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Abstract

A numerical factorization method of the unidirectional propagation operators induced by the lin-
earized Euler and Navier-Stokes equations is performed to construct a new One-Way approach to
compute the sound radiation in a partially lined duct. The complex phenomena of reflection and
transmission of incident waves originating from discontinuities in the duct wall are accurately
taken into account by an iterative domain decomposition method. Furthermore, the proposed
factorization approach allows both the derivation of the lined duct scattering matrix and an in-
depth understanding of the impact of the acoustic liner on left- and right-going waves coming
from a transmission or a reflection. Finally, the efficiency of the numerical method is shown
based on a classical benchmark with two types of baseflows (laminar and turbulent Poiseuille
flows) and by comparison with other numerical and experimental results. An unstable surface
mode is observed at 1000 Hz, and we find good agreement with experimental data for the turbu-
lent mean flow associated with the One-Way Navier-Stokes equations.
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1. Introduction

Acoustic liners are used in a wide variety of duct configurations to decrease the sound level
produced by a wave propagating across a duct. This surface treatment has been used for many
years in the aeronautical domain to decrease the sound produced by aircraft engines which is,
nowadays, a major issue of the commercial aviation and therefore, an active field of study. The
development of such treatment requires many numerical simulations and experimental measure-
ments in order to better understand the phenomena appearing inside the duct and their underlying
mechanisms.
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The setup classically used for the numerical study of such configurations is a duct, with
a rectangular or round section, with walls partially covered with an acoustic liner. The main
challenge in this type of simulation is to model accurately the effect of the liner on the incident
wave propagating across the duct. In fact, an acoustic liner generally consists of a network
of honeycomb cavities on a rigid backing plate and beneath a resistive plate, which may be a
perforated plate or a wire-mesh fabric. To avoid calculating all the physical phenomena taking
place in the liner, an impedance boundary condition is usually imposed on the liner wall. The
porous nature of this absorbing material creates a discontinuity in boundary conditions, leading
to reflection and refraction of waves inside the duct, with non-negligible effects on the results
obtained. Moreover, the flow present in the duct adds some complexity in the model used, since
it affects the kind of waves propagated and can lead to the appearance of instabilities.

To compute this kind of configurations, linear models are used since the mechanisms in-
volved in the range of frequency, velocity, and energy generally studied are mainly linear. This
assumption of linearity allows using computational methods that are far less costly than Direct
Numerical Simulations [1] that would be required instead. A time domain resolution of lin-
earized Euler or Navier-Stokes equations has already shown good results [2] and takes naturally
into account the reflection and refraction of waves. However, the formulation of the equations
requires the use of impedance boundary conditions in the time domain [3, 4, 5], which can be
quite complex to impose. The issue of imposing correct inlet and outlet boundary conditions
is also present, with the use of perfectly matched layers [6] for example, in order to avoid un-
wanted waves propagating back in the computational domain. Similar systems of equations can
also be solved in the frequency domain, making it much easier to impose the impedance bound-
ary condition. But the issue of non-reflecting boundary conditions remains present, and this type
of resolution requires solving large linear systems, which can lead to huge CPU and memory
resources.

Another standard approach is to use a modal decomposition of the propagation problem,
which consists in the decomposition of the propagating waves as a sum of modes in the frequency
domain. These kinds of approaches are also frequently used in other domains of aeroacoustics
such as jet noise or boundary layer stability studies. For such applications as the partially lined
duct characterization, they are, in general, coupled to mode matching techniques [7] or to a
Wiener-Hopf solution [8]. However, these methods are either limited by hypotheses for their
fields of application or by a costly decomposition in modes of the propagation operators.

An alternative solution to these limitations is to use One-Way approaches, which consist of
decoupling the waves propagating in one direction and the other, to keep only the part of inter-
est. One-Way approaches have been used for fifty years in diverse fields such as geophysics [9],
acoustics, or electromagnetism. This method has the advantage of being less computationally
costly than “exact methods” and has a wider range of applications than Parabolized Stability
Equations [10]. The existence and construction of such decoupling has been known since the
work of M. Taylor [11] and his factorization method based on a microlocal analysis of hyper-
bolic problems [12]. Nevertheless, the analytical nature of this type of method, using symbolic
calculus and pseudo-differential operators, makes its development unaffordable for complex sys-
tems such as the Euler and Navier-Stokes equations.

Recently, T. Colonius’ team at Caltech [13, 14, 15] bypassed this difficulty for fluid mechan-
ics problems by using a non-reflecting boundary condition [16, 17, 18, 19], that permits to avoid
complicated analytical developments of the equations. However, this method is limited by a hy-
pothesis of slow variation in the baseflow along the propagation direction, which includes also
any variation in the transverse boundary conditions. A derivation of these One-Way equations
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has been presented in [20] and applied to the problem of a partially lined duct in [21]. This
method is based on the full numerical construction of the projection operators that are needed
to take into account the reflection and transmission of waves across any variation. In this paper,
the method of resolution is applied to the same type of configuration but with a different type
of acoustic liner (CT57) presenting an instability at 1000 Hz, with an emphasis on the decom-
position feature of the waves naturally obtained with these equations and also an extension to
linearized Navier-Stokes equations.

In Section 2, we propose a numerical One-Way factorization of the propagation operator for
linear hyperbolic problems. The method of domain decomposition is explained in Section 3.1
while the computation of the reflection and transmission of waves at the boundary discontinuities
is developed in Section 3.2. Finally, we will illustrate this approach with some numerical results
for an acoustic liner contained in a duct for two types of baseflows and for One-Way Euler (OWE)
and One-Way Navier-Stokes (OWNS) equations in Section 4. The results will be compared to
other numerical simulations and experimental data.

2. Numerical One-Way factorization of the propagation operator for hyperbolic problems

To present the construction of the numerical One-Way factorization of a unidirectional prop-
agation operator, we use the following system of hyperbolic linear differential equations:

∂q
∂t
+ A(x, y)

∂q
∂x
+ By(x, y)

∂q
∂y
+ Byy(x, y)

∂2q
∂y2 +C(x, y)q = 0. (1)

We then choose a preferred direction, here x, and we first apply a Fourier-Laplace transform
in time to pass the system (1) into the frequency domain. As we are only interested in the
system’s stationary behavior, we will assume zero initial conditions. The Fourier transform of the
variable q describing the perturbation will be written q = q̃e−iωt, with ω the angular frequency.
We next process as in [14] by isolating the term ∂

∂x and by performing a first discretization in
the transverse direction y using a numerical approximation such as a compact high-order finite
difference scheme, for example a 4th to 6th order finite difference compact scheme [22].

By using a bold notation to represent the semi-discrete counterpart of the variables, Eq. (1)
then leads to:

A(x)
dq̃
dx
=

(
iωI − ByDy − ByyDyy − C

)
q̃ := B(x)̃q, (2)

with Dy and Dyy the first and second order discrete derivative operators in y-variable.
The equation (1) is assumed to be hyperbolic, the matrix A(x, y) is then necessarily R-

diagonalizable for each value of x i.e., the eigenvalues are real. Since A is the semi-discretized
version of A, the same property holds, i.e., A has N real eigenvalues which correspond to N+
positive, N− negative and N0 null eigenvalues. Consequently, the matrix A being diagonalizable,
there is an invertible transformation matrix T such that:

T−1AT = Ã =


Ã++ 0 0

0 Ã−− 0
0 0 0N0×N0

 , (3)

with Ã being the diagonal matrix containing all the eigenvalues of A, and Ã++ ∈ RN+×N+ and
Ã−− ∈ RN−×N− being the two diagonal matrices containing positive and negative eigenvalues,
respectively.
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For the sake of clarity of the presentation, we now assume that N0 = 0 and, consequently, Ã
is an invertible matrix. The case N0 , 0 can be easily solved by proceeding to a reduction of the
system by eliminating the linear dependencies induced by these null eigenvalues. This kind of
situation appears for example when the mean flow vanishes at the wall boundaries.

We now perform the following variable change ϕ = T−1q̃, called the characteristic variables,
and we get the new system of equations:

dϕ
dx
=

(
Ã−1T−1BT − T−1 dT

dx

)
ϕ :=M(x)ϕ, (4)

where the matrix M is called the propagation operator along the preferred direction x.
From the previous decomposition of Ã into positive and negative eigenvalues, we can do the

same for the propagation operator and the vector ϕ. Equation (4) can be written as:

d
dx

(
ϕ+
ϕ−

)
=

(
M++ M+−

M−+ M−−

) (
ϕ+
ϕ−

)
, (5)

the first index designating the number of rows (N+ or N−) and the second, the number of columns
in the block matrix.

The construction of One-Way methods requires identifying left and right-going modes con-
tained in the propagation operator M. A natural way to do so is to diagonalize M and analyze
the behavior of the eigenvalues to determine different categories of modes, by using Briggs’ cri-
terion [23], for example. However, this approach is generally costly in terms of computational
resources, largely because M depends on x. To bypass this problem, we propose to construct a
new factorization of the propagation operator based on the concept of high-order non-reflective
boundary conditions. The starting point of this method is based on the following observation:
a “strict” diagonalization of M is not necessary to complete a One-Way decoupling, and the
knowledge of a family of vectors which generates the invariant spaces is sufficient.

In this section, we revisit in a more theoretically framework the construction method of the
One-Way equations using a purely numerical factorization that we have proposed in the seminal
paper [20]. In the first part, a characterization technique of the right and left invariant spaces
associated to the right and left-going modes, respectively, is presented. It is based on the applica-
tion of two non-reflective boundary conditions [19] which allows computing two sets of N+ and
N− vectors generating vector spaces for extraction according to the direction of wave propaga-
tion. In the second part, these “pseudo-eigenvectors” enable us to construct a matrix of the same
nature as the left eigenvectors’ matrix of M. Finally, from this matrix, we get a new factorization
of the propagation operator and new One-Way equations to solve (2).

2.1. Identification of the left and right invariant spaces using non-reflecting boundary conditions

We are interested in the identification of the two invariant spaces of the propagation operator
M(x) for a fixed value of x. They correspond to the right and left invariant spaces corresponding
to the generated spaces by the right and left-going modes, respectively. We know that they are of
size N+ and N−, respectively. In this section, we are using two non-reflective boundary conditions
of type (6), built from the same set of given parameters

(
β

j
±

)
j
, in order to approximate these two

spaces. Thus, for each value of x, it is shown that it is not only possible to access information
necessary to wave propagation to the right and to the left, but also to get a complete separation
of this information. This separation, which is the basis for One-Way equations decoupling, is
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necessary to their good local resolution. The following Subsection 2.1.1 concerns the subject
of left invariant space using a non-reflective boundary condition of right type (i.e., which allows
suppressing left-going waves and keeping right-going waves). Subsection 2.1.2 is using the same
reasoning in the case of right invariant space.

2.1.1. Approximation of the left invariant space
The purely numerical construction method of the One-Way equations is based on the use of a

non-reflecting boundary condition, which avoids the construction of a complete diagonalization
of the propagation operator M. This type of boundary condition was first introduced by Higdon
[17] and then derived in a high-order version by Givoli & Neta [18]. Its application to hyperbolic
systems, such as those of Euler or Navier-Stokes, can be found in an article from Hagstrom &
Warburton [19].

This condition preserves information propagating in one direction and removes the rest when
solving the equations. However, in order to increase the range of application of such equations,
the information propagating in both directions must be preserved. In addition, it needs to be
filtered so that it can be separated, and a special treatment can be applied to each of its compo-
nents. The idea is therefore to apply this type of non-reflective condition in both directions of
propagation to determine the terms (in discretized form) responsible for wave propagation in one
direction or the other.

We start by recalling the approximation of the One-Way equations given by Towne & Colo-
nius in various publications [14, 15, 13] is given by the following expression:

dϕ+
dx
=M++ϕ+ +M+−ϕ−,

(M − iβ j
+I)ϕ j = (M − iβ j

+I)ϕ j+1, j = 0, ...,Nβ − 1

ϕ
Nβ

− = 0,

ϕ(x0) given ,

(6)

with x0 the abscissa at the inlet of the computational domain where a boundary condition is
applied.

The system (6) given by Towne & Colonius can be rewritten under the following compact
form as: 

dϕ+
dx
=M++ϕ+ +M+−ϕ−,(

ϕ
Nβ

+

0

)
= Zr,Nβ

(
ϕ+
ϕ−

)
.

(7)

which allows introducing the right non-reflection matrix Zr,Nβ , obtained by recurrence:

Zr,Nβ =

Nβ−1∏
j=0

(M − iβ j
−I)−1(M − iβ j

+I). (8)

This matrix is the starting point of our identification technique because if the set of parameter(
β

j
±

)
j
is well-chosen, the action of this matrix is both to “neutralize” the left-going modes and to

preserve the right-going ones.
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Nevertheless, to ensure the robustness of the method, it is crucial to introduce the following
“preconditioned” version Z̃r,Nβ of the matrix Zr,Nβ :

Z̃r,Nβ =

 I++
(
Zr,Nβ

++

)−1
Zr,Nβ

+−(
Zr,Nβ

−−

)−1
Zr,Nβ

−+ I−−

 . (9)

The behavior of Z̃r,Nβ strongly depends on the choice of a family of parameters (β j
±) j∈N with

respect to the location of the left- and right-going modes of M in the complex plane. To formalize
these constraints, we adopt the following definition:

Definition 1. A family of parameters (β j
±) j∈N is said to be adapted to the propagation operator

M(x) if and only if: for all eigenvalues iα+ and iα− of M(x), associated to a right- and left-going
mode, respectively, we have the following property:

lim
Nβ→+∞

Nβ−1∏
j=0

∣∣∣∣∣∣α+ − β j
+

α+ − β
j
−

∣∣∣∣∣∣ = 0,

lim
Nβ→+∞

Nβ−1∏
j=0

∣∣∣∣∣∣α− − β j
+

α− − β
j
−

∣∣∣∣∣∣ = +∞.
(10)

We suppose for the rest of this part that the family of parameters (β j
±) j∈N is adapted to the

propagation operator. We then can prove the convergence result:

Theorem 1. Let (β j
±) j∈N be a family of parameters adapted to the propagation operator M at the

point x whose a diagonalization is written M = VDU. We then have the two following results:

i. The matrix subsequence Z̃r,Nβ

−+ admits a limit noted Z̃r
−+ defined by:

lim
Nβ→+∞

Z̃r,Nβ

−+ = Z̃r
−+ = U−1

−−U−+. (11)

ii. We have the following identity:(
Z̃r
−+ Z̃r

−−

)
M =

(
U−1
−−D−−U−−

) (
Z̃r
−+ Z̃r

−−

)
, (12)

In addition, let Sl := S pan
{
Ui,∗ ∈ CN++N− |i = N+ + 1, ...,N+ + N−

}
be the left invariant

space generated by the left eigenvectors of M. Then the space

S̃l := S pan
{
Z̃r

i,∗ ∈ C
N++N− |i = N+ + 1, ...,N+ + N−

}
(13)

verifies the left invariance property: ∀ W̃ ∈ S̃l, we have:

W̃M ∈ S pan
{
U−1
−−W : ∀W ∈ Sl

}
, (14)

and ∀W ∈ Sl, we have:

WM ∈ S pan
{
U−−W̃ : ∀ W̃ ∈ S̃l

}
. (15)
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Proof. We first demonstrate 1. To do so, we use the fact that Zr,Nβ possesses the same eigenvalues
as M, associated to the eigenvalues matrices Rr,Nβ

++ and Rr,Nβ

−− i.e.,

Zr,NβV = V
Rr,Nβ

++ 0
0 Rr,Nβ

−−

 . (16)

with Rr,Nβ

++ and Rr,Nβ

−− two diagonal matrices whose kth terms are defined by:

Rr,Nβ

++,k =

Nβ∏
j=0

α+,k − β
j
+

α+,k − β
j
−

, (17)

and

Rr,Nβ

−−,k =

Nβ∏
j=0

α−,k − β
j
+

α−,k − β
j
−

. (18)

By doing block products, we have in particular the following relation:

Zr,Nβ

−+ V++ + Zr,Nβ

−− V−− = V−+Rr,Nβ

++ (19)

that can be rewritten as:

(Zr,Nβ

−− )−1Zr,Nβ

−+ + V−+(V++)−1 = (Zr,Nβ

−− )−1V−+Rr,Nβ

++ (V++)−1 (20)

By reusing the fact that Zr,Nβ has the same eigenvalues as M, we deduce that:

Zr,Nβ

−− = V−+Rr,Nβ

++ U+− + V−−Rr,Nβ

−− U−−. (21)

The hypothesis made on the family of parameters (β j
±) j∈N allows us to pass to the limit and to

deduce the following identity:
Z̃r
−+ + V−+(V++)−1 = 0, (22)

as we have limNβ→+∞ ||R
r,Nβ

++ || = 0 and limNβ→+∞ ||(Z
r,Nβ

−− )−1|| = 0 because limNβ→+∞ ||R
r,Nβ

−− || = +∞.
We then use the UV = I identity to find the next relation:

U−+V++ + U−−V−+ = 0, (23)

which can also be written as:

V−+(V++)−1 = −(U−−)−1U−+. (24)

By combining (22) and (24), we immediately get 1.
We now demonstrate 1. The first part comes immediately with the 1 result. Indeed, we have:(

Z̃r
−+Z̃r

−−

)
M =

(
U−1
−−U−+I

)
M

= U−1
−− (U−+U−−) M

= U−1
−−D−− (U−+U−−)

= U−1
−−D−−U−−

(
U−1
−−U−+I

)
=

(
U−1
−−D−−U−−

) (
Z̃r
−+Z̃r

−−

)
(25)
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To show the invariance property, we exploit the previous identity. Let W̃ ∈ S̃l. W̃ can be written
as W̃ = Λ̃−−

(
Z̃r
−+Z̃r

−−

)
with Λ̃−− a diagonal matrix of size N−. We then have:

W̃M = Λ̃−−
(
Z̃r
−+Z̃r

−−

)
M

= Λ̃−−
(
U−1
−−D−−U−−

) (
Z̃r
−+Z̃r

−−

)
= Λ̃−−U−1

−− D−− (U−+U−−)︸            ︷︷            ︸
in Sl

∈ Span
{
U−1
−−W : ∀W ∈ Sl

}
.

(26)

The second part of the invariance property can be demonstrated in the same way.

This result shows that the invariant space of M associated to the left-going modes can be
described and approached by a part of the right non-reflection matrix Z̃r,Nβ (or its limit Z̃r).
However, we have to apply once again a non-reflective boundary condition in the opposite di-
rection in order to have access to all the eigenspaces generated by the eigenvectors of M. It is
necessary to do so to factorize entirely the propagation operator M.

2.1.2. Approximation of the right invariant space
The developments of the previous section suggest using the left non-reflection matrix Zl,Nβ ,

defined by:

Zl,Nβ =

Nβ−1∏
j=0

(M − iβ j
+I)−1(M − iβ j

−I), (27)

in order to identify the right invariant space, i.e., the space of right-going modes associated to
M. This matrix is used in the Towne & Colonius left One-Way equations (resolution from right
to left) and it allows to both “neutralize” the right-going modes and preserve the left-going ones.

From the matrix Zl,Nβ , a “preconditioned” matrix Z̃l,Nβ can be defined by:

Z̃l,Nβ =

 I++
(
Zl,Nβ

++

)−1
Zl,Nβ

+−(
Zl,Nβ

−−

)−1
Zl,Nβ

−+ I−−

 . (28)

We then have the following result about the characterization of the right-going modes:

Theorem 2. Let (β j
±) j∈N be a family of parameters adapted to the propagation operator M at the

point x (see definition 1) whose a diagonalization is written M = VDU. We then have the two
following results:

i. The matrix subsequence Z̃l,Nβ

+− admits a limit noted Z̃l
−+ defined by:

lim
Nβ→+∞

Z̃l,Nβ

+− = Z̃l
−+ = U−1

++U+−. (29)

ii. We have the following identity:(
Z̃l
++ Z̃l

+−

)
M =

(
U−1
++D++U++

) (
Z̃l
++ Z̃l

+−

)
, (30)

In addition, let Sr := S pan
{
Ui,∗ ∈ CN++N− |i = 1, ...,N+

}
be the right invariant space gen-

erated by the right eigenvectors of M. Then the space

S̃r := S pan
{
Z̃l

i,∗ ∈ C
N++N− |i = 1, ...,N+

}
(31)
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verifies the right invariance property: ∀ W̃ ∈ S̃r, we have:

W̃M ∈ S pan
{
U−1
++W : ∀W ∈ Sr

}
, (32)

and ∀W ∈ Sr, we have:

WM ∈ S pan
{
U++W̃ : ∀ W̃ ∈ S̃r

}
. (33)

Proof. The proof uses exactly the same arguments as the proof of theorem 1 in the context of
left invariant space.

This theorem shows that the invariant space associated to the eigenvalues α+ can be char-
acterized by the use of the matrix Z̃l. This matrix comes from the non-reflecting boundary
condition applied to the left. Thus, by using the matrices Z̃l and Z̃r at the same point x, it
is possible to obtain a complete characterization of the invariant spaces of right and left-going
modes. The combination of these two matrices will therefore allow the construction of a matrix
of pseudo-eigenvectors, leading to a factorization of the matrix M. The details of this operation
are explained in the following section.

2.2. New factorization of the propagation operator and One-Way equations
From the theorems 1 and 2, we have the following results on the preconditioned non-

reflection matrices:
lim

Nβ→+∞

(
Zr,Nβ

−−

)−1
Zr,Nβ

−+ = U−1
−−U−+,

lim
Nβ→+∞

(
Zl,Nβ

++

)−1
Zl,Nβ

+− = U−1
++U+−,

(34)

where U is the exact eigenvectors’ matrix resulting from the diagonalization of M.
These results suggest introducing the following matrix ŨNβ :

ŨNβ :=

 I++
(
Zl,Nβ

++

)−1
Zl,Nβ

+−(
Zr,Nβ

−−

)−1
Zr,Nβ

−+ I−−

 , (35)

and by using ṼNβ = (ŨNβ )−1, we propose a new factorization of M as follows:

D̃Nβ := ŨNβ M ṼNβ . (36)

Finally, a direct application of the theorems 1 and 2 leads to the following fundamental decou-
pling result between left and right invariant spaces:

lim
Nβ→+∞

D̃Nβ = D̃ =
(
U−1
++ D++U++ 0

0 U−1
−− D−−U−−

)
, (37)

where D++ and D−− are diagonal matrices containing the right- and left-going modes of M,
respectively.

This result implies that, by judiciously choosing a finite number Nβ of parameters β j
± (cf. Fig.

6 in Section 4), we have:

D̃Nβ =

D̃Nβ

++ ε+−
ε−+ D̃Nβ

−−

 , (38)
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where D̃Nβ

++ and D̃Nβ

−− are two block matrices containing information about the eigenvalues of M
and ε+− and ε−+ are two negligible block matrices containing the residues of the approximation
and which tend to 0 when Nβ → +∞.

Finally, the approximate factorization of the propagation operator M is written as:

M̃ = ṼNβ ˜̃DNβ

ŨNβ ≈M, (39)

with ˜̃DNβ

=

D̃Nβ

++ 0
0 D̃Nβ

−−

 . (40)

The extra-diagonal residual terms are neglected, allowing a complete decoupling of right and
left-going modes.

Remark 1. Unlike a direct spectral decomposition, the numerical factorization (39) and (40)
of the propagation operator allows to naturally sort the modes according to their direction of
propagation.

Thanks to the approximate factorization (39) of M, we can directly derive One-Way equa-
tions in One-Way variables. In this way, we also have access to accurate information about the
refraction and transmission phenomena, which occur in function of the complexity of the mean
flow. More precisely, we can construct One-Way equations (True amplitude version or Bremmer
series) which have a wider domain of validity [20] than classical formulations such as those pro-
posed by Towne & Colonius. Furthermore, the accuracy of this information will be used in the
next section to construct precise transmission conditions in the presence of discontinuities in the
domain.

Now, by performing the variable change ϕ = ṼNβψ, Eq. (5) can be written in One-Way
variables:

d
dx

(
ψ+
ψ−

)
=

D̃Nβ

++ 0
0 D̃Nβ

−−

 (ψ+ψ−
)
+

W̃Nβ

++ W̃Nβ

+−

W̃Nβ

−+ W̃Nβ

−−

 (ψ+ψ−
)
, (41)

where the matrix W̃Nβ := −ŨNβ
dṼNβ

dx
is called the refraction/refraction operator.

The first step in constructing the One-Way equations is the decoupling between the variables
ψ+ and ψ− i.e., the left and right-going information. For this, the extra-diagonal terms in the
matrix W̃Nβ are neglected, i.e., W̃Nβ

+− = W̃Nβ

−+ = 0 and Eq. (41) leads to:

d
dx

(
ψ+
ψ−

)
=

D̃Nβ

++ + W̃Nβ

++ 0
0 D̃Nβ

−− + W̃Nβ

−−

 (ψ+ψ−
)
. (42)

Neglecting these terms is mandatory to resolve a well-posed system, but it is also at the origin
of the so-called slowly varying flow hypothesis [15] along the privileged direction (x in our case).
From Equation (42), two types of One-Way equations can be derived:

1/ The right and left standard One-Way equations obtained by neglecting the terms W̃Nβ

++ and
W̃Nβ

−−: 
dψ+
dx
= D̃Nβ

++ψ+,

ψ− = 0,
(Right One-Way) (43)
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and 
dψ−
dx
= D̃Nβ

−−ψ−,

ψ+ = 0,
(Left One-Way) (44)

These equations accurately reproduce the spatial frequencies of the signal, but the ampli-
tude may be inaccurate when the two terms W̃Nβ

++ and W̃Nβ

−− are not negligible enough.

2/ The right and left True Amplitude One-Way equations:
dψ+
dx
=

(
D̃Nβ

++ + W̃Nβ

++

)
ψ+,

ψ− = 0,
(Right True Amplitude One-Way) (45)

and 
dψ−
dx
=

(
D̃Nβ

−− + W̃Nβ

−−

)
ψ−,

ψ+ = 0,
(Left True Amplitude One-Way) (46)

These equations accurately reproduce both the spatial frequencies and the amplitude of the
signal.

Remark 2. Towne & Colonius One-Way formulation belongs to the first category.

Remark 3. The case where the baseflow is parallel throughout the computational domain leads
to a matrix ṼNβ independent of the x variable, which means that neglecting the W̃Nβ term does
not generate an approximation of the model.

Finally, the numerical integration of the equations (43), (44), (45) and (46) is realized from
a Discontinuous Galerkin scheme adapted to the first-order hyperbolic equation [24]. This ap-
proach leads to an unconditionally stable explicit resolution [20].

To simplify the notations, the factorization (39) will now be defined by M = Ṽ˜̃DŨ in the rest
of this paper.

3. Domain decomposition method for lined ducts

3.1. Principle
The fact that the right and left-going One-Way equations are being solved through a spatial

marching algorithm means that when a discontinuity is encountered (in our case the leading and
trailing edges of the acoustic liner section), a particular treatment has to be applied in order to
get a relevant solution. As a matter of fact, the variables used for the resolution (i.e., ψ-variables)
are projected into a given space of application that depends on the baseflow and the boundary
conditions applied on the top and the bottom of the duct. When these boundary conditions
are modified through a discontinuity, if no special treatment is applied to the One-Way variables,
their projection back into the physical space (i.e., in primitive variables), will create a discrepancy
in the result obtained since the transformation matrices Ũ and Ṽ are not equivalent on each side
of the discontinuity. Moreover, the incident wave propagating across such a discontinuity will
be split into a transmitted wave, that will propagate in the same direction but with a modified
wavelength and amplitude, and into a reflected wave, propagating in the opposite direction.

11



Figure 1: Decomposition of the computational domain.

The model setting considered in the paper is a 2D rectangular duct with an acoustic liner on
the down wall as described in Fig. 1. The baseflow is assumed to be smooth in the whole com-
putational domain and consequently, the resolution by One-Way equations is valid everywhere
except directly on top of the discontinuities of boundary conditions (represented by the internal
dashed lines in Fig. 1). Therefore, the domain of computation is naturally split in three non-
overlapping subdomains where standard One-Way equations are solved while the computation
of the reflected and transmitted waves will occur only at their interfaces. Because both left- and
right-going waves will exist in each subdomain, both a right-going One-Way equation (called
right One-Way) and a left-going One-Way equation (called left One-Way) have to be solved in
order to take into account the reflected and transmitted waves created by these discontinuities.

We propose an iterative domain decomposition method to compute an accurate approxima-
tion of the complete solution. We will now describe the sketch of this algorithm. For that, we
introduce some notations: (Ωi)3

i=1 are the subdomains from left to right, Γin is the inlet interface,
Γ12 = Ω1 ∩ Ω2, Γ23 = Ω2 ∩ Ω3 and Γout is the outlet interface, ψi,n

± is the solution in Ωi at the
iteration n. In addition, incoming and outgoing sources are prescribed at the inlet Γin and outlet
Γout boundaries, i.e., ψ+|Γin = gin and ψ−|Γout = gout. By taking the initial guess ψi,0

± = 0 and
formally introducing the left and right transmission operators Tk→l and Tk←l associated with the
Γkl interface, the computation on each subdomain is performed as follows:

• In the inlet subdomain Ω1:

- ψ1,n+1
+ = ψ1,1

+ is obtained in only one iteration due to the decoupling property of this
variable: 

dψ1,1
+

dx
= D̃++ψ1,1

+ in Ω1,

ψ1,1
+ = gin on Γin.

(47)

- ψ1,n+1
− is computed as follows:

dψ1,n+1
−

dx
= D̃−−ψ1,n+1

− in Ω1,

ψ1,n+1
− = T1←2

(
ψ1,n
± ,ψ

2,n
±

)
on Γ12.

(48)

• In the liner subdomain Ω2:

12



- ψ2,n+1
+ is computed as follows:

dψ2,n+1
+

dx
= D̃++ψ2,n+1

+ in Ω2,

ψ2,n+1
+ = T1→2

(
ψ1,n
± ,ψ

2,n
±

)
on Γ12.

(49)

- ψ2,n+1
− is computed as follows:

dψ2,n+1
−

dx
= D̃−−ψ2,n+1

− in Ω2,

ψ2,n+1
− = T2←3

(
ψ2,n
± ,ψ

3,n
±

)
on Γ23.

(50)

• In the outlet subdomain Ω3:

- ψ3,n+1
+ is computed as follows:

dψ3,n+1
+

dx
= D̃++ψ3,n+1

+ in Ω3,

ψ3,n+1
+ = T2→3

(
ψ2,n
± ,ψ

3,n
±

)
on Γ23.

(51)

- ψ3,n+1
− = ψ3,1

− is obtained in only one iteration due to the decoupling property of this
variable: 

dψ3,1
−

dx
= D̃−−ψ3,1

− in Ω3,

ψ3,1
− = gout on Γout.

(52)

Remark 4. In each subdomain, left and right One-Way resolutions are performed to capture
the left- and right-going waves propagating into each subdomain, the reflection, and refraction
of these waves have to be computed at each interface. These computed waves will then be
used in the next iteration to initialize another computation of left and right One-Way equations.
At each iteration, the obtained result will become more and more accurate, as reflections and
transmissions of the previous approximation are included. These iterations can be carried out
until the convergence is considered satisfactory.

Remark 5. In the description of the domain decomposition algorithm, the True Amplitude ver-
sion of One-Way equations can obviously be used for local resolution if the refraction/refraction
matrix is not negligible.

In the next subsection, we propose efficient candidates for the transmission boundary con-
ditions Tk→l and Tk←l associated to the discontinuity interface Γkl by exploiting the projection
operators induced by the numerical factorization of the propagation operator presented previ-
ously in Section 2.

3.2. Transmission conditions

In the following, we will focus on the specific example of the interface Γ12 and then we will
have a result that will enable us to process the interface Γkl using the transmission operators
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Tk→l and Tk←l. At each interface, the incident waves (coming from the left and right subdo-
mains) have to be sorted in order to communicate properly the waves exiting the current domain,
entering it or reflected inside. To do that, the information contained inside the newly formed
pseudo-eigenvectors matrices Ũ and Ṽ will be used to project the One-Way variables of a do-
main back into their primitive form before projecting them into the One-Way variables of the
next subdomain. The idea is that we want the physical variables to be continuous even across the
discontinuity, therefore, the objective is to impose the following relation at the interface Γ12:

q̃1 = q̃2, (53)

with q̃1 the discretized perturbation vector situated at the interface but from the left domain and
q̃2 the same discretized perturbation vector at the interface but from the right domain. For the
rest of this development, these subscripts have the same meaning when applied to other variables
or matrices. In addition, the derivation of this domain decomposition is done, here, for the first
discontinuity i.e., a hard wall boundary condition on the left and an impedance condition on
the right), but the same development can be done for the second discontinuity located at the
liner’s trailing edge. Generally, this condition alone can present some convergence issues and is
usually associated with, for example, a condition of continuity on the variable’s gradient across
the interface [25]. However, in our case, because the condition (53) can be expressed in terms
of One-Way variables that are already decomposed in left- and right-going components, this
additional condition is not necessary. To express Equation (53) in terms of One-Way variables
ψ1 and ψ2, it is first required to use the characteristic variables:

T1ϕ1 = T2ϕ2. (54)

Here, this condition can be simplified since the two different boundary conditions involved
do not affect the expression of the transformation matrix T. Therefore, Eq. (54) becomes:

ϕ1 = ϕ2. (55)

By applying the second variable change with the pseudo eigenvectors matrices Ṽ, the conti-
nuity condition takes the following form in terms of One-Way variables:

Ṽ1ψ1 = Ṽ2ψ2. (56)

In the same way as before, the matrix Ṽ can be separated into its + and − components such as:Ṽ1
++ψ

1
+ + Ṽ1

+−ψ
1
− = Ṽ2

++ψ
2
+ + Ṽ2

+−ψ
2
−,

Ṽ1
−+ψ

1
+ + Ṽ1

−−ψ
1
− = Ṽ2

−+ψ
2
+ + Ṽ2

−−ψ
2
−.

(57)

This expression of the continuity relation (53) gives the separation in left- and right-going
components of the waves at the interface. The next step is to determine which part of the in-
coming wave is sent back into the original domain and which part is transmitted to the next one.
The setup in which the domain decomposition is performed is shown in Figure 2. The previous
iteration of left and right One-Way resolutions gives an approximation of the incident waves that
takes the form of ψ+1 from the inlet subdomain and ψ2

− from the liner subdomain. Therefore, these
two variables now become a known element in Equation (57). This transmission problem then
becomes a system of two equations with two variables that can easily be solved. This equation
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gives an approximation of the outgoing waves that depend on the degree of precision of the given
information (in this case, ψ1

+ and ψ2
−) that improves depending on the number of iterations.

Figure 2: Transmission of wave through a discontinuity.

The missing values ψ2
+ and ψ1

− can easily be expressed from ψ1
+ and ψ2

− under the following form:
ψ2
+ = (Ṽ2

++ − Ṽ1
+−(Ṽ1

−−)−1Ṽ2
−+)−1((Ṽ1

++ − Ṽ1
+−(Ṽ1

−−)−1Ṽ1
−+)ψ1

+

− (Ṽ2
+− − Ṽ1

+−(Ṽ1
−−)−1Ṽ2

−−)ψ2
−),

ψ1
− = (Ṽ1

−−)−1(Ṽ2
−+ψ

2
+ + Ṽ2

−−ψ
2
− − Ṽ1

−+ψ
1
+).

(58)

The newly obtained values can then be set as initialization for the left One-Way resolution in the
inlet subdomain and for the right One-Way resolution in the liner subdomain.

The relations (58) can now be generalized and lead to the following proposition for the trans-
mission operators Tk→l and Tk←l:

Tk→l(ψk,n
± ,ψ

l,n
± ) = Ck→l ((Ṽk

++ − Ṽk
+−(Ṽk

−−)−1Ṽk
−+)ψk,n

+

− (Ṽl
+− − Ṽk

+−(Ṽk
−−)−1Ṽl

−−)ψl,n
− ),

Tk←l(ψk,n
± ,ψ

l,n
± ) = Ck←l (Ṽl

−+ψ
l,n
+ + Ṽl

−−ψ
l,n
− − Ṽk

−+ψ
k,n
+ ),

(59)

with Ck→l := (Ṽl
++ − Ṽk

+−(Ṽk
−−)−1Ṽl

−+)−1 and Ck←l := (Ṽk
−−)−1.

4. Numerical applications

4.1. Governing equations
To simulate the propagation of waves inside this partially lined duct, the linearized Euler and

Navier-Stokes equations presented in this section are the base of the One-Way equations (see
Section 2) that will effectively be solved.

The linearized Euler and Navier-Stokes equations neglect the effects of the non-linear phe-
nomena that could appear inside the flow but, since the range of frequencies and Sound Pressure
Level (SPL) we consider predominantly involve linear mechanisms, this approximation is well
adapted and gives accurate results [26, 27]. To linearize the Euler and Navier-Stokes equations,
the following classical decomposition is used:

q(x, y, t) = q(x, y) + q′(x, y, t), (60)
15



where q is the variable of the steady baseflow around which the equations are linearized and q′

represents the perturbations’ vector. For Euler equations, we will consider q = (p, u, v)T and for
Navier-Stokes equations, we will consider q = (ν, u, v, p)T , with ν = 1/ρ the specific volume,
u = (u, v)T the velocity vector and p the pressure. In the following, we will also assume that
u = u(y) (its expression is given below for two cases), v = 0, ρ = ρ0 a constant and p = p0 a
constant.

In both cases, we can then rewrite the system of equations under the following form:

∂q′

∂t
+ A

∂q′

∂x
+ By

∂q′

∂y
+ Bxx

∂2q′

∂x2 + Bxy
∂2q′

∂x∂y
+ Byy

∂2q′

∂y2 +Cq′ = 0 (61)

To obtain a system of linear hyperbolic equations of type (1), second derivatives in x and
cross derivatives in Navier-Stokes equations are neglected, as it is generally the case in One-Way
approaches [28, 29]. We next proceed as explained in Section 2 by choosing the privileged direc-
tion x, consider the equations in the harmonic regime and then discretize them in the transverse
direction y.

The different operator matrices are given in Appendix A, for both linearized Euler and
Navier-Stokes equations and by taking into account the characteristics of the baseflow.

4.2. Partially lined duct

4.2.1. Configuration of the lined duct

Figure 3: Configuration of the lined duct.

The partially lined duct configuration is presented in this section, along with the different
baseflows used for the comparison with experimental data and with several numerical simula-
tions. The experimental configuration on which these simulations are based is taken from [30].
The data provided by this study have been widely used for the validation of codes in 2-D and
3-D with a resolution in time or frequency domain [31, 32]. Therefore, the duct presents a
partially lined section on the bottom (the experimental facility has it on the top) with a length
Lliner = x2 − x1 = 0.406 m with x1 = 0.203 m and x2 = 0.609 m. The full duct has a total
length of Lx = x3 − x0 = 0.812 m with x0 = 0 and x3 = 0.812 m. The height of this section
is Ly = y1 − y0 = 0.051 m with y0 = 0 and y1 = 0.051 m. The configuration of the duct is
represented in Figure 3 with an example of the real part of the pressure computed for a 3000 Hz
case with a Poiseuille flow. In the different 2-D simulations performed in this paper, a fully right-
propagating plane wave is imposed at the inlet. Its expression has been obtained through a local
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modal analysis of the baseflow at x = x0. On the other hand, no left-going wave is imposed at
the outlet, meaning that any wave reflected after x3 is neglected.

Concerning the baseflow, two cases are studied here. In both cases, the baseflow represents
a fully developed laminar or turbulent Poiseuille flow with different boundary layer thicknesses
and different values of the maximum Mach number Mmax but with the same mean Mach number
Mmean = 0.335, which is the value used in the experimental setup [30]. Moreover, only the axial
velocity is imposed, and the same profile is used everywhere inside the computational domain.
Case 1 presents a parallel laminar flow modeled by the following equation [2]:

u(y) = 4Mmaxa
y
Ly

(
1 −

y
Ly

)
, (62)

where Mmax = 0.5025 is the maximum Mach number and a is the speed of sound. The value has
been chosen to ensure a mean Mach number of 0.335.

On the other hand, in Case 2, the parallel turbulent flow is approached by the following
equation:

u(y) = Ma
ny + 1

ny

(
1 −

∣∣∣∣∣∣1 − 2y
Ly

∣∣∣∣∣∣ny)
, (63)

where ny is the coefficient parameterizing the boundary layer thickness and M = 0.335. The value
of this coefficient will differ depending on whether a OWNS or OWE simulation is performed.
This expression is taken from [33] where the third component along the z-axis has been removed,
since the One-Way simulations are performed in 2-D. This expression of the Poiseuille flow
presents a thinner boundary layer than the one taken in [33]. In Figure 4, the baseflow profiles
are plotted along the transverse direction with the experimental data taken in the center of the
duct.

0 0.1 0.2 0.3 0.4 0.5
0

1

2

3
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Axial velocity

y
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Figure 4: Dimensionless axial velocity of the baseflow used for the Case 1 ( ) and the Case 2 with ny = 5 ( )
and ny = 7.5 ( ) compared with experimental data ( ) from [30].

4.2.2. Transverse boundary conditions
Hard wall. The hard wall boundary conditions are applied at the top of the duct and on each
side of the acoustic liner. This condition is modeled differently for Euler and Navier-Stokes
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equations. In the case of Euler equations, the hard wall is modeled by a slip boundary condition
which allows the particles to slip tangentially to the wall while imposing the normal velocity v to
0 in order to satisfy the continuity of mass. Moreover, this slip boundary condition is equivalent
to modelling an infinitely thin acoustic boundary layer [34, 2] and it satisfies the following set of
equations: 

− iωp̃ + u
∂p̃
∂x
+ ρa2

(
∂ũ
∂x
+
∂̃v
∂y

)
+ S a

∂p̃
∂y
= 0,

− iωũ + u
∂ũ
∂x
+

1
ρ

∂p̃
∂x
= 0,

− iωṽ + u
∂̃v
∂x
= 0,

(64)

with S = 1 or S = −1 for the upper or lower wall, respectively. Since the One-Way equations
can also be solved in terms of characteristic variables, the expression of this boundary condition
is given in Appendix B.

In the case of Navier-Stokes equations, we need to impose an isothermal no-slip boundary
condition, which can be written as:

ũ = ṽ = T̃ = 0. (65)

where the temperature perturbation T̃ is obtained by linearizing the equation of state.

Acoustic liner. The impedance condition is applied following the classical relation:

p̃ = Z(ω)̃u · n, (66)

with n the unitary outward pointing normal to the wall and Z(ω) the frequency dependent com-
plex impedance, which means, in our case, that its value has to be modified according to the
value of ω set. The impedance model is taken from [33] and was used, originally, to model
the behavior of Z for high frequency values (> 3000 Hz), but is in good accordance with the
experimental data that are available up to 3000 Hz. The expression of this impedance is given
by:

Z(ω) =
1
σ

coth(−ikc(ω)lc), (67)

with σ the porosity of the liner’s surface, kc the acoustic wave number inside the liner’s tube and
lc the tube length. All the expressions needed for the construction of this model are available in
[33] along with the values of the coefficients depending on the type of liner used (CT57 in our
case) and the mean velocity of the baseflow. In Figure 5, the real and imaginary parts of Z(ω)
are plotted for a mean Mach number of 0.335. The values are also compared to experimental
impedance data from [30]. It can be noted that, in our case, the expression of the impedance
corresponds to e−iωt convention. For the usual acoustic convention eiωt, the conjugate value of
Z(ω) should be taken.
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Figure 5: Real and imaginary parts of the impedance Z of the CT57 liner for Mmean = 0.335: experimental data ( ) and
numerical values ( ) obtained by using the model from [33].

Remark 6. The boundary conditions being implemented in practice in characteristic variables
ϕ, their expressions can be found in Appendix B.

4.3. Numerical results
The numerical results presented here have been computed on both different configurations

presented above. To compare the results obtained with OWE and OWNS simulations with ex-
perimental data and other numerical results, the sound pressure level (SPL) is defined as follows:

SPL = 20 log
(
|p̃|
pref

)
, (68)

with pref = 2 × 10−5 Pa the reference sound pressure. The SPL is expressed in decibels (dB).
In both cases, the One-Way simulations have been initialized by a 130 dB harmonic plane

wave mode obtained by the resolution of a modal stability analysis at the inlet of the computa-
tional domain (left source). These plane waves have been scaled to get a similar SPL as in the
numerical experiments.

The propagation of the waves inside the partially lined duct is computed with the two different
baseflows presented in Section 4.2.1. The presence of an unstable mode at 1000 Hz has already
been reported in several studies [31, 32, 35, 36, 33], due to the presence of a surface mode when
the flow profile is highly sheared at the wall.

The different simulations have been carried out with a 4th to 6th order finite difference com-
pact scheme [22] in the transverse direction, while the resolution along the x-axis is done by a
second-order upwind Discontinuous Galerkin method [24]. Concerning the number of discretiza-
tion points, most of the cases have been simulated with 173 points (133 points were sufficient for
the 2000 Hz case) in the transverse direction, with a mesh constructed from local refinement near
the duct walls in order to accurately take into account very thin Stokes layers’ phenomenon oc-
curring in Navier-Stokes simulations and to correctly capture the propagating waves. In addition,
1000 points were required in x for the marching algorithm.

The required number of β± coefficients is 15 for all the simulations (OWE and OWNS). A
comparison between the approximate spectrum resulting from factorization and the exact spec-
trum at f = 2000 Hz in Case 1 with a OWE simulation is represented in Figure 6. We can see
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that the two spectra match very well, for a limited number of parameters. The convergence of the
numerical One-Way method is ensured by placing these parameters “close” to the spectrum of
the propagation operator M, i.e., β+ close to the positive eigenvalues and β− close to the negative
eigenvalues. In practice, we are using some information on the exact operator spectrum such as
the branch position of evanescent modes or the range of convective modes branch, which are de-
duced from a local modal analysis. The choice of placement of β± coefficients and the influence
of their number on the method convergence are discussed at greater length in [20].

−200 −100 0 100

−400

−200

0

200

400

ℜ(α)

ℑ
(α

)

Figure 6: Comparison between the approximate modes from factorization with the exact modes for 15 β+ ( ) and 15 β−
( ) coefficients and for a OWE simulation at 2000 Hz: α ( ) corresponds to the exact operator spectrum, λ+ ( ) to the
spectrum of D̃++ and λ− ( ) to the spectrum of D̃−−.

4.3.1. Comparison between the two baseflows and the OWE and OWNS simulations
The SPL values on the wall opposed to the acoustic liner are plotted in Figure 7 together with

the experimental data [30] and a numerical result from [33] (for the 1000, 2000 and 3000 Hz
frequencies) that has been obtained through a mode-matching method based on the linearized
Euler equations. This last numerical result is obtained for a baseflow that is slightly different
to the one used here for the One-Way simulations. As a matter of fact, the coefficient used to
parameter the boundary layer thickness is ny = 24 as opposed to a value of 5 and 7.5 (for the
OWE and OWNS simulations, respectively).

Our first approach was to consider a laminar Poiseuille baseflow profile (Case 1) for both
OWE and OWNS simulations. In all six cases, the One-Way simulations are noticeably close to
each other, and the results are also pretty similar to the mode-matching method [33] for all the
frequencies investigated here. In the same way, the One-Way results match closely the experi-
mental data except for the 1000 and 3000 Hz cases where a difference of around 10 dB can be
seen. This discrepancy in accuracy can be explained by several factors. Firstly, this lined duct
configuration presents a resonance frequency around 1000 Hz. It leads to a high sensitivity of
the impedance model used, which is an approximation of the real experimental acoustic liner.
Another possible reason for such a difference in SPL results is that the effect of hydrodynamic
instability is not properly taken into account in the One-Way equations, for this specific base-
flow profile. Finally, the presence of a non-linear mechanism or the apparition of 3D waves at
f = 3000 Hz could be at the origin of this discrepancy with experimental data.
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In order to reduce these differences in results, we looked at the second type of baseflow
profile (turbulent Poiseuille flow), which represents better the experimental baseflow obtained in
[30]. We realized a parametric study around ny to find a relevant value for the OWE and OWNS
simulations. We have found that the better compromise for the OWE simulations was ny = 5,
as we observed numerical instabilities for larger values of this parameter, resulting in significant
increases in SPL from the liner subdomain. We did not manage to prevent these instabilities, even
by refining the mesh or adapting β± coefficients. If the SPL obtained for a frequency of 1500 Hz
is closer to the experimental data than in Case 1, the effect of the boundary layer thickness
of this baseflow profile is still not sufficient to correctly take the instability into account. The
closest results were finally obtained for the OWNS simulations for a ny value of 7.5, as we also
observed numerical instabilities for parameter values above 7.5. For all frequencies tested, the
OWNS results in Case 2 were close to the experimental results, in particular for the 1000 Hz
frequency where the hydrodynamic instability is well captured. The viscosity contained in the
linearized Navier-Stokes equations combined to this baseflow profile may allow us to find better
SPL behavior, which was underestimated in all other numerical simulations. However, OWNS
results may be improved by considering not only the laminar viscosity, but also the turbulent
eddy viscosity, as it has been discussed in [37].
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Figure 7: Sound Pressure Level (SPL) of the acoustic pressure along the upper wall for different frequencies. Comparison
between the experimental data ( ) [30], the mode-matching method ( ) [33] and the OW simulations with domain
decomposition: OWE ( ) for Case 1, OWE for Case 2 ( ), OWNS ( ) for Case 1 and OWNS for Case 2
( ).

4.3.2. Analysis of acoustic liners’ performance by the construction of the scattering matrix
One of the particular feature of the One-Way equations is that it is possible to naturally de-

compose the result obtained into the right and left-going contributions everywhere inside the
computational domain. The SPL of these two contributions and the final OWNS results are pre-
sented in Figure 8 for Case 2 with a 1000 Hz frequency. As expected, the SPL of the right-going
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part remains constant in the inlet domain. After the first discontinuity, the SPL starts to decrease
before settling at a certain value with damped oscillations. At the bottom, oscillations are gen-
erated by the liner that correspond to the surface wave, which tends to be unstable depending on
the baseflow profile. These oscillations grow in amplitude inside the liner domain before getting
simply convected when the wave crosses the second interface between the liner and the outlet
domain. Concerning the left-going contribution, special care must be taken for its interpretation
since a different color scale is used compared to the other two plots. The SPL of the left-going
part is not available in the outlet domain, since no left propagating wave is present inside this
domain. Therefore, the SPL value presented inside the liner domain comes from the reflection
of the right-going incident wave and decreases in value along the liner without any instability. In
the inlet domain, the transmission of the left-going wave from the liner domain and the reflection
of the right-going wave is propagated with a fixed SPL value without any disturbance. Finally,
the sum of both contributions is presented at the bottom and does not present any discontinuity at
the interfaces between domains. The fact that this result is continuous even across the interfaces
is an indication about the good approximation of the pseudo-eigenvectors matrices used for the
projection and the good convergence of the iterative process used for the domain decomposition.

Figure 8: Decomposition of the SPL into the right- and left-going components and total OWNS results for Case 2 at a
frequency of 1000 Hz.

Having access to this decomposition into left-going and right-going components provides
direct access to the scattering matrix that is used to evaluate the performance of acoustic lin-
ers [38, 39] and other configurations [40, 41]. This scattering matrix can be expressed in the
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following relation: (
p3
+

p1
−

)
=

(
S ++ S +−
S −+ S −−

) (
p1
+

p3
−

)
, (69)

where p1
+ and p1

− are the values of pressure perturbations of the right and left propagating waves at
the inlet, while p3

+ and p3
− are the values of pressure perturbations of the right and left propagating

waves at the outlet of the duct. The coefficients S ++ and S −− can be seen as the transmission
coefficients of the right and left-going waves in this particular duct, while S +− and S −+ can be
interpreted as the reflection coefficients of the right and left-going incident waves in this duct.

The modulus of these scattering coefficients obtained, depending on the frequency, for this
particular lined duct and for the baseflow profile used in Case 2 are plotted in Figure 9. The data
obtained for S ++ and S −+ comes directly from the simulations presented previously. These other
simulations have been carried out with the same parameters as explained before, with a 130 dB
plane wave mode imposed at the inlet (left source). However, to obtain the values of S −− and
S +−, another set of simulations has been computed with a left-going plane wave mode used as
initialization and imposed at the outlet of the duct (right source) with the same SPL of 130 dB.
The value of the pressure from the left- and right-going waves at the inlet and outlet have been
averaged transversely for the computation of the scattering coefficients.

Concerning the right propagating incident wave (Figures 9a and 9c), as expected, the trans-
mission coefficient S ++ is very low for 1000 Hz values and OWE results. The overestimation of
this wave damping for a left source can be explained by the fact that the OWE equations do not
correctly capture the effect of the hydrodynamic instability, as shown above in the SPL results.
Moreover, at the same frequency, the reflection coefficient S −+ shows a peak, indicating that a
significant part of the incident wave is reflected through the duct inlet. Furthermore, the choice
of equation model (OWE or OWNS) does not seem to have any influence on the value of this
reflection coefficient.

When a wave is propagated upstream across this section of the liner (Figures 9b and 9d), the
diffusion coefficient S −− behaves in the same way as the other transmission coefficient S ++, but
with lower values. The evolution of the reflection coefficient S +− closely resembles the other
reflection coefficient computed in the opposite direction with a left source. The main difference
is that the maximum value is lower, although the peak is still reached for 1000 Hz, for both OWE
and OWNS results. The fact that the scattering coefficients are smaller in this direction than in
the other may suggest that the acoustic liner acts more effectively on waves propagating upstream
than downstream.

All these explanations being assumptions, further studies are needed in the future. In order to
confirm or refute them, more in-depth researches are required and the One-Way equations could
prove to be a good tool allowing us to decompose and elucidate these complex phenomena.
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Figure 9: Coefficients of the partially lined duct’s scattering matrix for the OWE ( ) and the OWNS results ( )
in Case 2.

5. Conclusion

The OWE and OWNS equations are coupled with a domain decomposition method that
is directly derived from the numerical factorization performed to separate the right- from the
left-going waves inside the One-Way equations. This methodology is applied here to a case of
partially lined duct, where the discontinuity in boundary conditions (hard-wall and impedance
boundary conditions) leads to the generation of reflected and transmitted waves propagating in
both directions. A process of iterative One-Way resolutions is then applied to retrieve a full wave
result after convergence.

In particular, this method is applied to a case presenting a sheared baseflow throughout the
lined duct. This example presented is studied with two different profiles, with various bound-
ary layer thicknesses and with linearized Euler or Navier-Stokes equations. The comparison
between the OWE and OWNS simulations show little to no difference in SPL results for almost
all frequencies, with one exception for the case which presents a hydrodynamic instability. For
this special frequency, the OWNS simulation with the second type of baseflow shows a better
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accordance with the experimental data than the one with the first baseflow or than the two OWE
simulations.

Moreover, the natural decomposition of the One-Way result into its left and right-going com-
ponents allows to directly obtain the scattering matrix of this particular lined duct, which is often
used for the characterization of the performance of a lined section. Finally, this decomposition is
used to investigate the behavior of the acoustic liner in the case of a right and left-going incident
plane wave mode and their respective reflections.
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Appendix A. Operator matrices

Appendix A.1. Linearized Euler equations

Matrices of the linearized Euler equations, taking into account the specific features of the
base flow:

A =


u a2ρ 0
1
ρ

u 0
0 0 u

 ; By =


0 0 −a2ρ
0 0 0
− 1
ρ

0 0

 ; C =

0 0 0
0 0 −uy

0 0 0

 . (A.1)

The eigenvalue matrix Ã is given by the following expression:

Ã =

u + a 0 0
0 u 0
0 0 u − a

 , (A.2)

where a is the speed of sound.
Transformation matrices used for the first variable change between the primitive and charac-

teristic variables q = Tϕ:

T =

 1 0 1
aρ 0 −aρ
0 1 0

 and T−1 =


1
2

1
2aρ 0

0 0 1
1
2 − 1

2aρ 0

 . (A.3)

Expression of the propagation operator of the linearized Euler equations in this particular case:

M(x, y) =


1

u+a 0 0
0 1

u 0
0 0 1

u−a




iω −
ρa2

2 ∂y −
uy

2aρ 0

−
∂y

ρ
iω −

∂y

ρ

0 −
ρa2

2 ∂y +
uy

2aρ iω

 , (A.4)

with uy being the first derivative in y of the variable u.
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Appendix A.2. Linearized Navier-Stokes equations

Matrices of the linearized Navier-Stokes equations, taking into account the specific features
of the base flow:

A =


u −ν 0 0
0 u 0 ν
0 0 u 0
0 γp 0 u

 , (A.5)

By =


0 0 −ν 0
0 0 0 0
0 0 0 ν

0 −
2(γ−1)µ

Re uy γp 0

 (A.6)

Byy =


0 0 0 0
0 − ν

Reµ 0 0
0 0 − ν

Re
4µ
3 0

−
(γ−1)k
RPrRe p 0 0 −

(γ−1)k
RPrRe ν

 (A.7)

C =


0 0 0 0

−
µ

Re uyy 0 uy 0
0 0 0 0
0 0 0 0

 (A.8)

The eigenvalue matrix Ã is given by the following expression:

Ã =


u + a 0 0 0

0 u 0 0
0 0 u 0
0 0 0 u − a

 , (A.9)

where a is the speed of sound.
Transformation matrices used for the first variable change between the primitive and charac-

teristic variables q = Tϕ:

T =


− ν

2

a2 1 0 − ν
2

a2
ν
a 0 0 − νa
0 0 1 0
1 0 0 1

 and T−1 =


0 a

2ν 0 1
2

1 0 0 ν2

a2

0 0 1 0
0 − a

2ν 0 1
2

 . (A.10)

Appendix B. Characteristic boundary conditions

Appendix B.1. Linearized Euler equations

Starting from the relation q̃ = Tϕ, we have:
p̃ = ϕ1 + ϕ3

ũ = aρ(ϕ1 − ϕ3),

ṽ = ϕ2.

(B.1)
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Hard wall. Since it is possible to discretize the propagation operator in terms of characteristic
variables, it is also possible to express the relation (64) in these variables to enforce the hard wall
boundary condition. Since this set of equations does not change anything to the diagonalization
of the matrix A, the transformation matrices T and T−1 are also the same as previously. The same
can be said about Ã and the eigenvalues of A. Therefore, by applying the same variable change
performed for the Euler equations in this case, we obtain a modified propagation operator M̃:

M̃(x, y) =


1

u+a 0 0
0 1

u 0
0 0 1

u−a



iω + S a

2 ∂y −
ρa2

2 ∂y
S a
2 ∂y

0 iω 0
S a
2 ∂y −

ρa2

2 ∂y iω + S a
2 ∂y

 . (B.2)

Acoustic liner.
ϕ1 + ϕ3 = Z(ω)ϕ2 . (B.3)

This equation is imposed on the second equation which transports ϕ2 while the other two equa-
tions remain unchanged.

Appendix B.2. Linearized Navier-Stokes equations

Starting from the relation q̃ = Tϕ, we have:

ν̃ = −
ν

γp
ϕ1 + ϕ2 −

ν

γp
ϕ4,

ũ =

√
ν

γp
ϕ1 −

√
ν

γp
ϕ4,

ṽ = ϕ3,

p̃ = ϕ1 + ϕ4,

(B.4)

with γ the heat capacity ratio taken equal to 1.4.

Hard wall. Equation (65) can be rewritten in terms of characteristic variables:
ϕ1 − ϕ4 = 0,
ϕ3 = 0,

(1 −
1
γ

)ϕ1 +
p
ν
ϕ2 + (1 −

1
γ

)ϕ4 = 0.

(B.5)

Acoustic liner. For the application of the impedance condition to model the behavior of an acous-
tic liner, Equation (66) can be expressed in characteristic variables under the following form:

ϕ1 + ϕ4 = Z(ω)ϕ3 . (B.6)

This equation is imposed on the third equation which transports ϕ3 while the other three equations
remain unchanged.
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