cellular
automata, and morphisms between subshifts, which are the continuous maps commuting with
translations [26, 12]). A fascinating aspects of these objects is that they are very simple to define,
yet can produce very complex behaviors which make them challenging to analyze. They can be
considered as a reasonable modeling tool [13], but more importantly, they constitute a natural
model of computation for which undecidablity and computational hardness can arise in the most
simple and seemingly unrelated questions in a spectacular way [28, 30, 25, 9, 29].

In symbolic dynamics, a major trend is to relate the properties of the considered objects
(cellular automata or subshifts) to the structure of the underlying graph they are defined on
(usually Cayley graphs of finitely generated groups). An emblematic example is the domino
problem: since the breakthrough undecidability result of Berger [9], a lot of works have focused
on the characterization of Cayley graphs of groups for which the domino problem is undecidable
[4, 5, 8, 7] or other graphs with less symmetries [20, 27]. Concerning cellular automata (CA),
properties of the global map that can be expressed in first-order (FO) logic (or, said differently, FO
properties of their orbit graph) are already challenging. For instance, injectivity and surjectivity
problems were shown decidable on Z [1] and on context-free graphs [36], but undecidable on Z

2

[29]. Other FO properties of CA were studied in relation to the graph structure: the Gotschalk
conjecture [12, 23] asks whether the property “injectivity implies surjectivity” is true for all CA
on all group. Besides, the garden of Eden theorem [12] characterizes amenability among finitely
generated groups by the fact that another simple FO property1 is true for all CA on this group.

1As detailed in Section 5, it uses an additional relation in the FO signature which doesn’t break the main point

of our approach, an equivalence with MSO.

1

It turns out that many central problems considered in symbolic dynamics can actually be
rephrased in monadic second order logic (MSO). It was for instance noticed in [36] for injectivity
and surjectivity of CA. MSO is a logical language that has received enormous interest, probably
for its balance between expressivity and decidability in many cases. More precisely, for graph
properties, algorithmic metatheorems [36, 15, 17] and reciprocals [32, 33] relates the complexity
of the MSO model checking problem to the structure of considered graph or graph family. The
key parameter at play here is treewidth [39] which is related to the non-existence of arbitrarily
large grid minors [40]: bounded treewidth provides positive algorithmic results, while arbitrarily
large grid minors often allows lower bounds or undecidability results. For instance, on a Cayley
graph of a finitely generated group, the MSO model checking problem is decidable if and only if
the group is virtually free (meaning having a free group as finite index subgroup) [33].

Of course, positive algorithmic results for MSO apply to the particular problems studied in
symbolic dynamics, but lower bounds or undecidability results for MSO are not directly trans-
ferable. For instance, on the graph Z

2, undecidability of MSO model checking follows from a
straightforward encoding of Turing machines, while undecidability of the domino problem [9] or
of injectivity problem of CA [29] requires detailed and non-straightforward constructions that
involves ideas and tools of independent interest (aperiodic tile sets and space filling curves for
instance). Moreover, it is still open to our knowledge whether both problems are undecidable on
any Cayley graph of group which is not virtually free. More generally, much work remains to close
the gap between the global understanding of MSO logic on arbitrary graphs and the particular
MSO fragments at sake in symbolic dynamics that are mostly understood on Cayley graphs of
some group families.

Contributions of the paper. In this paper we explore properties of CA on arbitrary labeled
graphs (finite or infinite). To do this, we introduce a definition of local rules of CA that doesn’t
use any explicit reference to the local structure of the graph as it is classically done, but instead
just relies on the notion of bounded labeled walks and multiset of possible states read at the end of
these walks. In particular, we don’t require the graph to be uniform nor to have bounded degree,
but our notion exactly corresponds to the classical one on Cayley graphs of finitely generated
groups. Moreover, a fixed CA local rule provides a well-defined CA global map on any graph with
same label sets. We can thus explore the influence of the graph separately from the local rule. For
instance, we can specify a graph property by a CA local rule f and a FO property φ of CA orbits:
the set of graphs on which the local rule f induces a global map that satisfies φ. Our main result
(theorems 4, 5 and 8) is then an equivalence between this approach and MSO logic, on arbitrary
labeled graphs. Precisely, for every class C of graphs, the following two conditions are equivalent:

• there exists an MSO formula Ψ, such that G ∈ C ⇐⇒ G |= Ψ,

• there exists a pair (φ, f), where φ is a FO formula and f is a CA local rule, such that G ∈ C
if and only if the global map induced by f on G satisfies φ.

Moreover, the pair (φ, f) can be effectively constructed from Ψ, and conversely.
Said differently, (FO,CA) pairs and MSO formulas define exactly the same graph languages,

and the corresponding model checking problems are many-one equivalent on any fixed graph. We
believe that this new characterization of MSO is particularly relevant in the context of symbolic
dynamics.

First, FO properties of orbits of CA are a conjugacy invariant and were much studied as
mentioned above. We obtain a characterization of the decidability of FO model checking for CA
orbits on Cayley graphs (Corollary 2) and we show that undecidability can be obtained with a
fixed FO formula (Corollary 3) exactly on non virtually free f.g. groups, which should be put in
perspective with the Ballier-Stein conjecture [6]. We also obtain undecidability of a satisfiability
problem for CA on finite graphs for a fixed FO formula (Corollary 4).

Besides, when fixing an arbitrary FO formula and letting the CA vary, we get fragments of
MSO that make sense beyond the examples directly motivated by CA theory. In particular, we

2

show in Section 5 that on Cayley graphs of finitely generated groups, such fragments do not depend
on the choice of generators, and that the domino problem and its variants (seeded and recurring)
are equivalent to the model checking problem of some simple fixed FO formula (Theorem 13).
For this we use an additional relation in the case of the recurring domino problem that remains
MSO-expressible (Lemma 12). Finally we obtain a FO formula with just one quantifier alternation
whose model checking problem does not belong to the arithmetical hierarchy when fixing the graph
Z
2 (Theorem 14).

Warmup examples. To fix ideas and give some intuition on how FO logic on CA orbits can
be used to express graph properties, let us consider two well-known MSO properties and give an
informal translation into a pair made of a FO formula and a CA local rule.

Example 1 (k-Colorable graphs). Fix k and consider an undirected graph G = (V,E). Consider
the CA local rule with state set S = {0, . . . , k − 1} such that a vertex in state i changes its state to
i+ 1 mod k if it has a neighbor in state i and remains in state i otherwise. It can be checked that
the CA induced on G by this local rule has a fixed-point if and only if G admits a proper vertex
coloring with k colors (i.e. a coloring where no two neighboring vertices have the same color).

Example 2 (Connected graphs). Consider an undirected graph G = (V,E). Consider the state
set S = {0, 1, a0, a1, a2} and the CA local rule such that a vertex in state i ∈ {0, 1} becomes 1− i,
a vertex in state ai becomes 0 if it has a neighbor in {0, 1} and ai+1 mod 3 otherwise. We claim
that G is connected if and only if the CA induced on G by this local rule has no periodic orbit of
minimal period 6, which is obviously an FO property of orbits.

Proof of the claim. If G is not connected then we can define a configuration c equal to a0 on one
component and 0 on the others: c is periodic of minimal period 6 because no vertex in ai will ever
have a neighbor in {0, 1}, so these vertices will have a cyclic behavior of period 3 and those from
others components, a cyclic behavior of period 2. If G is connected, then no periodic orbit has
minimal period 6 because any configuration c in such an orbit would necessarily contain a vertex
in some state ai and another in a state from {0, 1} (otherwise the minimal period would be 2 or
3) and, since G is connected, it would actually contain a vertex v in state ai with a neighbor in a
state from {0, 1}. Then after one step this vertex v would become 0 and would never turn back
to state ai by definition of F : this contradicts the fact that c belongs to a periodic orbit.

Comparison with another characterization of MSO by automata. Several previous
works established equivalence results between logic formalism and automata theory in the con-
text of MSO languages of graphs. As mentioned above, [36] already noticed that some cellular
automata properties can be translated into MSO. Following this, [44] and [42] introduced tiling
and automata recognizers that are equivalent to (small) fragments of MSO. In [37], alternating
distributed graph automata are introduced that recognize exactly the languages of graphs defin-
able in MSO logic. These distributed automata are close to CA in the sense that they run on
configurations (coloring of the input graph by states) and use finite local memory and local commu-
nication between neighboring vertices. However, they are highly non-deterministic (alternating)
and their accepting mechanism uses both initialization of the run to a particular configuration,
and a global knowledge of the final configuration reached (precisely the set of states present in this
configuration). Restrictions of this model to deterministic or non-deterministic automata (instead
of alternating) gives strictly weaker fragments.

Our goal here is not to define a single automata model equivalent to MSO. Instead our approach
motivated by symbolic dynamics uses deterministic CA on one hand and quantifier alternations
in a separated FO formula which plays also the role of the accepting condition on the other hand.
A key aspect is that we thus get natural fragments of MSO by fixing the FO formula and letting
the CA rule vary. This also makes a strong difference with distributed alternating automata in
the accepting mechanism since the FO formula does not offer any direct means of initializing some
computation on a particular configuration, nor to detect presence of some particular states in a
final configuration.

3

2 Formal definitions

Graphs. A (Σ,∆)-labeled graph is a graph G = (V, (Eδ)δ∈∆, L), which can be finite or infi-
nite, where L : V → Σ is the vertex labeling and Eδ ⊆ V × V are the edges labeled by δ. In such
a graph, given some finite word w = w1 · · ·wk ∈ ∆∗, a path labeled by w is a sequence of vertices
v1, . . . , vk+1 such that, for any 1 ≤ i ≤ k, (vi, vi+1) ∈ Ewi

. All graphs considered in this paper
are simple, meaning that there is at most one edge of a given label between two given vertices2.
Such a graph is said to be connected if it is connected as an undirected and unlabeled graph, i.e.
if G = (V,E) is connected where (v, v′) ∈ E if either (v, v′) ∈ Eδ or (v′, v) ∈ Eδ for some δ ∈ ∆.
The set of connected graphs is denoted by C. Σ will in some case be a singleton and can therefore
be silently omitted: we speak about ∆-labeled graph in this case. An important class of graphs
studied in symbolic dynamics is that of Cayley graphs of finitely generated (f.g.) groups. Given a
f.g. group (Γ, ·) and a (finite) set of generators ∆ (including their inverses), the associated Cayley
graph is the ∆-labeled graph where (γ, γ′) ∈ Eδ if and only if γ′ = γ · δ. An undirected graph
G1 is a minor of another undirected graph G2 if it can be obtained from G2 by deleting edges
and vertices, and by contracting edges (i.e. identifying the vertices incident to the edge without
creating multiple edges).

Cellular automata. Given a finite set of states S and a set of vertices V , a configuration is
an element of SV . It can be seen as a coloring of vertices by S. A CA is a map from configurations
to configurations, that is induced by a uniform local rule. It is generally studied as a dynamical
system through its set of orbits, which are sequences of configurations obtained by iterating the
map from an initial configuration.

CA are usually defined over a fixed Cayley graph of a (f.g.) group [12]. Following this classical
approach, the local rule defining a CA is formally a lookup table and is bound to a particular
graph as it relies on local patterns defined over bounded balls of the graph. It also requires the
graph to be uniform and of bounded degree. More general definitions were proposed that don’t
stick to a particular graph [3, 2], but they still rely on the hypothesis of bounded degree and use
a particular labeling by port numbers.

We introduce in this section a simple definition of CA on arbitrary labeled graphs. The key
advantage of our formalism is that a given local rule actually defines a CA on any labeled graph
for fixed label sets. We can therefore fix a local rule and asks on which graphs the corresponding
CA has a given property (as sketched in Section 1): a pair made of a local rule and a property
of CA dynamics actually defines a property of graphs. Moreover, on Cayley graphs of f.g. groups
our formalism is equivalent to the classical one. The CA local rules we consider can intuitively be
seen as finite memory and finite distance exploring machines working as follows in parallel from
each vertex v: they walk from v following all possible ∆-labeled walks up to some length r, and
harvest states seen at the end of these walks and count their occurrences up to some constant k,
then they decide from this information (a multiset) the new state at vertex v. From this point of
view, the edge labeling by ∆ acts as local directions that give more information on the position
in the graph given a labeled walk, while vertex labeling σ gives some level of non-uniformity as in
non-uniform cellular automata [18].

Let us now formalize this definition. Given v ∈ V and a word w ∈ ∆∗, we denote by Rw(v) the
set of vertices reachable from v by a path labeled by w. If w = ǫ (empty word), then Rw(v) = {v}
by definition. If G is the Cayley graph of a f.g. group, then Rw(v) is always a singleton, however
there are generally several paths reaching the same vertex.

The k-capped multisets over set X are the multisets where no cardinality is greater than
k, and are denoted ms

k(X) = {0, . . . , k}
X . Given a multiset m ∈ N

X , we denote by cap
k(m)

the k-capped multiset such that cap
k(m)(x) = max(m(x), k). We denote by A≤r the words of

length at most r over alphabet A including the empty word ǫ. Given a set of states S and

2The hypothesis that our graphs are simple will be used in sections 4 and 5. We choose to adopt this hypothesis

across the entire paper for simplicity and clarity, however the main results from Section 3 should also hold without

this hypothesis.

4

a configuration c ∈ SV and v ∈ V , the k-capped pattern of radius r at v in c is the k-capped
multiset P (c, v, r, k) ∈ ms

k
(

∆≤r × S
)

defined by:

P (c, v, r, k) = cap
k
(

(w, s) 7→ #{v′ ∈ Rw(v) : cv′ = s}
)

.

Definition 1 (CA local rules and global maps). A CA local rule for (Σ,∆)-labeled graphs of state
set S, radius r and using k-capped multisets (k ≥ 1) is a map

f : Σ×ms
k
(

∆≤r × S
)

→ S.

For any (Σ,∆)-labeled graph with vertices V , the global CA map FG,f : SV → SV associated to
the local map f and graph G is then defined by

FG,f (c)v = f(σ(cv), P (c, v, r, k))

for any configuration c ∈ SV and any vertex v ∈ V .

In the sequel, when considering a local map f , it always implicitly comes with a specified state
set S and values of r and k defining its domain and image sets. We are mainly interested in the case
where Σ is a singleton (uniform CA), but incorporating Σ in our definition allows non-uniformity
in the local rule as in non-uniform CA [18].

Remark 1. On a Cayley graph of f.g. group, P (x, v, r, k) gives all the information about con-
figuration x restricted to the ball in the graph centered in v and with radius r: indeed, in this
case, P (x, v, r, k)(q, w) = 1 if and only if the unique vertex v′ ∈ Rw(v) is such that xv′ = q, and
Rw(v) describes the entire ball when w enumerates ∆≤r. From this observation it follows that in
the case of Cayley graphs and when Σ is a singleton, the global CA maps from Definition 1 are
exactly the classical global CA maps (see for instance [12]).

Definition 1 explains how a given CA local rule f induces a CA global map FG,f on a given
graph. FG,f is the main object of study in CA theory, as it represents a dynamical system.

Example 3 (Two definitions of Game of Life). Consider the famous Game of Life CA F : {0, 1}Z
2

→ {0, 1}Z
2

[10, 22]. In this example Σ is a singleton and thus ignored to simplify notations. First, let G1

be the Cayley graph of Z
2 with generators n = (0, 1), e = (1, 0) and their inverses. Let M be the

following set of words in ∆≤2: n, n−1, e, e−1, ne, ne−1, n−1e, n−1e−1. Now define the local rule
f1 of radius 2 and using 4-capped multiset by

f1(µ) =

1 if µ(1, ǫ) = 0 and
∑

w∈M µ(1, w) = 3

1 if µ(1, ǫ) = 1 and 2 ≤
∑

w∈M µ(1, w) ≤ 3

0 otherwise.

One can check that FG1,f1 = F . Now consider the undirected and unlabeled graph G2 = (Z2, E)
with ((i, j), (i′, j′)) ∈ E if |i− i′| ≤ 1 and |j − j′| ≤ 1 and (i, j) 6= (i′, j′). Here we denote ∆ = {u}.
We then define another local rule f2 of radius 1 and using 4-capped multiset as follows:

f2(µ) =

1 if µ(1, ǫ) = 0 and µ(1, u) = 3

1 if µ(1, ǫ) = 1 and 2 ≤ µ(1, u) ≤ 3

0 otherwise.

One can again check that FG2,f2 = F .

Logics. To make the exposition more concise, we suppose some familiarity with standard
concepts of formal logic (variables, assignments, quantification, free variables, etc). MSO logic
uses first-order variables (usually denoted by lower-case letters) representing vertices and second-
order variables (usually denoted by upper-case letters) representing sets of vertices. To help
reading, relations in formulas will use infix notation (xR y) while relation in the meta-language
will use the set notation ((x, y) ∈ R).

5

Definition 2 (MSO formulas and their semantics). The set MSO formulas over label sets (Σ,∆)
is the set of atomic formulas:

• xLσ for x a first-order variable and σ ∈ Σ (meaning x has label σ),

• xEδ x
′ for x and x′ first-order variables and δ ∈ ∆ (meaning that there is an edge labeled δ

from x to x′),

• x = x′ for first-order variables x and x′ (meaning that x is equal to x′),

• x ∈ X for first-order variable x and second-order variable X (meaning that x belongs to set
X),

closed by the usual logic connectives (∨, ∧, ¬) and quantifiers (∀, ∃). Given an MSO formula Ψ, a
(Σ,∆)-labeled graph G and an assignment α of free variables of Ψ we define the semantics in the
standard way starting from the obvious meaning of atomic formula above (see [17] for an in-depth
introduction). We write (G,α) |= Ψ when Ψ is true on G with assignment α. If Ψ has no free
variable, we simply write G |= Ψ when Ψ is true on G.

We will sometimes use substitution of relations with formulas defining them. For instance we
can write Ψ(X,ΨR(x1, x2)), where Ψ is a formula using an additional relation symbol R, to denote
the MSO formula obtained by substituting ΨR for R in Ψ (with the usual precaution of renaming
variables if necessary, see [17]).

We now define FO logic over orbits of CA: they are just formulas allowing quantifications over
configurations and using two relations, equality and application of one step of the CA global rule.

Definition 3 (FO formulas and their semantics). The set of FO formulas is made of atomic
formulas:

• y = y′ (meaning that configuration y is equal to configuration y′),

• y → y′ (meaning that the global CA map leads to y′ in one step starting from y),

and closed under the usual logic connectives and quantifiers. Given a FO formula φ, a CA global
map F : SV → SV and an assignment β of free variables of φ to configurations from SV , we write
(F, β) |= φ to denote that F satisfies φ with assignment β following the obvious semantics of
formulas starting from the relations above. When φ has no free variable, we just write F |= φ.

For a CA global map F : SV → SV and a FO formula φ with free variables (y1, . . . , yn), we use
the shortcut F |= φ(c1, . . . , cn) for configurations c1, . . . , cn ∈ SV to express that (F, β) |= φ where
β is the assignment given by yi 7→ ci for 1 ≤ i ≤ n. We will also use the FO shortcut y0 →k

6= yk

to represent the FO formula expressing that y0 leads to yk in k steps and the k+1 configurations
involved in this partial orbit are pairwise different:

y0 →k
6= yk

def
= ∃y1, . . . , ∃yk :

∧

0≤i<k

yi → yi+1 ∧
∧

i6=j

yi 6= yj.

Notation convention: we will always use letter Ψ for MSO formulas, x or X for MSO variables,
α for MSO assignments, φ for FO formulas, y for FO variables, G for graphs, f for CA local rules,
F for CA global maps and c for configurations. We use notation cv to denote state of configuration
at vertex v, that’s why we prefer the exponent notation c1, c2, . . . to denote several configurations.

Combining graphs, CA and logics. The above definitions suggest various definitions of
sets of objects (or languages): the graph languages

• G(Ψ) = {G : G |= Ψ} and

• G(φ, f) = {G : FG,f |= φ},

and the set of CA local rules CA(φ,G) = {f : FG,f |= φ}, where we use the notation convention
above, and where Σ and ∆ are fixed so graphs are actually (Σ,∆)-graphs and CA local rules are
rules for such graphs. Moreover, CA(φ,G) can be seen as decision problems where inputs are given
as local maps of CA (model checking problem of φ on G).

6

3 Translation results

3.1 From FO/CA pairs to MSO

Whatever the state set, a CA configuration can be represented as a tuple of vertex sets: we can
code the state at a vertex by the number of sets it belongs to among the tuple. This way, FO
variables can easily be translated into tuples of second-order MSO variables undergoing the same
quantification and we get an onto map from possible assignments of the tuple of second-order
MSO variables onto possible assignments of the corresponding FO variable.

Under that coding, equality of configurations translates into a simple MSO formula with just
one universal first-order quantifier. It remains to show that the other relation in the signature of
FO, relation → which represents the application of one step of the CA global map, can also be
translated into MSO: this boils down to checking that at each vertex the local rule is correctly
applied, which itself boils down to counting up to some constant occurrences of states that can be
reached by a labeled walk of bounded length.

Theorem 4. There is a recursive translation τ from pairs (φ,f) made of a FO formula φ and
a CA local rule f to MSO formulas such that the following equivalence holds for any graph G:
Ff,G |= φ ⇐⇒ G |= τ(φ, f).

Proof. Fix φ and f with state set S = {1, . . . , n}, radius r and using k-capped multisets. Suppose
that φ is in prenex normal form where φ0(y1, . . . , ym) is the quantifier-free part (if not just compute
this prenex normal form). We will use the following map ι from n-tuple of vertex sets ⊆ V to
configurations of SV :

ι(E1, . . . , En) = v 7→ #{i : 1 ≤ i ≤ n ∧ v ∈ Ei}.

ι is an onto map. Following this coding we define the MSO formula Ψs−state(x,X) expressing that
the configuration represented by X at vertex x is in state s:

Ψs−state(x,X)
def
=

∨

A⊆S

|A|=s

∧

1≤i≤n

x ∈ Xi ⇐⇒ i ∈ A.

For each relation y1 Ry2 in the FO signature, we want to define an MSO formula ΨR(X1, X2)

where X i are n-tuples, and with the following property: for any assignment α of this two n-tuples,
and for any graph G, the assignment β which assigns ι(α(X i)) to yi verifies:

(G,α) |= ΨR(X1, X2) ⇐⇒ (FG,f , β) |= y1Ry2.

First it is not difficult to write such a formula in the case of relation y1 = y2:

Ψ=(X1, X2)
def
= ∀x,

∨

s∈S

Ψs−state(x,X1) ∧Ψs−state(x,X2)

For the case of relation y1 → y2, we first need for each w ∈ ∆l an MSO formula Ψw(x0, xl)
expressing that vertex xl can be reached by a walk labeled w starting from label x0, that can be
written as:

Ψw(x0, xl)
def
= ∃x1, . . . , xl−1 :

∧

0≤i<l

xi Ewi
xi+1.

Then we define the formula ΨP (s,w)≥p(X, x) for each 0 ≤ p < k by

ΨP (s,w)≥p(X, x)
def
= ∃x1, . . . , xp :

∧

1≤i,j≤p

i6=j

xi 6= xj ∧
∧

1≤i≤p

Ψw(x, xi) ∧Ψs−state(xi, X)

which expresses that in configuration X, there are at least p occurrences of state s reachable by
a walk labeled w starting from x. We can write by Boolean combination of the above a formula

7

ΨP (s,w)=p expressing that in configuration X, there are exactly p occurrences of state s reachable
by a walk labeled w starting from x.

We can now define the formula Ψ→ with the property announced above with respect to the
FO relation y1 → y2 :

Ψ→(X1, X2)
def
= ∀x,

∧

σ∈Σ

µ∈M

(

xLσ ∧
∧

s∈S

w∈∆≤r

ΨP (s,w)=µ(s,w)(X, x)
)

⇒ Ψf(σ,µ)−state(x,X2)

where M = ms
k
(

∆≤r × S
)

. This formula is just the translation of the definition of a CA global
rule from its local rule (Definition 1) saying that at each vertex, if the local symbol and multiset
pattern are (σ, µ), then the next state should be f(σ, µ).

With these ingredients, φ0(y1, . . . , ym), the quantifier free part of φ, is translated into an MSO
formula Ψ0(X1, . . . , Xm) by replacing each occurrence of some atomic formula yi = yj (resp.
yi → yj) by Ψ=(X i, Xj) (resp. Ψ→(X i, Xj)). We still have that, for any MSO assignment α,
the FO assignment β defined with a slight abuse of notations as ι ◦ α as above verifies:

(G,α) |= Ψ0(X1, . . . , Xm) ⇐⇒ (FG,f , β) |= φ0(y1, . . . , ym).

Since ι is an onto map, one has also that

(G,α′) |= ∀X1,Ψ0(X1, . . . , Xm) ⇐⇒ (FG,f , β
′) |= ∀y1, φ0(y1, . . . , ym)

for any MSO assignment α′ and corresponding FO assignment β′ defined as ι ◦ α′ (with a slight
abuse of notations). The same hold with the ∃ quantifier and the Theorem follows by a straight-
forward induction.

3.2 From MSO to FO/CA pairs.

This converse translation is less straightforward. Let us first give a simplified overview by consid-
ering an MSO formula Ψ in prenex normal form, and describing its translation into a CA local
rule f together with a FO formula φ.

We will use binary configurations (i.e. elements of {0, 1}V) to code either second-order variable
assignments (a set coded by its indicator function) or first-order variable assignments (a singleton
coded by its indicator function). More generally, we can code several variable assignments in a
configuration made of several binary components, i.e. configurations over a product alphabet
S = {0, 1} × · · · × {0, 1}. Given a configuration made of a product of binary components coding
an assignment of several variables, the truth of an atomic formula using these variables over this
assignment can be checked by a CA local rule in a distributed manner. With slightly more work
and using a particular FO property of orbits, we can actually test any quantifier free formula in a
distributed manner.

The CA local rule together with the FO formula we are going to construct will essentially
enforce an erasing process that starts from a configuration made of a product of binary components
(to code an assignment of all MSO variables at once) and then removes components of the product
one by one at successive steps until reaching a fixed point: on one hand having all information
about variables assignment at the start allows to check the truth of the quantifier-free matrix
of the MSO formula as hinted before, and, on the other hand, having components to disappear
individually in successive steps allows to make a FO quantification over configurations following
exactly the MSO quantification over variables.

For instance, taking MSO formula Ψ = ∀X1, ∃x2, ∀X3, R(X1, x2, X3), we construct a FO for-
mula that is essentially of the form:

∀y1, ∃y2, ∀y3 : y3 → y2 → y1

and a CA local rule that will ensure that y1 ≈ a1, y2 ≈ (a1, a2) and y3 ≈ (a1, a2, a3) where a1
is an assignment for X1, a2 is an assignment for x2 and a3 is an assignment for X3. It will also

8

ensure, when in configuration y3, that the assignments (a1, a2, a3) satisfy R(X1, x2, X3). It is
important to note that successive choices of assignments of variables y1, y2 and y3 corresponds,
up to a simple product encoding, to successive choices of assignments for variables X1, x2 and X3.
Non-deterministic choices of successive assignments are possible in this construction because they
correspond to going backward in time in the canonical orbit enforced by the FO formula above:
there is no contradiction with the determinism of cellular automata.

To turn this overview into a concrete construction, several technical points have to be addressed:

• the simplified behavior described above only works on some well-formed configuration; as
usual in CA constructions, we will use local error detection and special error states to mark
orbits of bad configurations and distinguish them from good ones: here we use two error
states that oscillate with period two in order to ensure that any orbit reaching a fixed point
has successfully passed all error detection mechanisms.

• to code first-order variables, binary configurations need to have exactly one vertex in state
1 and the local nature of CA prevents from verifying this (it cannot a priori distinguish
a configuration with a single 1 from a configuration with two 1s arbitrarily far away, not
to mention the case of non-connected graphs). Our construction handles this through the
FO formula to be satisfied using a sibling configurations counting trick combined with a
particular behavior of the CA which uses additional layers of states.

The erasing process of the CA mentioned above will therefore take several steps for first-order
variables, and only one step for second-order variables.

• checking a quantifier-free formula given an assignment of its variables encoded in a config-
uration is generally not doable in one step by a CA, especially on non-connected graphs
that prevent the CA from communicating between components (think of the example:
x ∈ X ∨ y ∈ X) ; to solve this problem our construction will once again rely on a com-
bination of FO logic over several steps and a particular behavior of the CA.

We first give a solution to these technical problems that works when we restrict to connected
graphs. This construction is a little simpler than the general case that we address later, and it
has the benefit to induce a better controlled dependence of the FO formula on the MSO formula
(an aspect that will turn out to be useful in Section 4).

If Ψ is an MSO formula in prenex normal form with quantifier prefix Q1, . . . , Qn, its prefix
signature is the word describing the alternance of quantifiers taking into account both the type of
quantification and the order of quantified variables. More precisely, it is the word over alphabet
{∀, ∃} × {1, 2} obtained as follows: first map each quantifier to the alphabet according to the
actual type and order, then remove any repetition of consecutive identical letters.

Theorem 5. There are two recursive transformations τFO from MSO formulas to FO formulas
and τCA from MSO formulas to CA local rules such that, for any MSO formula Ψ, the pair made
of φ = τFO(Ψ) and f = τCA(Ψ) verifies:

1. for any connected graph G the following equivalence holds: G |= Ψ ⇐⇒ FG,f |= φ,

2. if Ψ is prenex then φ depends only on its prefix signature.

Let Ψ = Q1x
1
1, . . . ,Q1x

k1

1 ,Q2x
1
2, . . . ,Q2x

k2

2 , . . . ,Qnx
1
n, . . . ,Qnx

kn
n , R(x1

1, . . . , x
kn
n) be any MSO

formula in prenex normal form where Q1, . . . ,Qn are the n quantifiers types (either ∀ or ∃ and
either first or second-order) forming the prefix signature, variables x1

i , . . . , x
ki

i are bound by quan-
tifier of type Qi and R(x1

1, . . . , x
kn
n) is the matrix of the prenex normal form (i.e. a quantifier

free formula). We use this numbering of variables grouped by quantifiers type to obtain a more
compact FO formula that only depends on the prefix signature of Ψ. Let’s write R(x1

1, . . . , x
kn
n)

in disjunctive normal form:

R(x1
1, . . . , x

kn
n) =

∨

1≤j≤d

Cj(x
1
1, . . . , x

kn
n)

9

where each clause Cj is a conjunction of terms which are atomic formula or negation thereof using
variables x1

1, . . . , x
kn
n . Let O be the set of i such that Qi is a first-order quantifier.

Structure of configurations. For each 1 ≤ i ≤ n, let ω(i) =
∣

∣O ∩ {1, . . . , i}
∣

∣ and define
λ(i) = i+ 2 · ω(i). As it will become clear below, λ(n) denotes the length of an orbit along which
n particular configurations will be identified. Configurations along this orbit will use distinct state
sets, and λ(i) will also denotes the number of layers of the i-th configuration. We first introduce sets
Sl for 1 ≤ l ≤ λ(n) that will be used to hold variable assignments and translate MSO quantification
over variables of first or second-order into FO quantification over configurations. Sl is a product of
l layers each of the form {0, 1}ki (variable layer) or {1, . . . , ki} (choice layer) for some i, or {0, 1}
(control layer). Intuitively, variable layers will hold MSO variables assignments, and choice and
control layers are used only for first-order variables as a control mechanism. Sets Sl are precisely
defined as follows:

• S1 = {0, 1}k1 and if 1 ∈ O then S2 = S1 × {1, . . . , k1} and S3 = S2 × {0, 1},

• for 1 ≤ i < n, Sλ(i)+1 = Sλ(i) × {0, 1}
ki+1 and if i+ 1 ∈ O then Sλ(i)+2 = Sλ(i)+1 ×

{1, . . . , ki+1} and Sλ(i)+3 = Sλ(i)+2 × {0, 1}.

If j = λ(i) ≤ l with i 6∈ O or j = λ(i)− 2 ≤ l with i ∈ O then the j-th layer of Sl is a vari-
able layer, denoted as Vi(Sl), and intuitively represents an assignment for the tuple of variables
x1
i , . . . , x

ki

i . For 1 ≤ j ≤ ki, we denote by V
j
i (Sl) the j-th binary component of Vi(Sl) which intu-

itively represents an assignment for variable x
j
i . For i ∈ O and j = λ(i)− 1 ≤ l, the jth layer of

Sl is a choice layer, denoted χi(Sl). Other layers, precisely j-th layers with j = λ(i) with i ∈ O,
are control layers and denoted Ki(Sl). Choice layer χi together with control layer Ki are used
to ensure that the corresponding variable layer Vi correctly encodes a ki-tuple of assignments of
first-order variables, i.e. is a ki-tuple of binary configurations each having exactly one position in
state 1.

We denote by π the natural projection from Sl onto Sl−1 (for any 2 ≤ l ≤ λ(n)) which removes
the last (l-th) layer of elements of Sl.

A well-formed configuration where all vertices are in a state from Sλ(n) intuitively contains an
assignment for all variables involved in formula Ψ (provided the control mechanism for first-order
variables to be detailed below has been successful). We need to implement a distributed check
of the truth of quantifier-free formula R on such an assignment. The key is to ensure that some
clause Cj from the disjunctive normal form of R is chosen uniformly on the entire graph and to
check everywhere that each terms of Cj is locally correct given the assignment. For 1 ≤ j ≤ d,
let Tj = Sλ(n) × {j} (recall that d is the number of clauses in the disjunctive normal form of
R(x1

1, . . . , x
kn
n)). We again use notation π to denote the natural projection from Tj onto Sλ(n),

which removes the last component of states. Tj sates will be used to check clause Cj .
We can now define the state set of the CA τCA(Ψ) as

S = {e0, e1} ∪
⋃

1≤l≤λ(n)

Sl ∪
⋃

1≤j≤d

Tj

where e1 and e2 are distinct elements from the rest of S. We say that the type of an element of S
is l if it belongs to Sl, error if it is e0 or e1 and j-truth-check if it belongs to Tj. We also naturally
extend the notation Vi, χi and Ki for any state s ∈ Tj by Vi(s) = Vi(π(s)), χi(s) = χi(π(s)) and
Ki(s) = Ki(π(s)).

A configuration c ∈ SV is valid if the following conditions hold:

• states of all pairs of neighboring vertices of G are of the same type, and not of error type;

• choice layer χi of all pairs of neighboring vertices of G are equal;

• at each vertex v the control layers have zeros where the corresponding variable layers indi-
cated by the choice layers have, precisely: Ki(cv) ≤ V

χi(cv)
i (cv) for all i such that Ki(cv) is

10

defined (intuitively, a 1 in a control layer is authorized only if their is a 1 in the ’chosen’
component of the corresponding variable layer);

Note that this definition of validity is purely local. For µ a capped multiset (second argument of
the local rule of a CA), we write valid(µ) to express the local validity conditions above on µ: the
first two item are checked on each pair of states (s, s′) such that µ(s, ǫ) ≥ 1 and µ(s′, δ) ≥ 1 for
some δ ∈ ∆; the third item is checked on state s such that µ(s, ǫ) ≥ 1.

CA local rule. The behavior of the CA local rule f = τCA(Ψ) can intuitively be described
as follows:

• check the local validity of the configuration and if not generate states of error type that
alternate with period 2 (between e0 and e1),

• apply projection π on states of type l with l ≥ 2 and let states of type 1 unchanged,

• on states of type j-truth-check, verify that the assignment of variables x1
1, . . . , x

kn
n coded

in variable layers V
j
i are such that Cj(x

1
1, . . . , x

kn
n) holds, and apply π if it is the case, or

generate an error state otherwise.

Of course, the behavior on states of type j-truth-check above has to be understood locally
since we are defining a CA. The implementation of this distributed truth check is as follows: each
term t(xb

a, x
q
p) appearing in clause Cj (an atomic formula or its negation), where xb

a is a first-order
variable, is checked only at any vertex having a V b

a component at 1, otherwise it is considered
true by default. More precisely, for a pair (σ, µ) made of a vertex label and a capped multiset
(arguments of the local rule f), we write (σ, µ) |=loc Cj (clause Cj is locally valid) if the local
state (unique s such that µ(s, ǫ)) is of type j-truth-check and the neighboring states also, and if
all terms of Cj are locally true according to the previous rule. It turns out that (σ, µ) |=loc Cj can
be checked by a local rule of CA of radius 1 and using 1-capped multisets (i.e. sets). Precisely,
all possible terms of clause Cj are treated as follows (denoting again s the unique state such that
µ(s, ǫ) ≥ 1):

• xb
a Lσ′ (resp. its negation) is true if and only if V b

a (s) = 0 or if σ = σ′ (resp. σ 6= σ′),

• xb
a Eδ x

q
p (resp. its negation) is true if and only if V b

a (s) = 0 or if 1 ∈ {V q
p (q

′) : µ(q′, δ) ≥ 1}
(resp. 1 does not belong to this set),

• xb
a = xq

p (resp. its negation) is true if and only if V b
a (s) = 0 or V q

p (s) = 1 (resp. V q
p (s) = 0),

• xb
a ∈ xq

p (resp. its negation) is true if and only if V b
a (s) = 0 or V q

p (s) = 1 (resp. V q
p (s) = 0).

For t a term, we write (σ, µ) |=loc t if t is locally true according to the above definition. Recall
that xb

a is a first order variable and the rest of the construction will ensure that, on configurations
that matter, there will always exist a node at which V b

a (s) = 1 so these tests will actually check
that the assignments of variables encoded in the configuration do satisfy the term as desired.

The CA local rule f is then defined as follows (denoting again s the unique state such that
µ(s, ǫ) ≥ 1):

f(σ, µ) =

e1−i if s = ei

e0 otherwise, and if ¬valid(µ),

e0 otherwise, and if s has type j-truth-check and (σ, µ) 6|=loc Cj ,

s otherwise, and if s is of type 1,

π(s) otherwise.

11

FO formula. Most of the task of the FO formula is to check that n configurations are well-
positioned in an orbit leading to a fixed-point. However, along this orbit, we also have to make
checks to ensure that layers corresponding to first-order variables are well formed. For i ∈ O, the
CA behavior already ensures (by generating error states if not) that choice layers χi are uniform
and that control layers Ki are upper-bounded by the chosen corresponding variable layer V

j
i . In

this context, the check is done as follows (intuitively, variable yi represents a configuration of type
λ(i) at each vertex, for some i ∈ O):

goodFOVAR(yi)
def
= ∀y, ∀y′, (yi →2

6= y′ ∧ y →2
6= y′)⇒ #siblings(y) = 1,

where the formula #siblings(y) = 1 expresses that there is exactly 1 configuration other than
y with same image as y and can be written explicitly in FO as follows:

∃ys, ∃y+, ys → y+ ∧ y → y+ ∧ ys 6= y ∧ (∀y′ : y′ → y+ ⇒ (y′ = y ∨ y′ = ys)).

The idea is that a variable layer Vi is good if, for any choice j made in choice layer χi, there are
only 2 possible ways to correctly complete the control layer Ki, because there is exactly one vertex
v at which V

j
i is 1 and therefore at which Ki can be freely chosen to be 0 or 1.

Let us now define formulas to deal with the global structure of the orbit leading to a fixed
point:

seq1(y)
def
=

{

y → y if 1 6∈ O,

∃y0, y →2
6= y0 ∧ y0 → y0 ∧ goodFOVAR(y) if 1 ∈ O,

and for any 2 ≤ i ≤ n

seqi(y, y
+)

def
=

{

y+ → y if i 6∈ O

y+ →3
6= y ∧ goodFOVAR(y+) if i ∈ O

.

Then, denote by goodi(y
1, . . . , yi) for each 1 ≤ i ≤ n the formula:

goodi(y
1, . . . , yi)

def
= seq1(y

1) ∧
∧

2≤k≤i

seqk(y
k−1, yk).

The truth check for R has to make a non-deterministic choice of clause Cj to then use the
distributed truth check implemented in the CA, we therefore define the following formula to be

used in φ: truth(y)
def
= ∃y′ → y which make sense when y represents a configuration everywhere

of type λ(n).
As we show later, formula goodi(y

1, . . . , yi) paired with CA F ensures that the configuration
assigned to yi is a well-formed configuration of type λ(i) that holds an assignment for variables
(x1

i , . . . , x
ki

i) through its variable components V 1
i , . . . , V

ki

i . We use these formulas in φ to make
restricted domain FO quantifications that exactly correspond to well-formed configurations that
hold assignments of the corresponding MSO variables.

To make the formula φ more readable, we use the following syntactic sugar to express restricted
domain quantification. If φD and φ are formulas containing y as free variable, then:

• ∃y ∈ φD, φ stands for ∃y, φD ∧ φ,

• ∀y ∈ φD, φ stands for ∀y, φD ⇒ φ.

We can finally define FO formula φ = τFO(Ψ):

φ
def
= Q′

1y
1 ∈ good1(y

1),Q′
2y

2 ∈ good2(y
1, y2), . . . ,Q′

ny
n ∈ goodn(y

1, . . . , yn), truth(yn)

where the FO quantifier Q′
i is ∃ if the MSO quantifier Qi is existential, and ∀ if Qi is universal.

12

Correctness of the construction. First, it can be checked that φ only depends on the
prefix of Ψ and not on R. Second, the construction of f and φ are clearly computable from Ψ.
The proof of Theorem 5 then relies on two lemmas. The first one ensures that goodi(. . .) predicates
correctly translate assignments of FO variables quantified in φ into assignments of MSO variables
quantified in Ψ and conversely.

Lemma 6. Let G be a (Σ,∆)-labeled graph which is connected. Consider configurations c1, . . . , ci

with 1 ≤ i ≤ n such that FG,f |= goodi(c
1, . . . , ci), then the following holds:

1. ck is of type λ(k) at each vertex, for 1 ≤ k ≤ i;

2. for 1 ≤ l ≤ i and 1 ≤ j ≤ kl, variable component V j
l (c

k) is the same for all k with l ≤ k ≤ i,
and it is such that exactly one vertex is in state 1 when l ∈ O ;

3. if i < n, for any assignment α of variables (x1
i+1, . . . , x

ki+1

i+1) there exists ci+1 such that

FG,f |= goodi+1(c
1, . . . , ci+1)

and V
j
i+1(c

i+1) = α(xj
i+1) for all 1 ≤ j ≤ ki+1.

Proof. For the first item, we have FG,f |= seq1(c
1) so c1 must be a fixed point if 1 6∈ O and therefore

is of type 1 = λ(1) at each vertex because, on any other type of configuration, their is some vertex
not in a state of type 1 at which F either applies projection π, or generates an error state. In
case 1 ∈ O, F 2(c1) must be a fixed point for the same reason and therefore c1 is of type λ(1) = 3
at each vertex by definition of F since no transition generating an error state can lead to c1 and
therefore only π can be applied at each vertex. More generally, since FG,f |= goodi(c

1, . . . , ci)
implies FG,f |= seqk(c

k−1, ck) for all 2 ≤ k ≤ i, it follows that configuration ck is of type λ(k) at
each vertex because c1 lies in its orbit (is reached after precisely λ(k) − λ(1) steps) and therefore
no error state can appear in this orbit, so only π is applied until reaching c1.

For the second item, consider configuration cl for l ∈ O. Since FG,f |= seql(c
l−1, cl) if l ≥ 2 or

FG,f |= seql(c
1) if l = 1, we in particular have FG,f |= goodFOVAR(cl), so for each configuration c

such that F 2(cl) = F 2(c) it holds that c has exactly one sibling configuration. We know that if c′

is c or its sibling then it is a valid configuration (because there is no error state in its orbit which

reaches the same fixed point as cl), so we have Kl(c
′
v) ≤ V

χl(c
′
v)

l (c′v) at each node v. We also have
that χl(c

′
v) is uniform on the entire graph, because the graph is connected and thus if two vertices

hold different values, then there would also be two neighboring vertices holding different values
which would contradict validity of the configuration. We deduce that there is exactly one vertex

v such that V
χl(c

′
v)

l (c′v) = 1 otherwise c would not have exactly one sibling.
Finally, for the third item, it is enough to complete configuration ci of type λ(i) everywhere

as shown above to a configuration ci+1 of type λ(i + 1) everywhere which correctly encode as-
signed values in its Vi+1 layer (which is completely independent from ci). It is enough to ensure
FG,f |= seqi+1(c

i, ci+1) when i+ 1 6∈ O. In the case where i+ 1 ∈ O, we have to additionally
ensure that the choice layer χi+1 is uniform and we can choose the control layer to be every-
where 0 so that ci+1 is indeed valid. Clearly FG,f |= goodFOVAR(ci+1) with this choices, so we
have FG,f |= seqi+1(c

i, ci+1). In both cases we deduce FG,f |= goodi+1(c
1, . . . , ci+1), because by

hypothesis we already have FG,f |= goodi(c
1, . . . , ci).

From the above lemma, if FG,f |= goodi(c
1, . . . , ci) then ci codes an assignment for all MSO

variables x
j
l for 1 ≤ l ≤ i and 1 ≤ j ≤ kl through components V

j
l of ci. Precisely, when l ∈ O

variable x
j
l is assigned to the unique vertex v such that V j

l (c
i
v) = 1, and when l 6∈ O variable x

j
l is

assigned to the set of vertices {v : V j
l (c

i
v) = 1}. We denote this assignment by αci . Moreover, αci

is an extension of assignment αcj for any 1 ≤ j < i.
Next lemma ensures that truth(. . .) predicate correctly codes truth of formula R(. . .) (matrix

of Ψ) through the previous assignment translation.

13

Lemma 7. Under the hypothesis of Lemma 6, it holds that FG,f |= truth(cn) if and only if
(G,αcn) |= R(x1

1, . . . , x
kn
n).

Proof. First, by Lemma 6, cn is of type λ(n) at each vertex and is a valid configuration. If c is
a pre-image of cn, it must be valid (no error state in cn) and of type j-truth-check for some j

for all vertices because the graph is connected (otherwise there would be two neighboring nodes
with different types, contradicting local validity). It must also be the case that, at each vertex
v, (σ, µ) |=loc Cj where σ = L(v) and µ = P (c, v, 1, 1). Now consider any term t of clause Cj

with first-order free variable xb
a and another free variable xv

u, and let v be the unique vertex such
that V b

a (cv) = 1, which is v = αcn(x
b
a). By definition of f , it must be the case that (G,αcn) |= t

(straightforward case analysis on atomic formulas). Since this holds for all terms of Cj and since
R is a disjunction of clauses Cj , we deduce (G,αcn) |= R(x1

1, . . . , x
kn
n).

Conversely, if (G,αcn) |= R(x1
1, . . . , x

kn
n), then by definition there must some j such that

(G,αcn) |= Cj(x
1
1, . . . , x

kn
n). Let c be the configuration of type j-truth-check everywhere such

that π(c) = cn (where π is the map applying π at all vertices). We claim that FG,f (c) = cn which
implies FG,f |= truth(cn). Indeed, considering any term t appearing in Cj and any node v, and
denoting σ = L(v) and µ = P (c, v, 1, 1), we have:

• (σ, µ) |=loc t if v is the assignment of the leftmost free variable appearing in t since (G,αcn) |= t,

• (σ, µ) |=loc t by definition otherwise.

We deduce that (σ, µ) |=loc Cj and therefore that FG,f applies projection π at each vertex v on c,
proving the claim.

The proof of Theorem 5 then consists in applying inductively the definition of truth by assign-
ments of variables simultaneously in Ψ and φ, use Lemma 7 as base case and Lemma 6 for the
induction step to translate assignments between MSO variables and FO variables.

Proof of Theorem 5. Consider any (Σ,∆)-labeled graph which is connected. For 1 ≤ i ≤ n+ 1, de-
note by φi the subformula of φ starting from the ith quantifier (and without quantifier if i = n+ 1):

φi
def
= Q′

iy
i ∈ goodi(y

1, . . . , yi), . . . ,Q′
ny

n ∈ goodn(y
1, . . . , yn) : truth(yn)

and by Ψi the subformula of Ψ starting from the ith alternation of quantifiers:

Ψi
def
= Qix

1
i , . . . ,Q

ki

i xki

i , . . . ,Qnx
1
n, . . . ,Qnx

n
n : R(x1

1, . . . , x
kn
n).

φ1 = φ and Ψ1 = Ψ and for i > 1 the free variables of φi are y1, . . . , yi−1 and those of Ψi are
x1
1, . . . , x

ki−1

i−1 .

Suppose first that FG,f |= φ. We show by induction from i = n+ 1 downto 1 that the follow-

ing holds (Hi):

for all configurations c1, . . . , ci−1, if FG,f |= goodi−1(c
1, . . . , ci−1) and

FG,f |= φi(c
1, . . . , ci−1) then (G,αci−1) |= Ψi

(to be understood without configuration and without assignment when i = 1). Recall that assign-
ment αci−1 is well-defined thanks to Lemma 6. This implies G |= Ψ since φ1 = φ and Ψ1 = Ψ.

• the base case directly follows from Lemma 7 since φn+1 is exactly truth(yn) and Ψn+1 is
exactly R(x1

1, . . . , x
kn
n);

• for the induction step, suppose that the hypothesis (Hi) holds and consider c1, . . . , ci−2 such
that FG,f |= goodi−2(c

1, . . . , ci−2) and FG,f |= φi−1(c
1, . . . , ci−2).

14

– if Q′
i−1 = ∀, then FG,f |= φi−1(c

1, . . . , ci−2) means that for all configuration ci−1 such
that FG,f |= goodi−1(c

1, . . . , ci−1) it holds that FG,f |= φi(c
1, . . . , ci−1), and then by

(Hi) it also holds that (G,αci−1) |= Ψi. By item 3 of Lemma 6, this implies (G,α) |= Ψi

for any assignment α extending αci−2 to variables (x1
i−1, . . . , x

ki−1

i−1). Now since Qi−1 is
a universal quantifier, this precisely means (G,αci−2) |= Ψi−1.

– if Q′
i−1 = ∃, then FG,f |= φi−1(c

1, . . . , ci−2) means that there exists a configuration
ci−1 such that FG,f |= goodi−1(c

1, . . . , ci−1) and FG,f |= φi(c
1, . . . , ci−1), and then by

(Hi) it also holds that (G,αci−1) |= Ψi. But αci−1 is some extension of assignment αci−2

to variables (x1
i−1, . . . , x

ki−1

i−1). Thus, since Qi−1 is an existential quantifier, we actually
have (G,αci−2) |= Ψi−1.

Suppose now that G |= Ψ. We show by induction from i = n+ 1 downto 1 that the following

holds (H ′
i):

for any assignments αi−1 of variables x1
1, . . . , x

ki−1

i−1 , (G,αi−1) |= Ψi implies that for all
configurations (c1, . . . , ci−1) such that FG,f |= goodi−1(c

1, . . . , ci−1) and αci−1 = αi−1, it
holds that FG,f |= φi(c

1, . . . , ci−1)

(to be understood without free variable and without assignment when i = 1). This implies
(GF) |= φ since φ1 = φ and Ψ1 = Ψ.

• the base case directly follows from Lemma 7 since φn+1 is exactly truth(yn) and Ψn+1 is
exactly R(x1

1, . . . , x
kn
n).

• for the induction step, suppose that the hypothesis (H ′
i) holds and consider an assignment

αi−2 of variables x1
1, . . . , x

ki−1

i−1 such that (G,αi−2) |= Ψi−1

– if Qi−1 = ∀, then FG,f |= φi−1(c
1, . . . , ci−2) means that for all assignments αi−1 ex-

tending αi−2 to variables x1
i−1, . . . , x

ki−1

i−1 we have (G,αi−1) |= Ψi. So by hypothe-
sis (H ′

i) we also have FG,f |= φi(c
1, . . . , ci−1) for all configurations (c1, . . . , ci−1) such

that FG,f |= goodi−1(c
1, . . . , ci−1) and αci−1 = αi−1. Since Q′

i is universal with do-
main restriction by goodi−1(. . .), and because FG,f |= goodi−1(c

1, . . . , ci−1) implies
FG,f |= goodi−2(c

1, . . . , ci−2), this actually means that, for all configurations (c1, . . . , ci−2)
such that FG,f |= goodi−2(c

1, . . . , ci−2) and αci−1 = αi−1, it holds that FG,f |= φi−2(c
1, . . . , ci−2).

We thus have proven (H ′
i−1).

– if Qi−1 = ∃, then FG,f |= φi−1(c
1, . . . , ci−2) means that there is an assignment αi−1

extending αi−2 to variables x1
i−1, . . . , x

ki−1

i−1 with (G,αi−1) |= Ψi. So, by hypothesis
(H ′

i), we also have FG,f |= φi(c
1, . . . , ci−1) for all configurations (c1, . . . , ci−1) such that

FG,f |= goodi−1(c
1, . . . , ci−1) and αci−1 = αi−1. But for any configurations (c1, . . . , ci−2)

such that FG,f |= goodi−1(c
1, . . . , ci−2) there is a configuration ci−1 such that FG,f |= φi(c

1, . . . , ci−1)
and αci−1 = αi−1 by item 3 of Lemma 6. Since Q′

i−1 is existential with domain restric-
tion by goodi−1(. . .) this actually means that for all configurations (c1, . . . , ci−2) such
that FG,f |= goodi−1(c

1, . . . , ci−2) it holds that FG,f |= φi−1(c
1, . . . , ci−2). We have

thus proven (H ′
i−2).

Generalizing to arbitrary graphs. In the previous construction, we use the fact that con-
sidered graphs are connected in two places: to ensure uniformity of choice layers χi and to ensure
a uniform choice of j for testing clause Cj with states of type j-truth-check. When generalized
to possibly disconnected graphs, such uniformity conditions cannot be checked by the CA alone,
simply because the CA has no possibility to communicate between connected components. We
can compensate this impossibility by slightly changing the behavior of F and adding new FO
constraints in the definition of φ. The price to pay is that the new definition of φ will depend on
all parts of Ψ, not only its prefix signature.

15

First, the case of choice layers χi can be solved easily by de-grouping variables x1
i to xki

i , i.e.
renumbering variables in the prefix of Ψ by letting ki = 1 and taking

∑

1≤i≤n ki as the new value
of n. Then, choice layers become trivial (they contain just one state) and are therefore always
uniform by definition.

To solve the case of truth check, we introduce a general pre-image counting trick to ensure
that a configuration c is uniform by a FO property. First, each state s of the alphabet S used by
c is associated to a distinct prime number ps, and there is a probing mechanism that selects a set
of vertices and allows exactly ps predecessors at selected vertices which are in state s, and only 1
at vertices which are not selected. The trick to check that c is s-uniform then consists in counting
the number of pre-images up to maxs′∈S ps′ : whatever the set of selected vertices, it should always
be a power of ps.

Theorem 8. There are two recursive transformations τFO from MSO formulas to FO formulas
and τCA from MSO formulas to CA local rules such that for any MSO formula Ψ, and any graph
G the following equivalence holds: G |= Ψ if and only if FG,τCA(Ψ) |= τFO(Ψ).

Using notations from the construction of Theorem 5, let us now describe precisely the mod-
ifications required to generalize to arbitrary graphs. As explained above, we assume ki = 1 for
all 1 ≤ i ≤ n, so choice layers χi are always trivial and uniform. States of type l for 1 ≤ l ≤ λ(n)
are identical as in the construction of Theorem 5. However, we need additional states to imple-
ment the truth check for the matrix R of formula Ψ, and it will spread over 3 time steps of the
CA. The key is to ensure that some clause Cj from the disjunctive normal form of R is chosen
uniformly on the entire graph and to check everywhere that each terms of Cj is locally correct
given the assignment. Let 2 = p1 < p2 < · · · < pd be the first d prime numbers. For 1 ≤ j ≤ d, let
T 0
j = Sλ(n) × {j} and T 1

j = T 0
j × {0, 1} and T 2

j = T 1
j × {1, . . . , pj}. T 1

j is used to mark vertices,
while T 2

j is used to alter the number of preimages depending on j and the mark. We use the
notation π to denote at the same time the natural projection from T 0

j onto Sλ(n), or from T 1
j onto

T 0
j or from T 2

j onto T 1
j , which removes the rightmost component of states. T 0

j sates will be used
to check clause Cj , while states from T 1

j and T 2
j will be used to guarantee through a pre-image

counting trick that the same choice of j is made on the entire graph, thus ensuring correctness of
the truth check of formula R.

We can now define the state set of the CA local rule τCA(Ψ) as

S = {e0, e1} ∪
⋃

1≤l≤λ(n)

Sl ∪
⋃

1≤j≤d

T 0
j ∪ T 1

j ∪ T 2
j .

We say that the type of an element of S is l if it belongs to Sl, error if it is e0 or e1 and (j,m)-
truth-check if it belongs to Tm

j for 1 ≤ j ≤ d and m = 0, 1 or 2.
A configuration c ∈ SV is valid if the following conditions hold:

• states of all pairs of neighboring vertices of G are of the same type, and not of error type;

• at each vertex v the control layers have zeros where the corresponding variable layers indi-
cated by the choice layers have, precisely: Ki(cv) ≤ V

χi(cv)
i (cv) for all i such that Ki(cv) is

defined (intuitively, a 1 in a control layer is authorized only if their is a 1 in the ’chosen’
component of the corresponding variable layer);

• for a state (s,m,w) ∈ T 2
j where s ∈ T 0

j , m ∈ {0, 1} and w ∈ {1, . . . , pj}, it must be the case
that w = 1 whenever m = 0 (this condition expresses intuitively, that only marked vertices
can generate preimages and it will allow through a preimage counting trick in the FO formula
to ensure that the choice to check truth of clause j is coherent on the entire graph).

We write valid(µ) when the capped multiset µ represents a locally valid neighborhood according
to the above conditions.

16

The modified CA local rule f is almost identical as the one from Theorem 5 and defined as
follows (denoting again s the unique state such that µ(s, ǫ) ≥ 1):

f(σ, µ) =

e1−i if s = ei

e0 otherwise, and if ¬valid(µ),

e0 otherwise, and if s has type (j, 0)-truth-check and (σ, µ) 6|=loc Cj ,

s otherwise, and if s is of type 1,

π(s) otherwise.

The key aspect of this new construction is that the correctness of the distributed truth check
implemented in the CA above by states of type (j,m)-truth check rely on a modification of the
considered FO formula. Let preimgj(y) be a FO formula expressing that the number of pre-images
of y is either > pd or a multiple of pj . We use the following modified definition of formula truth(y):

truth(y)
def
=

∨

1≤j≤d

∃yj : yj → y ∧
(

∀y′ : y′ → yj ⇒ preimgj(y
′)
)

which intuitively makes sense when y represents a configuration everywhere of type λ(n), so
yj represents of configuration of type (j, 0)-truth check everywhere. We this new definition of
truth(y), we introduce a strong dependence of the FO-formula on the matrix part of Ψ (by the
presence of d for instance), which was not the case in Theorem 5.

The final FO formula φ is defined exactly as in Theorem 5 but using this modified version of
truth(y):

φ
def
= Q′

1y
1 ∈ good1(y

1),Q′
2y

2 ∈ good2(y
1, y2), . . . ,Q′

ny
n ∈ goodn(y

1, . . . , yn) : truth(yn)

where the FO quantifier Q′
i is ∃ if the MSO quantifier Qi is existential, and ∀ if Qi is universal.

The proof of Theorem 8 is based on two lemmas adapted from Lemma 6 and 7, and can
be copied word for word from the proof of Theorem 5, but simply removing the connectedness
hypothesis.

Lemma 9. Let G be a (Σ,∆)-labeled graph. Consider configurations c1, . . . , ci with 1 ≤ i ≤ n such
that FG,f |= goodi(c

1, . . . , ci), then the following holds:

1. ck is of type λ(k) at each vertex, for 1 ≤ k ≤ i;

2. for 1 ≤ l ≤ i and 1 ≤ j ≤ kl, variable component V
j
l (c

k) is the same for for all k with
l ≤ k ≤ i, and it is such that exactly one vertex is in state 1 when l ∈ O ;

3. if i < n, for any assignment α of variables (x1
i+1, . . . , x

ki+1

i+1) there exists ci+1 such that

FG,f |= goodi+1(c
1, . . . , ci+1)

and V
j
i+1(c

i+1) = α(xj
i+1) for all 1 ≤ j ≤ ki+1.

Proof. Straightforward adaptation from the proof of Lemma 6, where χi components are by defi-
nition uniform since ki = 1 so that we don’t use the hypothesis of connectivity on the graph.

Lemma 10. Under the hypothesis of Lemma 9, it holds that FG,f |= truth(cn) if and only if
(G,αcn) |= R(x1

1, . . . , x
kn
n).

Proof. First, by Lemma 9, the hypothesis implies that cn is of type λ(n) at each vertex and is a
valid configuration. If c is a pre-image of cn, it must be valid (because no error state appears in
cn), as well as any of its preimage, and any preimage of its preimage.

17

Suppose now that FG,f |= truth(cn). We claim that any pre-image c of cn must be of type
(j, 0)-truth-check at every vertex for some j (i.e. of uniform type on the entire graph). Indeed, if
it were not the case, there would exist two vertices v and v′ such that c is of type (j, 0)-truth-check
at v and of type (j′, 0)-truth-check at v′ with j 6= j′. Thus c would have a preimage c′ where only
v is marked which would have exactly pj preimages, and another c′′ where only v′ is marked which
would have exactly pj′ preimages, thus contradicting FG,f |= truth(cn).

It must also be the case that, at each vertex v, (σ, µ) |=loc Cj where σ = L(v) and µ =
P (c, v, 1, 1), because FG,f applied on c checks this condition and cn contains no error. Now
consider any term t of clause Cj with first-order free variable xb

a and another free variable xv
u, and

let v be the unique vertex such that V b
a (cv) = 1, which is v = αcn(x

b
a). By definition of f , it must

be the case that (G,αcn) |= t (straightforward case analysis on atomic formulas). Since this holds
for all terms of Cj and since R is a disjunction of clauses Cj , we deduce (G,αcn) |= R(x1

1, . . . , x
kn
n).

Conversely, if (G,αcn) |= R(x1
1, . . . , x

kn
n), then by definition there must some j such that

(G,αcn) |= Cj(x
1
1, . . . , x

kn
n). Let c be the configuration of type (j, 0)-truth-check everywhere such

that π(c) = cn (where π is the map applying π at all vertices). We claim that FG,f (c) = cn which
implies FG,f |= truth(cn) (because clearly all preimages of c have a number of preimages which
is a power of pj by construction). Indeed, considering any term t appearing in Cj and any node
v, and denoting σ = L(v) and µ = P (c, v, 1, 1), we have:

• (σ, µ) |=loc t if v is the assignment of the leftmost free variable appearing in t since (G,αcn) |= t,

• (σ, µ) |=loc t by definition otherwise.

We deduce that (σ, µ) |=loc Cj and therefore that FG,f applies projection π at each vertex v on c,
proving the claim.

4 Consequences on FO model checking for CA

A set of (Σ,∆)-labeled graphs, or graph language, is MSO-definable if it is of the form G(Ψ) for
some MSO formula Ψ. It is FOCA-definable if it is of the form G(φ, f) for some FO formula φ

and some CA local rule f . From Theorem 8, we get the following immediate corollary.

Corollary 1. MSO-definable and FOCA-definable graph languages are the same.

Since the translations given in Section 3 are effective, we also obtain equivalence of model
checking problems. Using [33], this gives a characterization of decidability of FO model checking
for CA orbits on f.g. groups.

Corollary 2. On any fixed graph, FO model checking for CA is many-one equivalent to MSO
model checking. In particular, FO-model checking for CA on a f.g. group Γ is decidable if and
only if Γ is virtually free.

We can get a more precise result on graphs of bounded degree, but we need an additional
lemma in order to apply Theorem 5. It is well-known that undecidability in MSO can be obtained
using the MSO-definability of grids and encoding Turing-computations on it [17]. Moreover, MSO
on bounded degree graphs actually allows to code quantification on edge sets and not only vertex
sets [16], so that we can express the grid minor relation (and not only the fact that a fixed graph
is a minor). The following lemma doesn’t use any new idea, but it ensures the fact that all
this encoding process can be done within a fixed prefix signature. It also gives a variant of the
construction for Σ1

1-hardness (see [41]) using infinite grids and the recurring domino problem [25].
A n× n-grid (or simply a grid when n is not specified), is the directed finite graph with vertices

{(i, j) : 1 ≤ i, j ≤ n} and edges the set of pairs
(

(i, j), (i+ 1, j)
)

(the east edges) for 1 ≤ j ≤ n and
1 ≤ i < n, and pairs

(

(i, j), (i, j + 1)
)

(the north edges) for 1 ≤ j < n and 1 ≤ i ≤ n. A ∞-grid is
the infinite directed graph with vertices N× N and same north/east adjacency relation.

18

Lemma 11. Fix some D. There exists a fixed quantifier prefix signature ρ for MSO such that, for
any graph G of degree at most D that contains arbitrarily large grid as minors, deciding whether a
given MSO formula in prenex form with prefix signature ρ is satisfied on G is undecidable. There
also exists a fixed quantifier prefix signature ρ′ for MSO such that, for any graph G of degree at
most D that contains a ∞-grid as minor, deciding whether a given MSO formula in prenex form
with prefix signature ρ′ is satisfied on G is Σ1

1-hard.

Proof. In this proof, label sets Σ and ∆ play no role as we will work on the underlying undirected
unlabeled graph of G. So to simplify the proof, let’s suppose that G is undirected and that Σ and
∆ are singletons. The necessity to have orientation inside grids to encode computation is recovered
from the undirected graph G through MSO by introducing adequate colorings. More precisely,
an oriented grid is represented by a set of vertices X , a formula Ψadj(x1, x2) substituted for an
undirected adjacency relation on X , and a coloring on X , i.e. a tuple of sets Xgrid. We then have
an MSO formula Ψgrid such that Ψgrid(X,Ψadj, Xgrid) holds if and only if the graph represented
by X and Ψadj and Xgrid is isomorphic to an oriented grid. We also have formulas to test oriented
adjacency along the direction north and east, for instance Ψnorth(X,Ψadj, Xgrid, x1, x2) holds if
and only if x2 is at the north of x1 in the grid graph represented by X , Ψadj and Xgrid. We can
also identify each side of the grid with MSO formulas.

The minor relation is definable in MSO2, the extension of MSO allowing quantification over
vertices, set of vertices but also sets of edges. Indeed, given a set of vertices X and a set of
contracted edges Y and a set of suppressed edges Z, we can write the property that two vertices
x1 and x2 are neighbors in the minor graph induced by vertices X with contraction of edges Y

and suppression of edges Z by expressing that xi is connected to some x′
i through edges from Y

(for i = 1, 2) and that x′
1 is connected to x′

2 by an edge not in Z nor in Y .
On bounded degree graphs, MSO2 definability can actually be translated into MSO definability

[16] (see [17, Theorem 7.10 and Theorem 9.38] for more general results). The intuition is that it
is possible to express in MSO that some coloring on vertices has strong enough properties so that
an edge can be identified by a vertex and a color. This way a set of edges can be coded as a tuple
of set of vertices (the size of the tuple depends on the degree of the graph). We therefore have
an MSO formula Ψminor(X,XC , XD, x1, x2) expressing that x1 and x2 are neighbors in the minor
graph of G induced by set of vertices X and with contraction of edges coded via the tuple XC

and deletion of edges coded via the tuple XD.
Given a finite set S and sets of horizontal and vertical dominos Deast, Dnorth ⊂ S × S we

can express that a coloring of X by S represented through XS respects the horizontal (resp.
vertical) domino constraints on a pair x1, x2 of vertices by a simple disjunction of case on Deast

(resp. Dnorth) denoted Ψh(x1, x2, XS) (resp. Ψv(x1, x2, XS)). We also denote by ΨOK(X,XS)
the formula expressing that XS is a partition of X . It is well-known that this formalism for the
domino problem is equivalent to the Wang tile formalism through higher-block recoding (see proof
of Theorem 13 for details).

With this tools, we can first prove the first part of the lemma. Let us define formula Ψ
(depending on some given domino constraints) which expresses that any grid minor of G admits
a coloring by S respecting the horizontal and vertical domino constraints, precisely:

Ψ
def
= ∀X, ∀XC , ∀XD, ∀Xgrid,Ψgrid

(

X,Ψminor(X,XC , XD, x1, x2), Xgrid

)

⇒

∃XS,ΨOK(X,XS) ∧ ∀x1, ∀x2,

Ψnorth

(

X,Ψminor(X,XC , XD, x1, x2), Xgrid, x1, x2

)

⇒ Ψv(x1, x2,XS)

∧Ψeast

(

X,Ψminor(X,XC , XD, x1, x2), Xgrid, x1, x2

)

⇒ Ψh(x1, x2,XS)

Given a set of domino constraints it is undecidable whether G |= Ψ because it is equivalent
to the domino problem [9]: G has arbitrarily large grid minors and having correct coloring for
arbitrarily large grids as expressed by Ψ is equivalent to having a correct coloring for an infinite
grid by compacity.

Moreover, applying the standard logical transformation for the first implication, it can be
verified that Ψ has a prenex normal form starting by ∀X, ∀XC , ∀XD, ∀Xgrid, ∀XS followed by a

19

sequence of quantifiers which does not depend on S nor on the domino constraints. This means
that we can write the prenex normal form of Ψ with a fixed prefix signature when S and the
domino constraints vary.

Now, for the second part of the lemma, we use a reduction from a variant of the recurring
domino problem which gives Σ1

1-hardness (using the horizontal/vertical domino formulation in-
stead of Wang tiles). Precisely, the following problem is Σ1

1-hard for a fixed s0 (problem R2 of
[25]): deciding whether, for a given set of horizontal/vertical domino constraints with s0 ∈ S, there
is a coloring of the ∞-grid that satisfy the constraints and contains infinitely many occurrences of
s0 on the leftmost column.

To encode this problem, we first use an MSO formula Ψ∞(X,Ψadj, XS) expressing that:

1. the graph G(X,Ψadj) represented by X and Ψadj has a unique vertex of in-degree 0 denoted
x0;

2. for any induced (finite) grid in the graph G(X,Ψadj) with lower-left corner x0, there is a
strictly larger (finite) grid with the same lower-left corner such that:

• XS is a partition and satisfies domino constraints on the larger grid, and

• there is a vertex on the leftmost column of the larger grid, outside the smaller grid,
which is colored in s0 by the coloring XS .

We then consider the formula Ψ (depending on the domino constraints) which express that
there exists a minor of G and a coloring of it that satisfies Ψ∞:

Ψ
def
= ∃X, ∃XC , ∃XD, ∃XS : Ψ∞(X,Ψminor(X,XC , XD, x1, x2), XS).

First, it should be clear that Ψ has a prenex normal form where the prefix signature doesn’t
change when S and the domino constraints vary. Second, we claim that G |= Ψ if and only if
there exists a coloring of the ∞-grid satisfying the domino constraints and containing infinitely
many occurrences os s0 on the first column. Indeed, if there is such a coloring of the ∞-grid
and since the ∞-grid occurs as a minor of G, we can chose the corresponding variables quantified
existentially to represent exactly this minor and this coloring so that Ψ∞ will be satisfied. Con-
versely, if (G,α) |= Ψ∞(X,Ψminor(X,XC , XD, x1, x2), XS) for some assignment α of the variables
representing both a minor and a coloring, then we can extract a valid coloring of the ∞-grid with
infinitely many s0 on the leftmost column from the validity of Ψ∞: just consider coloring XS

on the sequence of larger and larger grids which extend each other and add at each step a new
occurrence of s0 on the leftmost column.

This lemma together with Theorem 5 gives undecidability of model checking for a fixed FO
formula expressed in the following corollary. For the first part of the corollary, we use the grid
minor theorem [40] to translate the statement of the lemma in terms of treewidth [39], and for
the second part, it is known that the Cayley graph of a f.g. group which is not virtually free has
a thick end (see [6]), hence it contains a ∞-grid as a minor by Halin’s grid theorem [24]. The
decidable part of the Corollary comes from [14, 36].

Corollary 3. Fix some D. There is a fixed FO formula φ such that for any connected graph
G of degree at most D, the set CA(G,φ) is computable if and only if G has finite treewidth.
Moreover, there is a FO formula φ′ such that for any Cayley graph G of a f.g. group with at most
D generators, the set CA(G,φ) is:

• computable if the group is virtually free,

• Σ1
1-hard otherwise.

20

In the context of modeling, it makes sense to consider distributed dynamical systems over arbi-
trary finite graphs. For instance automata networks (which are non-uniform CA on arbitrary finite
graphs) are a well-established model for its use in the study of gene regulation networks [43, 31].
The theory of automata networks has largely grown around FO properties of orbits (typically
fixed points) and their crucial dependence on the graph [38]. However, although many results deal
with computational complexity in automata networks [11, 21], no natural undecidability result
appeared so far to our knowledge. By our translation result from MSO, we can import Trakht-
enbrot’s theorem [19] to obtain an undecidability result for FO properties of CA orbits on finite
graphs. It can intuitively be formulated as follows in the context of modeling: it is undecidable to
know whether there is some finite interaction graph on which a given local interaction law (CA)
induces a given dynamical property (FO). By the way, this corollary doesn’t need Trakhtenbrot’s
theorem since we have all the expressive power of MSO (not only FO logic on graphs), and we
can obtain it for a fixed FO formula. For instance, it follows directly from Theorem 5 and the
techniques of Lemma 11 (see also [17, Theorem 5.6]).

Corollary 4. There exists a FO formula φ such that the following problem is undecidable: given
some input CA local rule f , decide whether there exists a finite graph G with FG,f |= φ.

Proof. Finite rectangular n×m-grids are MSO-definable [17, proof of Proposition 5.14] and their
lower-left and top-right corners are also MSO-identifiable. As in lemma 11, they are represented
through a coloring Xgrid and a set of vertices X . We can also easily express in MSO that some
Turing computation starts from the lower-left corner on an empty tape and finishes in an accepting
state exactly at the upper-right corner. Formally, a Turing machine computation is a coloring XS

of the grid respecting vertical and horizontal domino constraints. All this conditions being gathered
in a formula Ψhalt(X,Xgrid, XS), we can define formula Ψ expressing that the entire graph is a
grid that can hold a correct halting computation by:

∃X, ∃Xgrid, ∃XS ,Ψhalt(X,Xgrid, XS) ∧ ∀x, x ∈ X.

Since no quantification depending on S and the Turing computation appears in Ψhalt, it is clear
that Ψ can be written in prenex normal form with a fixed prefix signature when the Turing machine
varies. So we can apply Theorem 5 and effectively obtain a pair φ, f such that FG,f |= φ if and only
if G |= Ψ and φ doesn’t depend on the Turing machine considered. φ is the formula announced in
the corollary, and it is clear that G |= Ψ for some finite graph G if and only if the Turing machine
encoded in Ψ halts starting from the empty tape, and halts exactly at the rightmost ever visited
position of its tape. It remains to check that the halting problem with the additional condition
of halting at the rightmost visited position of the tape is undecidable, which is straightforward
by transforming any machine M (with a tape alphabet using a blank state which can only be
erased and never be written) to a new machine working as M but, as soon as M halts, launches
a terminal routing that moves the head to the right until reaching the first blank state before
stopping.

5 Cayley graphs and domino problems

The case of Cayley graphs of f.g. groups is particular for our approach in two relevant ways. First,
we can express in MSO that a set of vertices is infinite.

Lemma 12. For any D ≥ 1, there is an MSO formula Ψ(X) such that, on any Cayley graph G

of some f.g. group with D generators and any assignment α, it holds that (G,α) |= Ψ(X) if and
only if α(X) is infinite.

Proof. First, for any infinite set of vertices X , there is an oriented walk on the group passing at
most 2 times by any vertex and visiting infinitely many elements of X . To see this, consider any
spanning tree T of the Cayley graph rooted at an arbitrary vertex v0. At least one of the subtrees
of v0 contains infinitely many elements from X (finite degree of the Cayley graph): choose one

21

and choose one x ∈ X belonging to this subtree. Then let ρ be the path from v0 to x in T , and
let v be the last vertex of this path which possesses a subtree Tv with infinitely many elements
from X . Note that v can be v0 or x or another vertex, but in any case the subtree Tv is disjoint
from ρ. We define the start of the walk as follows: ρ from v0 to x, then back from x to v following
the inverse of ρ. We can then iterate this reasoning inside subtree Tv from v to obtain the desired
path.

To define a walk passing at most 2 times by any vertex, it is sufficient to code that each vertex
contains 0, 1 or 2 positions (corresponding to steps of the walk) and associate to each position
an outgoing direction δ ∈ ∆ and a number 1 or 2 indicating which of the two positions to go to
in the vertex pointed by direction δ. Such a walk can be represented by a tuple of second-order
variables Xwalk, and we can express by a formula ΨOK(Xwalk) that this tuple actually represents a
valid walk: each vertex contains at most 2 positions, each position has a successor, exactly one
position has no predecessor and all others have exactly one, and the walk is connected. We can
also express by a formula Ψreach(x1, x2, Xwalk) that vertex x2 is reached by the walk Xwalk starting
from x1, or x1 is outside the walk. From this, we have that the following formula Ψ(X) expresses
that X is infinite:

Ψ(X)
def
= ∃Xwalk,ΨOK(Xwalk) ∧ ∀x1, ∃x2 : x2 ∈ X ∧Ψreach(x1, x2, Xwalk).

It can be check that this formula only depends on ∆, so it works on any Cayley graph of f.g.
groups with generators renamed ∆.

From this lemma, it makes sense to extend the signature of FO logic with the addition of new
relation

∞
= on configurations which is at the heart of the ’Garden of Eden’ theorem [12]: we write

c
∞
= c′ whenever {v : cv 6= c′v} is finite. We denote by FO(

∞
=) the extension of FO signature by

adding relation
∞
=. By Lemma 12, this extension remains within MSO. Precisely, in any fixed

Cayley graph of a f.g. group and by a straightforward extension of Theorem 4, we can compute
from any formula in FO(

∞
=) and CA local rule, an equivalent MSO formula. We deduce that

FO(
∞
=) model checking for CA is decidable on some f.g. group exactly when MSO model checking

is, and exactly when FO model checking for CA is.
Besides, if Γ is a f.g. group and G1 and G2 two Cayley graphs of Γ with two different sets of

generators ∆1 and ∆2, then the definable CA global maps F : SΓ → SΓ are the same on G1 and
G2. More precisely, there is a computable translation τ on CA local maps such that for any local
map f for G1, it holds: FG1,f = FG2,τ(f). This simply comes from the fact that we can translate
∆1-walks into equivalent ∆2-walks.

Therefore, if φ is a FO formula, we have that the sets CA(φ,G1) and CA(φ,G2) are actually
Turing-equivalent. Said differently, by Theorem 4, any FO formula (actually any FO(

∞
=) formula)

defines a fragment of MSO logic whose model checking problem’s Turing degree is independent of
the choice of generators on a f.g. group Γ. It turns out that such fragments naturally capture the
domino problem and its classical variants.

Given some finite set S, a domino specification D is a set of pairs Dδ ⊆ S2 for each δ ∈ ∆.
A configuration c ∈ SV is said D-valid for some graph if for any v, v′ ∈ V it holds: (v, v′) ∈ Eδ

implies (cv, cv′) ∈ Rδ. The domino problem on a fixed graph, consists in deciding given D whether
there exists a D-valid configuration. The seeded domino problem consists in deciding given D and
s0 ∈ S whether there exists a D-valid configuration where s0 occurs at some vertex. Finally, the
recurring domino problem consists in deciding given D and s0 ∈ S whether there exists a D-valid
configuration where s0 occurs infinitely often.

Theorem 13. Fix any Cayley graph G of any f.g. group, then:

• domino problem ≡T ∃x, x→ x,

• seeded domino problem ≡T ∃x, ∃y, x→ x ∧ y → x ∧ x 6= y,

• recurring domino problem ≡T ∃x, ∃y, x→ x ∧ y → x ∧ ¬(x
∞
= y),

22

where ’≡T φ’ means Turing-equivalent to the set CA(φ,G) (model checking of φ for CAs on G).

Proof. In this proof Σ is a singleton and therefore omitted from CA local rules to simplify notations.
For the first item, given some domino specification D it is easy to define a CA local rule fD

whose fixed points are exactly D-valid configurations:

fD(µ) =

{

s if ∀δ, µ(s′, δ) > 0⇒ (s, s′) ∈ Dδ

s′ 6= s otherwise

where s denotes the unique state such that µ(s, ǫ) > 0.
Conversely, given a local rule f of radius r over state set S , we can define a domino specification

D over some state set S′ ⊆ SB(r) where B(r) denotes the ball of radius r in the graph. It is just
a matter of applying a higher-block recoding (a well-known technique in symbolic dynamics) and
restrict to local patterns of fixed points. Let S′ be the set of patterns on which the local rule f

doesn’t change the state (recall that on Cayley graphs of f.g. groups, µ gives the same information
as a pattern from SB(r)). Then the domino specification is defined by

(p, p′) ∈ Dδ ⇐⇒ ∀v, v′ ∈ B(r), (v, v′) ∈ Eδ ⇒ pv = p′v′

expressing that moving in direction δ can only change the state in a way compatible with trans-
lation of local patterns, or said differently, that the S′ configuration is the correct higher-block
recoding of some S configuration. It is clear that a D-valid configuration is just a higher-block
recoding of a fixed-point of f .

For the second and third items, given D over state set S and s0 ∈ S, we define fD,s0 over state
set S ∪ {t, e0, e1} (where t, e0, e1 are not in S), which duplicates state s0 in another state t and
use error states e0 and e1. Precisely:

fD,s0(µ) =

e1−i if s = ei

s0 otherwise and if s = t,

s otherwise and if ∀δ, µ(s′, δ) > 0⇒ (ρ(s), ρ(s′)) ∈ Dδ,

e0 otherwise.

where ρ : S ∪ {t} → S is the map that sends t to s0 and is the identity on S. Intuitively, this rule
checks domino constraints while considering t equal to s0 and transforms any occurrence of t to
s0. If a domino constraint is violated somewhere it generates an error state ei which will locally
oscillate with period two thus preventing forever the existence of a fixed point. One can check that
fixed point for fD,s0 are exactly the D-valid configuration: it cannot contain state t, nor any error
state, and must follow the Dδ constraints everywhere. Moreover, such a configuration possesses a
preimage other than itself if and only if it contains an occurrence of s0 which is replaced by t in
the preimage. Moreover, each vertex at which such a configuration differs from its preimage must
be in state s0 in the configuration and t in the preimage. Thus D, s0 is a positive instance of the
seeded (resp. recurring) domino problem if and only if fD,s0 satisfies formula of item two (resp.
item three).

Finally, consider some CA local rule f over state set S and define a new set of domino con-
straints D+ over state set S′ ⊆ SB(r) × SB(r) that uses higher-block recoding as above, but this
time to represent pairs of configuration (c, c′) such that c is a fixed-point and c′ is a pre-image of
c. Here S′ is the set of pairs of patterns over domain B(r) such that the first pattern of the pair
induces no change of state at position 0 by local rule f (i.e., locally a fixed point) and the second
pattern of the pair is such that its image under f is the state at position 0 of the first (i.e., locally
the second configuration is a preimage of the first). Then define S′

0 as the subset of S′ where
the state at position 0 differs between the first and second pattern. It then holds that D+-valid
configurations are exactly the higher-block recodings of pairs of configurations (c, c′) where c is a
fixed-point, c′ is a pre-image of c and, moreover, c and c′ differ at some vertex v if and only if

23

the D+-valid configuration is in some state from S′
0 at v. Therefore, it follows that FG,f satisfies

formula of item two if and only if D+, s0 is a positive instance of the seeded domino problem for
some element s0 ∈ S′

0 (hence a Turing reduction). Similarly, FG,f satisfies formula of item three if
and only if D+, s0 is a positive instance of the recurring domino problem for some element s0 ∈ S′

0

(hence a Turing reduction).

The recurring domino problem is Σ1
1-hard on Z

2 [25], as well as the model checking of the
corresponding FO(

∞
=) formula from Theorem 13. It is just an existential formula, but it crucially

uses relation
∞
=. We can actually also obtain Σ1

1-hardness on Z
2 with a pure FO formula with

just one quantifier alternation, using preimage counting trickery to check finiteness of a set and a
reduction from the recurring domino problem.

Theorem 14. The problem CA(φ,Z2) is Σ1
1-hard where φ is the following formula:

φ
def
= ∃y, y → y ∧ ∀y′, ∀y1, ∀y2, ∀y3, (y

′ 6= y ∧ y′ → y ∧
∧

i

yi → y′)⇒
∨

i6=j

yi = yj .

Proof. In plain English, formula φ requires the existence of a fixed point such that any of its pre-
images (distinct from it) has at most two pre-images. We proceed by reduction from the recurring
domino problem (problem R1 of [25]). Consider an instance (D, s0) of this problem over states set
S and let us describe a CA local rule f over states set S′, of radius 1 and using 1-capped multiset.
The states from S′ are error states or states made of at most three layers, precisely:

S′ = S ∪ S × S� ∪ S × S� × {0, 1} ∪ {e0, e1}

where e0 and e1 are error states as usual, and S� is used to code a particular set of configurations
through domino constraints D� (detailed below). The type of a state is either error, or its number
of layers (e.g. 2 for states from S × S�). The key property of D�-valid configurations is that they
either code a finite square zone with four corners where the interior can be distinguished from the
exterior, or they contain at most one corner (possibly corresponding to having an infinite square
with an infinite interior). More precisely, we define

S� = {N,S,E,W,Ed,Wd, I, Id, I
d, Cne, Cnw, Cse, Csw, ↓, ↑,←,→,ւ,ց,տ,ր}

where I and Id and Id are the interior states, and Cne, Cnw, Cse, Csw are corner states. D� is the
set of vertical and horizontal dominos appearing in this partial configuration:

ց ↓ ↓ ↓ ↓ ↓ ↓ ↓ ւ
→ ց ↓ ↓ ↓ ↓ ↓ ւ ←
→ → Cnw N N N Cne ← ←
→ → W I Id Id Ed ← ←
→ → W Id Id I E ← ←
→ → Wd Id I I E ← ←
→ → Csw S S S Cse ← ←
→ ր ↑ ↑ ↑ ↑ ↑ տ ←
ր ↑ ↑ ↑ ↑ ↑ ↑ ↑ տ

The index d in the above symbols mark a diagonal of the square (since we use only vertical and
horizontal domino constraints, we need to mark staircase diagonals). It should be clear that a
D�-valid configuration contains at most one occurrence of each corner state type, at most one
horizontal segment of N (resp. of S) and at most one vertical segment of Wd/W (resp. E/Ed).
Also a valid configuration with four corners contains finitely many occurrences of interior states.
Moreover, it can be checked by a simple case analysis that if two corners are present, then actually
four are present.

The behavior of f is essentially to let configurations of type 1 unchanged, to project S × S� × {0, 1}
onto S × S� and S × S� onto S. The local rule also verifies the following conditions (and generate
an error with period two oscillations between e0 and e1 if one condition is violated):

24

• two neighboring states must have the same type,

• a configuration using only states from S must represents a D-valid configuration,

• the S� component of a configuration of type 2 or 3 must be a D�-valid configuration,

• each occurrence of state s0 in the S component of states, must be at a vertex where the D�

component is in an interior state (I or Id or Id),

• a configuration of type 3 must be such that the {0, 1} component at any vertex is 0, except
when the S� component represents a corner, in which case it can be either 0 or 1 (at this
point the reader should see coming a preimage counting trick in order to count the number
of corners).

With these conditions, the only possible fixed-points are type 1 configuration representing a D-
valid configuration ; their pre-images must additionally contain a S� component representing a
D�-valid configuration ; and the number of possible pre-images of each such pre-image is 2k where
k is the number of corners in the S� component.

Therefore, a fixed-point such that each of its pre-image has at most 2 pre-images (like specified
in formula φ) is a configuration of type 1 such that it is impossible to form a pre-image with two
or more corners, i.e. such that it is impossible to form a pre-image with finitely many interior
states without generating an error state, and therefore it represents a D-valid configuration with
infinitely many occurrences of s0. Conversely, it is clear that for each D-valid configuration with
infinitely many occurrences of s0 we can construct a fixed point with the above properties.

6 Perspectives

We see several interesting research directions inspired by the approach taken in this work.
First, we believe that the dependence of φ on the degree or the number of generators in

Corollary 3 is an artifact that can be removed with more work in the proof of Lemma 11. The
same proof techniques should also provide hardness result at any level of the analytical hierarchy.

Then, this corollary should be put into perspective with the Ballier-Stein conjecture [6] saying
that the domino problem on a f.g. group is decidable if and only if the group is virtually free. On
one hand, it seems natural to ask whether the recurring domino problem (or its equivalent FO
formula from Theorem 13) can play the role of formula φ′ in Corollary 3. On the other hand, N.
Pytheas Fogg pointed us simple examples of 4-regular graphs having an ∞-grid as subgraph on
which the domino problem is decidable. So formula φ in Corollary 3 cannot be the FO formula
expressing the existence of a fixed point (Turing-equivalent to the domino problem), and we wonder
how simple such formula φ can be. Actually, we can ask a similar question for Corollary 4.

In general, we believe that the Turing degrees of FO-model checking problems for various
concrete formulas is worth being investigated. As mentioned above, the Turing degree of all such
model checking problems for a fixed FO formula is independent of the choice of generators on
f.g. groups, and we wonder how they change when changing the group among non virtually free
groups. Injectivity of CA is a natural candidate that received little attention to our knowledge
since the seminal result on Z

2 [29].
Finally, we believe that there exists a fixed CA rule f for which the FO-model checking problem

is undecidable on graph Z
2 (the rule is fixed, the formula is given as input). While we see the

proof ingredient to obtain this specifically for Z
2, we have no idea of whether it is always the case

that undecidability of FO model checking for CA orbits can be obtained for a fixed CA rule on
any f.g. which is not virtually free.

7 Acknowledgment

We thank anonymous referees for their feedback and their suggestions to improve the presentation.
We also warmly thank N. Pytheas Fogg for their hints about domino problems on regular graphs

25

and numerous stimulating discussions that inspired this work.

References

[1] S. Amoroso and Y.N. Patt. Decision procedures for surjectivity and injectivity of parallel
maps for tessellation structures. Journal of Computer and System Sciences, 6(5):448–464,
October 1972. doi:10.1016/s0022-0000(72)80013-8.

[2] Pablo Arrighi and Gilles Dowek. Causal graph dynamics. Information and Computation,
223:78–93, February 2013. doi:10.1016/j.ic.2012.10.019.

[3] Pablo Arrighi, Simon Martiel, and Vincent Nesme. Cellular automata over generalized
cayley graphs. Mathematical Structures in Computer Science, 28(3):340–383, May 2017.
doi:10.1017/s0960129517000044.

[4] Nathalie Aubrun, Sebastián Barbieri, and Emmanuel Jeandel. About the Domino Prob-
lem for Subshifts on Groups, pages 331–389. Springer International Publishing, 2018.
doi:10.1007/978-3-319-69152-7_9.

[5] Nathalie Aubrun, Sebastián Barbieri, and Etienne Moutot. The domino problem is un-
decidable on surface groups. Schloss Dagstuhl, Leibniz-Zentrum für Informatik, 2019.
doi:10.4230/LIPICS.MFCS.2019.46.

[6] Alexis Ballier and Maya Stein. The domino problem on groups of polynomial growth. Groups,
Geometry, and Dynamics, 12(1):93–105, March 2018. doi:10.4171/ggd/439.

[7] Laurent Bartholdi. The domino problem for hyperbolic groups, 2023. arXiv:2305.06952.

[8] Laurent Bartholdi and Ville Salo. Simulations and the lamplighter group. Groups, Geometry,
and Dynamics, 16(4):1461–1514, November 2022. doi:10.4171/ggd/692.

[9] R. Berger. The undecidability of the domino problem. Mem. Amer. Math Soc., 66, 1966.

[10] Elwyn R. Berlekamp, John H. Conway, and Richard K. Guy. Winning Ways for your Math-
ematical Plays, volume 2. Academic Press, 1982. chapter 25.

[11] Florian Bridoux, Amélia Durbec, Kevin Perrot, and Adrien Richard. Complexity of fixed
point counting problems in boolean networks. Journal of Computer and System Sci-
ences, 126:138–164, June 2022. URL: http://dx.doi.org/10.1016/j.jcss.2022.01.004,
doi:10.1016/j.jcss.2022.01.004.

[12] T. Ceccherini-Silberstein and M. Coornaert. Cellular automata and groups. Springer Mono-
graphs in Mathematics. Springer-Verlag, Berlin, 2010. doi:10.1007/978-3-642-14034-1.

[13] Bastien Chopard and Michel Droz. Cellular Automata Modeling of Physical Systems. Cam-
bridge University Press, December 1998. doi:10.1017/cbo9780511549755.

[14] Bruno Courcelle. The monadic second-order logic of graphs, ii: Infinite graphs
of bounded width. Mathematical Systems Theory, 21(1):187–221, December 1988.
doi:10.1007/bf02088013.

[15] Bruno Courcelle. The monadic second-order logic of graphs. i. recog-
nizable sets of finite graphs. Information and Computation, 85(1):12–75,
March 1990. URL: http://dx.doi.org/10.1016/0890-5401(90)90043-H,
doi:10.1016/0890-5401(90)90043-h.

26

https://doi.org/10.1016/s0022-0000(72)80013-8
https://doi.org/10.1016/j.ic.2012.10.019
https://doi.org/10.1017/s0960129517000044
https://doi.org/10.1007/978-3-319-69152-7_9
https://doi.org/10.4230/LIPICS.MFCS.2019.46
https://doi.org/10.4171/ggd/439
https://arxiv.org/abs/2305.06952
https://doi.org/10.4171/ggd/692
http://dx.doi.org/10.1016/j.jcss.2022.01.004
https://doi.org/10.1016/j.jcss.2022.01.004
https://doi.org/10.1007/978-3-642-14034-1
https://doi.org/10.1017/cbo9780511549755
https://doi.org/10.1007/bf02088013
http://dx.doi.org/10.1016/0890-5401(90)90043-H
https://doi.org/10.1016/0890-5401(90)90043-h

[16] Bruno Courcelle. The monadic second order logic of graphs vi: on several rep-
resentations of graphs by relational structures. Discrete Applied Mathematics, 54(2-
3):117–149, October 1994. URL: http://dx.doi.org/10.1016/0166-218X(94)90019-1,
doi:10.1016/0166-218x(94)90019-1.

[17] Bruno Courcelle and Joost Engelfriet. Graph structure and monadic second-order logic. A
language-theoretic approach. Encyclopedia of Mathematics and its applications, Vol. 138.
Cambridge University Press, June 2012. Collection Encyclopedia of Mathematics and Appli-
cations, Vol. 138.

[18] Alberto Dennunzio, Enrico Formenti, and Julien Provillard. Non-uniform cellular automata:
Classes, dynamics, and decidability. Information and Computation, 215:32–46, June 2012.
URL: http://dx.doi.org/10.1016/j.ic.2012.02.008, doi:10.1016/j.ic.2012.02.008.

[19] Heinz-Dieter Ebbinghaus and Jörg Flum. Finite Model Theory. Springer Berlin Heidelberg,
1995. doi:10.1007/978-3-662-03182-7.

[20] Louis Esperet, Ugo Giocanti, and Clément Legrand-Duchesne. The structure of quasi-
transitive graphs avoiding a minor with applications to the domino problem, 2023.
doi:10.48550/ARXIV.2304.01823.

[21] Guilhem Gamard, Pierre Guillon, Kevin Perrot, and Guillaume Theyssier. Rice-like the-
orems for automata networks. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021.
doi:10.4230/LIPICS.STACS.2021.32.

[22] Martin Gardner. Mathematical games. Scientific American, 223(4):120–123, October 1970.
doi:10.1038/scientificamerican1070-120.

[23] Walter Gottschalk. Some general dynamical notions, pages 120–125. Springer Berlin Heidel-
berg, 1973. doi:10.1007/bfb0061728.

[24] R. Halin. Über unendliche wege in graphen. Mathematische Annalen, 157(2):125–137, April
1964. doi:10.1007/bf01362670.

[25] David Harel. Recurring Dominoes: Making the Highly Undecidable Highly Understandable,
pages 51–71. Elsevier, 1985. doi:10.1016/s0304-0208(08)73075-5.

[26] G. A. Hedlund. Endomorphisms and Automorphisms of the Shift Dynamical Systems. Math-
ematical Systems Theory, 3(4):320–375, 1969.

[27] Benjamin Hellouin de Menibus, Victor H. Lutfalla, and Camille Noûs. The Domino
Problem Is Undecidable on Every Rhombus Subshift, pages 100–112. Springer Na-
ture Switzerland, 2023. URL: http://dx.doi.org/10.1007/978-3-031-33264-7_9,
doi:10.1007/978-3-031-33264-7_9.

[28] Michael Hochman and Tom Meyerovitch. A characterization of the entropies of mul-
tidimensional shifts of finite type. Annals of Mathematics, 171(3):2011–2038, 2010.
doi:10.4007/annals.2010.171.2011.

[29] Jarkko Kari. Reversibility and surjectivity problems of cellular automata.
Journal of Computer and System Sciences, 48(1):149–182, February 1994.
doi:10.1016/s0022-0000(05)80025-x.

[30] Jarkko Kari. Rice’s theorem for the limit sets of cellular automata. Theoretical Computer
Science, 127(2):229–254, May 1994. doi:10.1016/0304-3975(94)90041-8.

[31] S.A. Kauffman. Metabolic stability and epigenesis in randomly con-
structed genetic nets. Journal of Theoretical Biology, 22(3):437–467,
March 1969. URL: http://dx.doi.org/10.1016/0022-5193(69)90015-0,
doi:10.1016/0022-5193(69)90015-0.

27

http://dx.doi.org/10.1016/0166-218X(94)90019-1
https://doi.org/10.1016/0166-218x(94)90019-1
http://dx.doi.org/10.1016/j.ic.2012.02.008
https://doi.org/10.1016/j.ic.2012.02.008
https://doi.org/10.1007/978-3-662-03182-7
https://doi.org/10.48550/ARXIV.2304.01823
https://doi.org/10.4230/LIPICS.STACS.2021.32
https://doi.org/10.1038/scientificamerican1070-120
https://doi.org/10.1007/bfb0061728
https://doi.org/10.1007/bf01362670
https://doi.org/10.1016/s0304-0208(08)73075-5
http://dx.doi.org/10.1007/978-3-031-33264-7_9
https://doi.org/10.1007/978-3-031-33264-7_9
https://doi.org/10.4007/annals.2010.171.2011
https://doi.org/10.1016/s0022-0000(05)80025-x
https://doi.org/10.1016/0304-3975(94)90041-8
http://dx.doi.org/10.1016/0022-5193(69)90015-0
https://doi.org/10.1016/0022-5193(69)90015-0

[32] Stephan Kreutzer and Siamak Tazari. On brambles, grid-like minors, and parameterized
intractability of monadic second-order logic. In Proceedings of the Twenty-First Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA 2010, Austin, Texas, USA, January 17-19,
2010, pages 354–364. SIAM, 2010. doi:10.1137/1.9781611973075.30.

[33] Dietrich Kuske and Markus Lohrey. Logical aspects of cayley-graphs: the
group case. Annals of Pure and Applied Logic, 131(1-3):263–286, January 2005.
doi:10.1016/j.apal.2004.06.002.

[34] Douglas Lind and Brian Marcus. An Introduction to Symbolic Dynamics and Coding. Cam-
bridge University Press, December 2020. doi:10.1017/9781108899727.

[35] Marston Morse and G. A. Hedlund. Symbolic dynamics. Amer. J. Math., 3:286–303, 1936.

[36] David E. Muller and Paul E. Schupp. The theory of ends, pushdown au-
tomata, and second-order logic. Theoretical Computer Science, 37:51–75, 1985.
doi:10.1016/0304-3975(85)90087-8.

[37] Fabian Reiter. Distributed graph automata. In 2015 30th Annual ACM/IEEE Symposium
on Logic in Computer Science. IEEE, July 2015. doi:10.1109/lics.2015.27.

[38] Adrien Richard. Fixed points and connections between positive and negative cy-
cles in boolean networks. Discrete Applied Mathematics, 243:1–10, July 2018.
doi:10.1016/j.dam.2017.12.037.

[39] Neil Robertson and P.D Seymour. Graph minors. ii. algorithmic aspects of tree-width. Journal
of Algorithms, 7(3):309–322, September 1986. doi:10.1016/0196-6774(86)90023-4.

[40] Neil Robertson and P.D Seymour. Graph minors. v. excluding a planar
graph. Journal of Combinatorial Theory, Series B, 41(1):92–114, August 1986.
doi:10.1016/0095-8956(86)90030-4.

[41] H. Rogers. Theory of Recursive Functions and Effective Computability. MIT Press, 1987.

[42] Thomas Schwentick and Klaus Barthelmann. Local normal forms for first-order logic with
applications to games and automata, pages 444–454. Springer Berlin Heidelberg, 1998.
doi:10.1007/bfb0028580.

[43] René Thomas. Boolean formalization of genetic control cir-
cuits. Journal of Theoretical Biology, 42(3):563–585, Decem-
ber 1973. URL: http://dx.doi.org/10.1016/0022-5193(73)90247-6,
doi:10.1016/0022-5193(73)90247-6.

[44] Wolfgang Thomas. On logics, tilings, and automata, pages 441–454. Springer Berlin Heidel-
berg, 1991. doi:10.1007/3-540-54233-7_154.

28

https://doi.org/10.1137/1.9781611973075.30
https://doi.org/10.1016/j.apal.2004.06.002
https://doi.org/10.1017/9781108899727
https://doi.org/10.1016/0304-3975(85)90087-8
https://doi.org/10.1109/lics.2015.27
https://doi.org/10.1016/j.dam.2017.12.037
https://doi.org/10.1016/0196-6774(86)90023-4
https://doi.org/10.1016/0095-8956(86)90030-4
https://doi.org/10.1007/bfb0028580
http://dx.doi.org/10.1016/0022-5193(73)90247-6
https://doi.org/10.1016/0022-5193(73)90247-6
https://doi.org/10.1007/3-540-54233-7_154

	Introduction
	Formal definitions
	Translation results
	From FO/CA pairs to MSO
	From MSO to FO/CA pairs.

	Consequences on FO model checking for CA
	Cayley graphs and domino problems
	Perspectives
	Acknowledgment

