
HAL Id: hal-04558059
https://hal.science/hal-04558059

Preprint submitted on 24 Apr 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Thermomechanical transient dynamics of radial
rotor-stator contact

Coline Jacobs, Fabrice Thouverez, Mathias Legrand, Patricio Almeida

To cite this version:
Coline Jacobs, Fabrice Thouverez, Mathias Legrand, Patricio Almeida. Thermomechanical transient
dynamics of radial rotor-stator contact. 2024. �hal-04558059�

https://hal.science/hal-04558059
https://hal.archives-ouvertes.fr


Thermomechanical transient dynamics of radial rotor-stator contact

Coline Jacobsa,b,c, Fabrice Thouvereza, Mathias Legrandb, Patricio Almeidac
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Abstract

The present paper discusses the numerical investigation of structural interactions initiated radially between

a turbine shaft and an annular stator. The rotorshaft is modeled under the rigid bodies assumption while

the stator is discretized in space with curved Bernoulli beam elements. The turbomachine is assumed to

be driven by two torques: the first one is prescribed from aerodynamics while the second one is induced

by sliding friction from Coulomb’s model and must be assessed. The study is motivated by the need to

predict the dynamic behavior of the rotorshaft in the presence of radial contact between the labyrinth and

the annular stator. If rotordynamics accounting for unilateral and frictional contact is widely developed in

literature, the combination with an unknown rotational velocity and thermomechanical coupling must

still be investigated. Indeed, heat generation and subsequent thermal expansion is expected to modify the

contact interface and the dynamic response. The system is solved in the time domain and contact treatment

is achieved though a modified version of the Carpenter algorithm. The identification of the conditions

affecting the rotational speed is achieved through a sensitivity analysis on the stator properties, friction

coefficient and coefficient of thermal expansion. Results confirm that the higher the friction coefficient

and stator stiffness are, the lower the maximum rotational velocity value is. It is also shown that high

temperatures are located in specific regions on the stator and that the temperature peaks are amplified with

thermal expansion.

Keywords: time-marching techniques, rotor-stator interaction, torque, thermomechanical coupling,

labyrinth, Coulomb’s friction, transient dynamics, thermal expansion

1. Introduction and background material

Helicopter engines are powered by gas turbines that perform classical thermodynamic cycles of compression,

combustion and expansion. The latter is achieved through the blading of possibly multiple turbine stages.

Expansion is characterized by a conversion of kinetic energy of the burnt gas into mechanical energy at the

rotorshaft level. In nominal operating conditions, this mechanical energy is used to drive the compressor

stages and maintain the cycle. The present paper considers that the turbine is in standalone operation and

its dynamics is governed by two torques. The first one drives the turbine and comes from aerodynamics

and is assumed to be constant. The second torque is resistive and stems from frictional contact occurrences:

it is an unknown of the problem. The rotor-stator interaction of interest occurs during a radial contact

between the labyrinth and its sealing envelope. The labyrinth is made of a succession of several annular

teeth as illustrated in Figure 1. Their purpose is to make the air difficult to flow. Because of turbine

vibration, the gap of several hundreds of microns is consumed so that unilateral contact and frictional

occurrences are initiated radially between the teeth and the seal envelope. For the sake of simplicity, a

single tooth is considered, called rotor in the remainder, while the envelope is called stator. Rubbing

within the seal will generate contact efforts, a braking torque and thus heat. The objective of the paper is

to investigate how friction affects the rotational velocity of the rotor and the temperature distribution in the

stator.

Experiments and models provided in literature show that a rotor confined within a stator might

generate rubbing mechanisms and might exhibit various and complex dynamical responses [42, 34, 15, 47].

Commonly, the motion of the rotor is described by (1) the lateral vibration of the structure (characterized

through precessional speed vprec) and (2) the rotation with angular velocity Ω [36]. When the structure

is orbiting in the same direction as Ω, the response is called forward precessional motion. In other

words, the circumferential, or precessional, velocity is realized in the direction of Ω. In contrast, when

the precessional velocity acts against Ω, backward precessional takes place [30]. When contact is fully

annular, backward motion is divided into two subcategories as follows.
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Abradable coating

Labyrinth Pressurization

Figure 1: Example of a labyrinth seal located at the shaft level [49]

• The term dry whip is used when the rotor rolls and slips, i.e. the sliding speed vT is non-zero. This

response is commonly to be avoided in rotordynamics because of its instability, coming with high

contact efforts that may damage the structures in contact [27, 37].

• The term dry whirl is used when rolling without sliding motion occurs. During this response, the

kinematic constraint ∥vT∥ = 0, must be satisfied where vT stands for the relative tangential velocity

at contact level.

In practice, fully annular rub is not always taking place. A third response type is partial contact,

characterized by a non-circular trajectory of the rotor. The response with partial contact can take place in

both forward and backward precessional motions [3]. Actually, based on a former model developed by the

authors [26], it is expected that this type of transition with contact separation takes place.

Many parameters are known to govern the type and switches of precession. For instance, previous

works showed that increased friction coefficients promote backward precessional motion [11, 29, 13].

Friction versus rotational speed diagrams suggested in [29] could show the existence and co-existence

domains for precession types. A similar diagram where the rotor-to-stator stiffness ratio is considered

was also suggested. It turned out that, for a sufficiently high stiffness ratio (e.g. a softer stator), dry whip

could not be triggered by rotor unbalance. Various authors also investigated the transition between dry

whip and dry whirl. Black [7] showed analytically that there exist specific rotational speed ranges for

dry whirl to occur. These results were confirmed numerically and experimentally on a Jeffcott rotor in

[50], then extended to multiple degrees-of-freedom in [12]. The authors showed that the precessional

frequency is proportional to the rotational speed with a factor equal to the radius to initial gap ratio. Dry

whip is characterized by constant precessional frequency and transition between dry whip and dry whirl

comes with a frequency jump. The rotational velocity at which the jump happens depends on whether

the rotational velocity is increasing or decreasing. This hysteresis phenomenon was also highlighted

in [13]. Bartha [5] identified a critical radial velocity function of the impact incidence angle. Above

this critical velocity, backward precessional motion occurs. Literature is extensive on radial frictional

contact occurrences caused by unbalance. Ma & al. [34] showed that out-of-phase unbalance on two-disc

rotors leads to a quasi-periodic response with partial contacts. Instead, in-phase unbalance yields forward

full annular rub. Zhang [53] studied periodicity and stability of a turbine shaft when coupled frictional

contacts at labyrinth seal and blade tip levels take place initiated by unbalance on the blisk.

Based on the conclusions of a previous work by the authors [26], large contact efforts are expected.

When combined with high rotational velocity, unilateral contact with rubbing leads to high frictional power

and temperature elevation. Friction creates an energy loss in the system mainly in the form of heat which

induces thermal dilation, wear mechanisms and possibly plastic deformation in the components [39, 6, 44].

They all modify the clearance between the contacting bodies. Experimental investigation of wear is

performed for a labyrinth-abradable contact with a single tooth in [16]. It is thus clear that the coupling

between the structural dynamics and temperature field has a significant influence on the contact interface

geometry. Solving the complete multiphysics problem on the contact interface is not a trivial task and

should be simplified for a preliminary investigation such as the present work, which is grounded on a

thermoelastic constitutive law and does not account for wear. The heat distribution between the bodies is
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also a complex multiphysics mechanism. The thermal resistance depends on friction of course, but also on

the surface state since conduction takes place through surface roughness. Convection in the gas pockets

trapped between the bodies interfaces and radiation also plays a key role in heat transfer [51]. The vast

majority of works simplify the heat source computation by distributing the frictional power based on some

arbitrary heat transfer ratio [17, 47] or based on the conductance of the bodies [25, 4]. In the present paper,

it is assumed that heat is equally distributed between the contacting bodies [25, 17]. The temperature

transient is of primary interest for the stator only and thermodynamics mechanisms are ignored for the

rotor.

The system of interest and its model are presented in Section 2. The next section introduces the

modified version of the Carpenter algorithm selected to solve the nonlinear transient thermomechanics in

time domain. Eventually, Section 4 analyzes results for a reference case. Sensitivity studies are performed

to identify how friction coefficient, stator properties and thermal expansion affect the response for both

physics. Conclusions and prospects are proposed in Section 5.

2. System of interest and modeling

2.1. Geometry and components

As described in Figure 2, the seal is located upstream the turbine disc. The rotor-stator contact occurs

X

ZTooth

Screw

Stator assembly

Seal

Figure 2: Rotor-stator system between static assembly and the turbine ( ) supported by a rear bearing ( ).

Simplification of the assembly ring ( ), component A ( ) and component B ( ) into a ring supported by

equivalent springs located at screw points.

radially between a tooth, indicated on the schematic, and the envelope of the surrounding labyrinth seal. In

practice, the stator is an annular ring screwed to other components of the engine, hereafter named A and B.

The number of screws is defined by 𝑁sc. In order to account properly for the structures supporting the ring,

the static assembly is simplified to a point mass with equivalent springs connected at screw points. Their

stiffness is provided by load case simulations performed on the real structures in ANSYS.

Component B, see Figure 2, is modeled by as many stiffness pairs (𝑘𝐵𝑢, 𝑘𝐵𝑣) (blue pairs in Figure 2)

as the number of screws (𝑁sc = 8 for illustration purposes). Component 𝐴 contributes to the dynamics by

adding a point mass 𝑚𝐴 connected at the screws with a radial stiffness 𝑘𝐴 (in red). In Figure 2, the point

mass is centred in the stator while in reality, the component is located outside the stator. This modification

is made for easier springs visualization. The suggested simplifications translate a 3D problem into a 2D

model.

2.2. Turbine

As illustrated in Figure 3, the geometry of the turbine is also simplified to a rotorshaft including the turbine

and the rotor discs. The latter is located on the shaft line at point 𝑅. In the present document, the turbine

is considered as a perfectly rigid body. The bearing is reduced to a linear and symmetric spring-damper

system connected to point 𝑃 on the rotorshaft. At rest, the shaftline coincides with the 𝑍-axis of the

3



Rotor

Shaft

Turbine disc 

Figure 3: Simplified turbine and corresponding degrees-of-freedom: two pairs of translations at point 𝑅 (𝑥𝑟 , 𝑦𝑟 )

and point 𝑃 (𝑥𝑝 , 𝑦𝑝) and the rotation along shaft line 𝜃

coordinate system frame. The mechanical properties of the turbine reduce to its mass 𝑚, along with its

polar and diametrical inertia 𝐽𝑝 and 𝐽𝑑 . Its center of gravity is denoted by 𝐺 located at a distance 𝑑 from

the rear bearing 𝑃. As previously said, contact is restricted to the labyrinth tooth (rotor) located along the

𝑍 axis with distance 𝐿 from the rear bearing. A common assumption in the literature is to consider the

rotation speed as known and constant or at least as a known function of time [30]. Instead, when frictional

contact occurrences are involved, the torque is prescribed and the rotational velocity Ω(𝑡) becomes an

unknown of the problem, which is the case in the present paper and in [41, 15] as well. Because of high

rotational speeds in helicopter engines (up to 40 000 rpm), gyroscopic terms cannot be ignored. They are

known to couple even further the nonlinear mechanisms in the response [23] and the governing equation

involves terms in the stiffness matrix that depend on angular velocity Ω(𝑡) and on angular acceleration
¤Ω(𝑡) [23, 45, 33]. In the present document, since the turbine is perfectly rigid, stiffening effects are

ignored and only gyroscopic and inertial effects are included.

Also, ignoring the translational motion along the 𝑍 axis by assumption, five degrees-of-freedom

should be defined, following [26]. first, the titling angles 𝜃𝑥 , 𝜃𝑦 about the 𝑋 and 𝑌 axes, respectively, are

assumed to be small and their expression thus reduces to translations at points 𝑃 and 𝑅 in the form

𝜃𝑥 ≈
𝑦𝑝 − 𝑦r

𝐿
and 𝜃𝑦 ≈

𝑥𝑟 − 𝑥𝑝
𝐿

. (1)

These translations are defined in the fixed frame (𝑋,𝑌, 𝑍). The turbine motion is thus fully determined by

the vector of generalized coordinates

qr = (𝑥𝑝, 𝑦𝑝, 𝑥𝑟 , 𝑦𝑟 , 𝜃)⊤, (2)

where 𝜃 is the spinning angle satisfying ¤𝜃 (𝑡) = Ω(𝑡). Displacements of the center of gravity 𝐺 are

expressed by linear interpolation of the rotor and bearing displacements, that is 𝑞𝐺 = 𝜂𝑞𝑟 + (1 − 𝜂)𝑞𝑝 for

𝑞 = 𝑥, 𝑦, where the length ratio 𝜂 = 𝑑/(𝐿 − 𝛿) is used. A similar definition of the generalized coordinates

is found in [15] for the particular case where 𝛿 = 0 and 𝜂 = 1/2. The corresponding governing equation

for the turbine dynamics reads

Mr(qr) ¥qr + ( ¤𝜃Gr + Db) ¤qr +Kbqr = fext. (3)

The terms Kb and Db are the bearing stiffness and damping matrices. The mass and gyroscopic matrices

are, respectively

Mr(qr) =
1

2

©­­­­­«

2𝑀11 0 2𝑀12 0 −𝐻 (𝑦𝑟 − 𝑦𝑝)
2𝑀11 0 2𝑀12 𝐻 (𝑥𝑟 − 𝑥𝑝)

2𝑀22 0 𝐻 (𝑦𝑟 − 𝑦𝑝)
sym. 0 2𝑀22 −𝐻 (𝑥𝑟 − 𝑥𝑝)

2𝐽𝑝

ª®®®®®¬
and Gr =

©­­­­­«

0 𝐻 0 −𝐻 0

−𝐻 0 𝐻 0 0

0 −𝐻 0 𝐻 0

𝐻 0 −𝐻 0 0

0 0 0 0 0

ª®®®®®¬
(4)
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in which 𝑀11 = (1− 𝜂)2𝑚 + 𝐽𝑑/(𝐿 − 𝛿)2, 𝑀12 = 𝜂(1− 𝜂)𝑚 − 𝐽𝑑/(𝐿 − 𝛿)2, 𝑀22 = 𝜂2𝑚 + 𝐽𝑑/(𝐿 − 𝛿)2, and

𝐻 = 𝐽𝑝/(𝐿 − 𝛿)2. The external force vector fext = (0, −(1 − 𝜂)𝑚𝑔, 0, −𝜂𝑚𝑔, 𝜏a)⊤ accounts for gravity

and the driving torque from burnt gas blowing through the turbine blading 𝜏𝑎, which is set constant.

Bearing 𝑃 is initially at rest but the information on the initial rotational velocity of the rotor are not

provided for proprietary reasons. Still, it should be reminded that the first impact takes place in forward

precessional direction with a non-vanishing relative tangential velocity.

Remark. It is possible to rewrite Equation (3) in order to keep the mass matrix constant and explicitly

show the angular acceleration (or Coriolis) stiffness matrix Pr = Gr/2, which gives

Mr ¥qr +
(
Db + ¤𝜃Gr

)
¤qr +

(
K + ¥𝜃Pr

)
qr = fext (5)

Nevertheless, Equation (3) is preferred since it fits the general formulation of a second order Lagrangian

system[2, 1].1

2.3. Stator

2.3.1. Continuum Mechanics and simplifying assumptions

The stator is modeled as a circular ring with constant rectangular cross-sectional area of width 𝑏 and

half-thickness 𝑎, see Figure 4. The neutral fiber of the ring has a radius 𝑅𝑠. The ring is assumed to be thin

and satisfies the condition

2𝑎 ≪ 𝑅𝑠 . (6)

The Euler-Bernoulli beam theory is considered. Any point one the ring bears the six degrees-of-freedom

(𝑢, 𝑣, 𝑤, 𝜃𝑠, 𝜃𝑟 , 𝜃𝑤), see Figure 4. From the small deformation assumption combined with condition (6), it

𝑥
𝑦𝑅𝑆

2𝑎𝑧

𝑟𝑠 𝑣𝑢𝜃𝑠
𝜃𝑟

𝑧 𝑤 𝜃𝑤 𝑧

𝑟

𝑠 𝜃𝑠𝑢
𝑣

𝜃𝑟
𝜃𝑤𝑤

2𝑎
𝑏

Figure 4: Stator geometry, reference frame and degrees-of-freedom for a curved Bernoulli beam

is possible to simplify the expressions of the deformation in 3D by involving only the three translations

(𝑢, 𝑣, 𝑤), the torsion angle (𝜃𝑠) and their derivatives with respect to the curvilinear abscissa 𝑠, denoted

with subscripts ,𝑠 and ,𝑠𝑠 for compactness [18]:

𝜖𝑠𝑠 =
( 𝑣
𝑅𝑠
+ 𝑢,𝑠

)
−
( 𝑣

𝑅2
𝑠

+ 𝑣,𝑠𝑠
)
𝑟 +

( 𝜃𝑠
𝑅𝑠
− 𝑤,𝑠𝑠

)
𝑧

𝛾𝑟𝑠 =
𝑧

𝑅𝑠
(𝑅𝑠𝜃𝑠,𝑠 + 𝑤,𝑠)

𝛾𝑧𝑠 =
−𝑟
𝑅𝑠
(𝑅𝑠𝜃𝑠,𝑠 + 𝑤,𝑠).

(7)

However, in the present paper, contact is only investigated in the (𝑋,𝑌 ) plane in Figure 4. As a result, the

torsion 𝜃𝑠 and axial displacement 𝑤 are neglected. The shear deformations 𝛾𝑟𝑠 and 𝛾𝑧𝑠 thus vanish and do

not contribute to the deformation energy so that Hooke’s law 𝜎𝑠𝑠 = 𝐸𝜖𝑠𝑠 reads [19, 32]

2𝐸𝑑 =

∫ 𝑠2

𝑠1

𝐸𝑆
( 𝑣
𝑅𝑠
+ 𝑢,𝑠

)2

+ 𝐸𝐼𝑧
( 𝑣

𝑅2
𝑠

+ 𝑣,𝑠𝑠
)2

d𝑠 (8)

1For more information, see also the Siconos user guide.
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where 𝐸 , 𝑆 = 2𝑎𝑏 and 𝐼𝑧 = 𝑏(2𝑎)3/12 represent Young’s modulus, the cross-section area and the quadratic

moment of inertia, respectively. The kinetic energy of the curved beam is

2𝐸𝑐 = 𝜌

∫ 𝑠2

𝑠1

𝑆( ¤𝑢2 + ¤𝑣2) + 𝐼𝑧
( ¤𝑢
𝑅𝑠
− ¤𝑣,𝑠

)2

d𝑠. (9)

Finally, the second term in Equation (9), stemming from the rotation of a straight cross-section, is neglected

as in [19, 31, 40].

2.3.2. Space discretization

The flexible ring is discretized using curved beam finite elements [42]. It is divided into 𝑁e elements (equal

to the number of nodes) of length ℓe = 2𝜋𝑅𝑠/𝑁e. In order to guarantee continuity of the second derivatives

in Equation (8), cubic Hermite polynomial shape functions are employed: 𝑁1(𝜒) = 1 − 3𝜒2 + 2𝜒3,

𝑁2(𝜒) = ℓe(𝜒 − 2𝜒2 + 𝜒3), 𝑁3(𝜒) = 3𝜒2 − 2𝜒3 and 𝑁4(𝜒) = ℓe(−𝜒2 + 𝜒3) where the dimensionless

variable 𝜒 = 𝑠/ℓe stands for the curvilinear coordinate to element length ratio. From the eight generalized

coordinates q𝑒
s (𝑡) = (𝑢1(𝑡), 𝑢1,𝑠 (𝑡), 𝑣1(𝑡), 𝑣1,𝑠 (𝑡), 𝑢2(𝑡), 𝑢2,𝑠 (𝑡), 𝑣2(𝑡), 𝑣2,𝑠 (𝑡))⊤ for each element2, the

displacement vector q̄(𝜒, 𝑡) = (𝑢(𝜒, 𝑡) 𝑣(𝜒, 𝑡))⊤ reads

q̄(𝜒, 𝑡) ≈ N(𝜒)q𝑒
s (𝑡) (10)

with

N(𝜒) =
[
𝑁1(𝜒) 𝑁2(𝜒) 0 0 𝑁3(𝜒) 𝑁4(𝜒) 0 0

0 0 𝑁1(𝜒) 𝑁2(𝜒) 0 0 𝑁3(𝜒) 𝑁4(𝜒)

]
. (11)

The elemental stiffness matrix is computed from the discretized form of the potential energy in Equation (8)

2𝐸𝑑 ≈ q𝑒⊤
𝑠

[∫ 1

0

(DN(𝜒))⊤H(DN(𝜒)) d𝜒
]
q𝑒
𝑠 = q𝑒⊤

𝑠 K𝑒q
𝑒
𝑠 (12)

where D stores differentiation operators and H is the elasticity matrix:

D =

[
1
ℓe

d
d𝜒

1
𝑅𝑠

0 1

ℓe
2

d2

d𝜒2 + 1

𝑅2
𝑠

]
, H =

[
𝐸𝑆 0

0 𝐸𝐼

]
. (13)

The same procedure is applied with the kinetic energy, that is

2𝐸𝑐 ≈ ¤q𝑒⊤
𝑠

[∫ 1

0

𝜌𝑆 N(𝜒)⊤N(𝜒) d𝜒
]
¤q𝑒
𝑠 = ¤q𝑒⊤

𝑠 M𝑒 ¤q𝑒
𝑠 . (14)

The elemental mass and stiffness matrices M𝑒 and K𝑒 are expanded in Appendix A. The global assembly

procedure is verified by comparing the free ring eigenvalues for two and three nodal diameters. For a

nodal diameter 𝑛, the analytical expression is [8]

𝑓𝑛 =
𝑛(𝑛2 − 1)

2𝜋𝑅2
𝑠

√︄
𝐸𝐼𝑧

2𝑎(𝑛2 + 1)𝜌𝑏
(15)

which yields, for 𝑛 = 2 and 𝑛 = 3, 𝑓2 = 797 Hz and 𝑓3 = 2255 Hz, respectively. A convergence analysis of

these two frequencies shows that 𝑁e ≥ 24 is required. The number of elements is always a multiple of the

screws number so that there are always nodes coinciding with them. Note that these eigenfrequencies are

already high reflecting a stiff structure because of the small annular radius 𝑅𝑠 of several centimetres3. In

the remainder, the reference case is 𝑁e = 36. All the mechanical degrees of freedom for the stator (ring

and point mass) are collected in the vector q𝑠

2.3.3. Boundary conditions

As already said, component 𝐴 is a point mass in the simplified model and thus adds two degrees-of-freedom

(𝑥𝐴, 𝑦𝐴) to the system, which means that q𝑠 is of size 4𝑁𝑒 + 2 = 146 for reference case. In Figure 5, the

2For instance, 𝑢1,𝑠 corresponds to curvilinear derivative of displacement 𝑢 at node 1.
3The accurate data is not provided because of the confidentiality policy.
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(xs ,ys) at node j=4

j

j
j

Rs

Figure 5: Reduction of components A and B into springs and mass connected on curved beams assembly ( ) at

screw nodes ( ). Node positioning under deformed configuration with local displacements (𝑢 𝑗 , 𝑣 𝑗 )

screw nodes are emphasized as cyan nodes while the other nodes are black. The first node 𝑗 = 0 lies on

the 𝑋-axis and nodal identifiers 𝑗 = 0, . . . , 𝑁e − 1 are assigned counter-clockwise.

Figure 5 also shows that the position of a node 𝑗 in the deformed configuration, in the fixed

frame (𝑂, 𝑋,𝑌 ), is evaluated by the sum of the position at rest (𝑥0 𝑗 , 𝑦0 𝑗) = 𝑅𝑠 (cos𝛼 𝑗 , sin𝛼 𝑗) (where

𝛼 𝑗 = 2𝜋 𝑗/𝑁𝑒) and the projection of nodal displacement vector

(
𝑥𝑠𝑗 (q𝑠)
𝑦𝑠𝑗 (q𝑠)

)
=

(
𝑥0 𝑗

𝑦0 𝑗

)
+
(
− sin𝛼 𝑗 cos𝛼 𝑗

cos𝛼 𝑗 sin𝛼 𝑗

) (
0 1 0 0

0 0 1 0

) ©­­­
«

𝑢 𝑗

𝑢 𝑗 ,𝑠

𝑣 𝑗

𝑣 𝑗 ,𝑠

ª®®®¬
. (16)

Note that q𝑠𝑗 ≡ (𝑢 𝑗 , 𝑢 𝑗 ,𝑠, 𝑣 𝑗 , 𝑣 𝑗 ,𝑠)⊤ ∈ q𝑠 and that each of the stator coordinates reads in the condensed

form {
𝑥𝑠𝑗 (q𝑠) = 𝑥0 𝑗 + P𝑥Uq𝑠𝑗

𝑦𝑠𝑗 (q𝑠) = 𝑦0 𝑗 + P𝑦Uq𝑠𝑗

where U =

(
0 1 0 0

0 0 1 0

)
(17)

along with P𝑥 = (− sin𝛼 𝑗 cos𝛼 𝑗) and P𝑦 = (cos𝛼 𝑗 sin𝛼 𝑗).
A screw node is characterized by 𝑗 =

𝑛𝑁e

𝑁sc
where 𝑛 = 0, 𝑁sc − 1. In order to avoid confusion with

classical nodes, screw nodes are identified by the additional variable 𝑛. The potential energy at a screw

node 𝑛 has two contributions provided by the connecting components:

• Component 𝐵: 𝐸𝑝,𝐵 =
1
2
(𝑘𝐵𝑢𝑢2

𝑛 + 𝑘𝐵𝑣𝑣2
𝑛) and the stiffness matrix K𝐵 is thus diagonal.

• Component 𝐴: 𝐸𝑝,𝐴 =
1
2
𝑘𝐴(𝑣𝑛 − 𝑥𝐴 cos𝛼𝑛 − 𝑦𝐴 sin𝛼𝑛)2, where 𝛼𝑛 = 2𝜋𝑛/𝑁sc is the angular

position of screw 𝑛 on the ring. Therefore, the stiffness matrix K𝐴 is non-zero only on the elements

involving the displacements (𝑣𝑛, 𝑥𝐴, 𝑦𝐴). In other words, the condensed stiffness matrix reflecting

component 𝐴 at screw node 𝑛 is

K𝐴,𝑛 = 𝑘𝐴


1 − cos𝛼𝑛 − sin𝛼𝑛

− cos𝛼𝑛 cos2 𝛼𝑛 cos𝛼𝑛 sin𝛼𝑛

− sin𝛼𝑛 cos𝛼𝑛 sin𝛼𝑛 sin2 𝛼𝑛


. (18)

Note that coupling terms cos𝛼𝑛 sin𝛼𝑛 exist between the displacements 𝑥𝐴 and 𝑦𝐴. During the

matrix assembly, matrices from Equation (18) are extended and concatenated4

K𝐴 =

𝑁sc−1⋃
𝑛=0

K𝐴,𝑛. (19)

4Concatenation is defined by the union symbol in the present paper.
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Yet, for 𝑁sc evenly spaced screws on the ring, these elements linking 𝑥𝐴 and 𝑦𝐴 are summed and the

result is zero since

𝑁sc−1∑︁
𝑛=0

cos
2𝜋𝑛

𝑁sc

sin
2𝜋𝑛

𝑁sc

= 0 (20)

These extra-diagonal elements in Equation (18) vanish in the assembled matrix K𝐴.

The global mass matrix M𝑠 and stiffness matrix K𝑠 are built by assembling elemental mass and stiffness

matrices for the ring (resp. Me and Ke) along with the stiffness matrices of the 𝑁sc connecting springs

K𝐵, K𝐴. With a 36-node mesh on the ring and a point mass located by a translation pair 𝑥𝐴, 𝑦𝐴, the

whole stator model includes a total of 146 degrees-of-freedom. The damping matrix is set proportional to

the stiffness matrix, that is D𝑠 = 𝑟𝑘K𝑠 where 𝑟𝑘 = 10−6 is the Rayleigh coefficient. The computation of

eigenvectors shows that the damping ratio is about 4% for the first then modes which is in agreement with

the observed measurements.

2.4. Thermomechanical coupling

In contrast to the turbine, the numerical investigation of the thermal transient is performed for the stator.

Piezothermal effects are neglected and the heat source only stems from the flux at the contact surface 𝑆𝑐.

The finite element method applied to the heat equation for the stator of volume𝑉𝑠 leads to the integral form

[∫
𝑉s

𝜌𝑐N⊤𝜗N𝜗 d𝑉
]
¤Te +

[∫
𝑉s

𝜆∇N⊤𝜗 · ∇N𝜗 d𝑉
]
Te =

∫
𝑆𝑐

N⊤𝜗
¤𝑄𝑠 d𝑆 (21)

where 𝑐 is the heat capacity, 𝜆, the heat conductivity, ¤𝑄𝑠, the thermal flux density on 𝑆𝑐 (in W/m2) and

N𝜗 , the shape functions for the temperature field. It is now required to properly quantify ¤𝑄𝑠. The present

work aims to only provide a preliminary insight of the temperature transient, in line with [4, 47] where

the authors considered the heat transfer formulation proposed in [25]. They accounted for conduction,

Coulomb’s friction model and Archard’s law for wear. The essential mathematical developments are

described in the present paragraph. Let us consider two bodies, named rotor and stator, of respective

volumes 𝑉r and 𝑉𝑠. These bodies are in contact on a surface 𝑆𝑐. The general energy balance states that

(
𝜇𝑝N(x, 𝑡) +

𝑘𝑎

3𝑝𝑠
𝑝2

N(x, 𝑡)
)
∥vT(x, 𝑡)∥ − ¤𝑄r(x, 𝑡) − ¤𝑄𝑠 (x, 𝑡) = 0 ∀x on 𝑆𝑐 (22)

where 𝑘𝑎 stands for the Archard coefficient, 𝑝𝑠 is the material hardness and ¤𝑄r and ¤𝑄𝑠 are the heat flux

(unit W/m2) entering in the rotor and stator through the contact interface 𝑆𝑐. 𝑝𝑁 is the normal contact

pressure applied on 𝑆𝑐 and vT stands for the relative tangential velocity (or sliding velocity) between

the bodies. The present paper does not account for wear mechanisms and it is possible to reduce the

expression of frictional powers for rotor and stator, respectively,




¤𝑄r(x, 𝑡) =
𝜗r

𝜗r + 𝜗𝑠
(𝜗𝑠 (𝑇𝑠 (x, 𝑡) − 𝑇r(x, 𝑡)) + 𝜇∥vT(x, 𝑡)∥) 𝑝N(x, 𝑡)

¤𝑄𝑠 (x, 𝑡) =
𝜗𝑠

𝜗r + 𝜗𝑠
(𝜗r(𝑇r(x, 𝑡) − 𝑇𝑠 (x, 𝑡)) + 𝜇∥vT(x, 𝑡)∥) 𝑝N(x, 𝑡)

∀x on 𝑆𝑐 (23)

where 𝜗 is the thermal conductance of contact, 𝑇r and 𝑇s represent the rotor and stator temperatures. In

reality, the conductance depends on material properties and the surface deformation but is commonly

linearized with respect to 𝑝N [22], leading to Equation (23). The first term in this equation is the

contribution of conduction to the heat source and the second term represents frictional power. Since

temperature distribution in the rotor is not investigated, the first term is ignored and Equation (23) simplifies

to

¤𝑄s =
𝜗s

𝜗r + 𝜗𝑠
𝜇∥vT∥𝑝N. (24)

Eventually, it is assumed that the rotor and the stator have identical contact conductances [4, 25] which

implies that frictional power is equally split between the rotor and stator and that
𝜗s

𝜗r+𝜗𝑠 = 0.5. One thus

retrieves the heat partitioning coefficient used in [17].

In the present work, the stator is discretized by beam elements with constant section 𝑆. This means that

the heat equation can only be solved on the neutral fiber along the curvilinear coordinate 𝑠, see Figure 4.
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As a result, temperature is discretized in space by a basic linear interpolation, involving the shape function

N𝜗 (𝜒) = (1 − 𝜒 𝜒), 𝜒 ∈ [0, 1]. The discretized integral form of heat equation then reads

[∫ 1

0

𝜌𝑐𝑆ℓeN
⊤
𝜗N𝜗 d𝜒

]
¤Te +

[∫ 1

0

𝜆𝑆
ℓe

N⊤𝜗,𝜒N𝜗,𝜒 d𝜒
]
Te =

∫
𝑆𝑐

N⊤𝜗
¤𝑄s d𝑆. (25)

Simplifying Equation (25) leads to the ODE

C𝜗𝜗
e
¤T +K𝜗𝜗

e T = ¤Qs,e with C𝜗𝜗
e =

𝜌𝑐𝑆ℓe

6

[
2 1

1 2

]
and K𝜗𝜗

e =
𝜆𝑆

ℓe

[
1 −1

−1 1

]
. (26)

The expression for assembled nodal heat vector ¤Q𝑠 depends on the contact treatment methodology discussed

in the next section.

As already mentioned, friction is not the only phenomenon coupling mechanics and thermodynamics.

Thermal expansion is also of interest and the thermal dilation matrix must be computed. Its integral form

for a single element is [46]

K
𝑞𝜗
e = −

∫
𝑉𝑠

𝛼(DN)⊤HI𝑑N𝜗 d𝑉 (27)

where I𝑑 is the vector reflecting that temperature only affects normal deformation.5 In the case of a

Bernoulli curved beam, only the temperature contributes to the elongation 𝜖𝑠𝑠 of the neutral fiber [43].

Consequently I𝑑 = (1 0)⊤. With D, N, and H already known, the elementary expansion matrix is easily

computed and its expression is found in Appendix A. Thermal expansion adds a term in the stiffness

matrix of the form K𝑞𝜗 (Ts − Tref) with Tref, the reference temperature.

Eventually, the governing equations for the turbine dynamics and the stator thermomechanics including

contact conditions is


Mr(qr) 0 0

0 M𝑠 0

0 0 0


©­«
¥qr

¥qs

¥Ts

ª®¬
+

¤𝜃Gr + D𝑏 0 0

0 D𝑠 0

0 0 C𝜗𝜗


©­«
¤qr

¤qs

¤Ts

ª®¬
+

K𝑏 0 0

0 Ks K𝑞𝜗

0 0 K𝜗𝜗


©­«
qr

qs

Ts

ª®¬
=
©­«

fext
r

K𝑞𝜗Tref

0

ª®¬
+ ©­«

fc
r

fc
s
¤Qs

ª®¬
. (28)

In the remainder, contact efforts and torque applied to the turbine and the stator are collected in the vector

f
𝑞
𝑐 = (fc⊤

r fc⊤
s )⊤ and the generalized coordinates vector is

q = (qr, qs,Ts)⊤ (29)

with turbine related unknowns (qr) and stator-related unknowns (qs,Ts). For the reference case (36 nodes),

the matrices are of size 187 × 187.

The initial conditions for the overall system state that the stator is at rest and and no thermal pre-stress

is applied, implying that qs(0) = ¤qs(0) = 0 and Ts(0) = Tref. Since the heat equation is linear, imposing a

homogeneous initial condition for temperature and suppressing term K𝑞𝜗Tref in the second member of

Equation (28) provides the same solution just offset by Tref. Consequently, the equivalent initial condition

writes Ts(0) = Tref = 0 for the sake of simplicity.

3. Solution method

3.1. Unilateral contact and friction treatment

Unilateral contact conditions prevent mechanical bodies to penetrate each other and always create a reaction

force of magnitude 𝐹N in direction n normal to the contact surface. Defining 𝑑N as the distance between

the bodies, a classical formulation of unilateral contact constraints is given by the Signorini conditions

expressed at the displacement level [52]: the non-penetration constraint 𝑑N ≥ 0, the non-traction constraint

𝐹N ≥ 0 and 𝑑N 𝐹N = 0, enforcing the fact that both constraints cannot be active simultaneously.

A large majority of works and industrial tools simplify the Signorini conditions by regularization

techniques [11, 34, 20]. However, the present work aims to strictly enforce the non-smooth law and to

5With tensor formulation, the thermoelastic law for an isotropic material is 𝜎⊗2 = 𝐸⊗4 : [𝜖⊗2 − 𝛼(𝑇 −𝑇ref)𝐼⊗2
𝑑
], where 𝐼𝑑 is

the identity second order tensor. If the deformation and constraints tensors are condensed through the Voigt notation as column

arrays 𝜖 and 𝜎 ∈ R6, then 𝐼𝑑 = (1, 1, 1, 0, 0, 0).
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prevent non-physical and residual penetration. A a result, preference is given to solution techniques

involving constraints management and Lagrange multipliers. A widely known procedure allowing to solve

dynamics with contact occurrence in time domain is the Carpenter algorithm [9]. Various published

works [42, 4, 32] selected the Carpenter algorithm for its simplicity of implementation while giving results

in agreement with experiments [48]. Note that other solutions methods with Lagrange multipliers are also

available such as the Moreau-Jean [35, 28] or the Paoli-Schatzman [38] algorithms. They include the

non-smooth Newton impact law [1] in the Signorini conditions.

Friction is accounted for by introducing a force Ff oriented in the direction opposed to the relative

speed vT at the contact interface between the interacting bodies. Its magnitude is commonly dictated by

the Coulomb dry friction model stating that the friction force must satisfy

{∥Ff∥ = 𝜇𝐹N, if vT ≠ 0

∥Ff∥ ≤ 𝜇𝐹N, if vT = 0

(30a)

(30b)

Besides, the implementation of Coulomb’s friction law requires careful attention because of the non-

smoothness of the sticking friction phase governed by Equation (30b). If one desires to strictly enforce the

Coulomb friction law as written in Equations (30a) and (30b), the exact approach for frictional contact

treatment is based on mathematical concepts from convex analysis and defines contact efforts in the

Coulomb cone [1]. Otherwise, it is possible to regularize the Coulomb friction law [11, 17] or to consider

a sliding-only friction law characterized by

𝐹f = Ff · t = −𝜇𝐹Nsign(vT) with vT = vT · t. (31)

where t is the unit tangential vector in local contact frame. The above relation implies that the relative

velocity is known and its assessment is further developed in the present section. This formulation is

commonly considered when the rotor operates at high rotational speeds [32, 4, 42].

In [26], Carpenter and Moreau-Jean algorithms were compared on rotor-stator rubbing between rigid

bodies with various friction models. Good agreement is reported and pure rolling motion (i.e. sticking

friction) can take place during the simulation. More interestingly, rotational velocity transient was mainly

affected during sliding friction phases. This explains why sliding friction only, see Equation (31), is

considered in the present model. Accordingly, it is decided to manage contact occurrences with the

Carpenter algorithm. All unknowns are grouped into the vector q = (qr, q𝑠,T𝑠) and global mass, damping,

gyroscopic and stiffness matrices are named M(q), D, G, and K, respectively, such that Equation (28)

becomes

M(q) ¥q + (D + ¤𝜃G) ¤q +Kq = fext + f𝑐 . (32)

Dependency of the mass matrix on the turbine dofs is shown to stress that it is not constant.

3.2. Modified Carpenter algorithm

In Carpenter algorithm, Equation (32) is discretized in time using an integrator from the Newmark

family [24]. In order to avoid confusion with other symbols, numerical damping and stability parameters

of the Newmark schemes are respectively denoted 𝛽1 and 𝛽2. Simulation time is divided into 𝑁 intervals

of duration ℎ. For studies involving mechanics only, the centred finite-difference scheme with 𝛽1 = 0.5

and 𝛽2 = 0 is appropriate but Thorin & al. [47] showed that 𝛽1 must be slightly offset because of stability

issues to solve the heat equation with thermomechanical coupling. Consequently, the integrator is chosen

in this work with 𝛽1 = 0.501 and 𝛽2 = 0. In the present paper, to reduce the amount of notation, it is

decided to reflect dependencies regarding unknown quantities only. In discrete time, the unknown vector

is q𝑖+1 at time step 𝑖 + 1 and the contact-free equations of motion become

M̄(q𝑖+1)q𝑖+1 + D̄(q𝑖+1)q𝑖 + K̄(q𝑖+1)q𝑖−1 = f̄𝑖 , 𝑖 = 1, . . . , 𝑁 (33)

where

M̄(q𝑖+1) :=
M(q𝑖)
ℎ2

+ 𝛽1
D + ¤𝜃𝑖 (q𝑖+1)G

ℎ

D̄(q𝑖+1) :=
2M(q𝑖)

ℎ2
+ 2𝛽1 − 1

ℎ

(
D + ¤𝜃𝑖 (q𝑖+1)G

)
− (0.5 + 𝛽1)K

K̄(q𝑖+1) :=
M(q𝑖)
ℎ2

+ 𝛽1 − 1

ℎ

(
D + ¤𝜃𝑖 (q𝑖+1)G

)
+ (0.5 − 𝛽1)K

f̄𝑖 := (1 − 𝛽1)fext
𝑖−1 + (1 + 𝛽1)fext

𝑖

. (34)
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(xs ,ys) at node j=4
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(x ,y )r r N

Nd a

Figure 6: Computation of the nodal distance between de rotor center and the 4th node on the stator ( 𝑗 = 4)

The rotational velocity at time step 𝑖 is a function of q𝑖+1 because of the time discretization

¤𝜃𝑖 (q𝑖+1) ≈
𝜃𝑖+1 − 𝜃𝑖−1

2ℎ
(35)

along with the fact that 𝜃𝑖+1 is the fifth element of q𝑖+1, see Equations (2) and (29). Strictly speaking,

matrices M̄, D̄, K̄ and scalar ¤𝜃𝑖 also depend on q𝑖 and q𝑖−1. However, these vectors are already known and

merely imply an update of the system at each time step.

The modified version of Carpenter’s algorithm [26] performs the following steps.

Step 1: prediction The objective is to find a constraint-free candidate q
𝑝

𝑖+1, where exponent 𝑝

stands for predicted. Solution to Equation (33) is performed by calling the Python built-in nonlinear

solver fsolve that requires an initial guess, chosen as q𝑖. This function is a FORTRAN wrapper of a

modified version of the Powell hybrid method [10] in order to find a root close to the initial guess. The

computational time is reduced by providing the Jacobian matrix of Equation (33)

J(q𝑖+1) =
(M(q𝑖)

ℎ2
+ 𝛽1

D

ℎ

)
+ 𝛽1

2ℎ2
(𝜃𝑖+1 − 𝜃𝑖−1)G+

G

2ℎ2
(𝛽1q𝑖+1 − (2𝛽1 − 1)q𝑖 + (𝛽1 − 1)q𝑖−1) , (36)

which is also function of q𝑖+1. Please note that the last term in Equation (36) is a column vector to be

added on the 5th column of J (i.e. the column corresponding to dof 𝜃𝑖+1 of the turbine).

Step 2: penetration check The approach selected is to evaluate the nodal rotor-stator distances

𝑑
𝑗

N
(q) = 𝛿

𝑗

N
(q) − 𝑅r − 𝑎 for 𝑗 = 0, . . . , 𝑁e−1 (37)

with

𝛿
𝑗

N
(q) =

√︃
(𝑥𝑠𝑗 (q) − 𝑥𝑟 )2 + (𝑦𝑠𝑗 (q) − 𝑦𝑟 )2. (38)

The couple (𝑥𝑠𝑗 , 𝑦𝑠𝑗) embeds the jth stator node coordinates in the fixed frame (𝑂, 𝑋,𝑌 ) as shown in

Figures 5 and 6. Their expression is given in Equation (17) where q𝑠 can be easily replaced by q as

function variable based on Equation (29), and (𝑥r, 𝑦r) are the rotor displacements already defined in

Figure 3. Nodes that violate the Signorini conditions are grouped in the set of active constraints denoted

A =
{
𝑗 ∈ [0, 𝑁e − 1]

�� 𝑑 𝑗

𝑁
< 0

}
. In the rest of the procedure, the index of node 𝑗 in the set A is noted 𝑘

and goes from 1 to 𝑎 = |A|, cardinal of A. The associated negative penetrations are collected in the vector

g
𝑝

𝑖+1.

Step 3: correction If A is empty, there is no correction to apply and discrete time step is incremented.

In contrast, when A contains 𝑎 nodes, 𝑎 Lagrange multipliers 𝜆 (𝑘 ) (𝑘 = 1, . . . , 𝑎) should to be computed.

Note that these multipliers correspond to the normal unilateral contact forces 𝐹
(𝑘 )
N

when solution is

converged. The computation of the resultant contact effort implies the definition of the following vectors

for each active constraint 𝑘 , involving node 𝑗 :
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• Normal direction components C
(𝑘 )
N

which corresponds to the gradient of normal distance ∇q𝑑
𝑗

N
(q)

evaluated for predicted displacement q
𝑝

𝑖+1. Applying the gradient operator to Equation (37) yields

C
(𝑘 )
N

= ∇q𝛿
𝑗

N
(q𝑝

𝑖+1) (39)

Therefore C
(𝑘 )
N

must be computed at each time step 𝑖 + 1 but index is omitted for simplicity.

• The components C
(𝑘 )
T

in the tangential direction are obtained in a similar way to C
(𝑘 )
N

, however by

deriving a tangential distance 𝑑T, which writes for node 𝑗

𝑑
𝑗

T
(q) = 𝛿

𝑗

N

𝑦𝑠𝑗 (q) − 𝑦𝑟

𝑥𝑠𝑗 (q) − 𝑥𝑟
− 𝑅𝑟𝜃. (40)

In the expression above, 𝛿
𝑗

N
is considered constant in the gradient computation. The analytic

expressions for C
(𝑘 )
N

and C
(𝑘 )
N

are given in Appendix B.

For sliding-only friction, each multiplier contributes to contact efforts according to the Coulomb friction

law

f
𝑞

𝑐,𝑖+1 =

𝐴∑︁
𝑘=1

(
C
(𝑘 )
N
− 𝜇 sign(𝑣 (𝑘 )

T,𝑖
)C(𝑘 )

T

)
𝜆
(𝑘 )
𝑖+1 (41)

where 𝑣
(𝑘 )
T,𝑖

, in the 𝑘 th active constraint, defines the tangential component of the relative speed in the frame

of node 𝑗 ∈ A. Based on the predicted speed vector v
𝑝

𝑖
= (q𝑝

𝑖+1 − q𝑖)/ℎ, the sliding velocity is updated at

each time step 𝑖 using

𝑣
(𝑘 )
T,𝑖

= C
(𝑘 )
T

⊤
v
𝑝

𝑖
(42)

but index 𝑖 is dropped to simplify notations. One should notice that each column vector C
(𝑘 )
N

or C
(𝑘 )
T

is

almost empty. Only degrees-of-freedom of the rotor and of node 𝑗 belonging to the stator are affected

by the 𝑘 th constraint. In discrete time, the 𝑎 multipliers are collected in the vector 𝚲𝑖+1. A matrix

CNT may also be defined with 𝑎 columns, where each column equals C
(𝑘 )
N
− 𝜇 sign(v(𝑘 )

T
)C(𝑘 )

T
such that

Equation (41) becomes

f
𝑞

𝑐,𝑖+1 = CNT 𝚲𝑖+1. (43)

The same approach is achieved for the heat power vector ¤Qs, see Equation (28). Based on Equation (24),

on the right member of Equation (25) and knowing that there exist heat sources for the stator only at the 𝑘

activated nodes 𝑗 ∈ A, we have

¤Q(𝑘 )
s,𝑖+1 =

1

2
𝜇 |v(𝑘 )

T
|𝜆 (𝑘 )

𝑖+1 . (44)

The above expression can be included in Carpenter’s algorithm and for each activated constraint 𝑘 is

assigned a heat contribution vector C
(𝑘 )
𝜃

that is zero except on its 𝑗 th component

C
(𝑘 )
𝜗 𝑗

=
1

2
𝜇 |v(𝑘 )

T
| (45)

resulting in ¤Qs,𝑖+1 = C𝜗𝚲𝑖+1. Eventually, the contributions of Lagrange multipliers to both physics are

grouped in the matrix CNT𝜗 = (CNT,C𝜗)⊤. Therefore, the contribution f𝑐 to the dynamics and heat

equations, see Equation (32), is

f𝑐,𝑖+1 = CNT𝜗𝚲𝑖+1. (46)

They are computed at step 𝑖 + 1 based on the relation

𝚲𝑖+1 = −
(
C⊤NM̄−1(q𝑝

𝑖+1)CNT𝜗

)−1
g
𝑝

𝑖+1 (47)

It should be noted that the Lagrange multipliers are computed based on the simplifying assumption that

the rotational velocity used to compute gyroscopic effects is the predicted one, that is ¤𝜃 𝑝
𝑖

which is an entry

of v
𝑝

𝑖
. Displacement and temperature encompassed in vector q𝑖+1, see Equation (29), are corrected via

q𝑖+1 = q
𝑝

𝑖+1 + M̄(q𝑝

𝑖+1)
−1CNT𝜗𝚲𝑖+1 (48)

and eventually discrete time is incremented.

The above procedure is summarized in Algorithm 1 in Appendix C.
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3.3. Choice of time step

One last remark is about the time step ℎ which should satisfy the (linear) stability criterion

ℎ <

√
2

max(2𝜋 𝑓𝑛)
√
𝛽1 − 𝛽2

(49)

based on the eigenvalues of the system without damping and the parameters of the Newmark integrator. It

is clear that the time scale is governed by the eigenfrequencies of the stator and Equation (49) with 36

nodes is respected for ℎ ≤ 4.5× 10−7 s. However, Equation (49) is restricted to linear domain and stability

proofs exist for contact algorithms only in particular cases. Simulations were tested with ℎ = 4 × 10−7 s

and showed converged results, as detailed in the following section.

4. Results

4.1. Reference case

The reference case involves a ring connected to the casing through 12 screws. The friction coefficient

is set to 𝜇 = 0.1 and simulations are run until 𝑡ref = 300 ms. The largest rotational velocity Ωmax =

max𝑡∈[0,𝑡ref ] (Ω(𝑡)) on the considered time interval is of primary interest in this research. It is desired that

Ωmax < Ωlim, where Ωlim is a speed limit not to be exceeded. A convergence analysis is performed and

speed transients for 36 and 72 nodes are displayed in Figure 7(a). It turns out that for both cases, the

rotational velocity evolution is similar and Ωmax remains bounded by Ωlim.

The frictional torque presented in Figure 7(b) sometimes vanishes at the beginning of the simulation,

meaning that contact is open. Indeed, the frictional torque is computed using

𝜏 𝑓 (𝑡) = 𝑅𝑟

𝑁e∑︁
𝑗=1

𝜇𝜆 𝑗 (𝑡) (50)

where a vanishing 𝜆 𝑗 (𝑡) implies that node 𝑗 does not violate the non-penetration constraint (i.e. 𝑗 ∉ A).
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Figure 7: Transient response for the turbine rotation: 36 nodes ( ) and 72 nodes ( ). Rotational velocity remains

bounded since frictional torque overcomes aerodynamic torque.

Moreover, it becomes clear that the frictional torque progressively overcomes the driving aerodynamic

torque, which explains the rotational speed decrease. One also notices that the gap transient at node 9,

i.e. the 4th screw in Figure 8(a), has the same profile for both meshes. The same remark holds for the

rotor vibration, which is illustrated along the 𝑥-direction in Figure 8(b). The corrected gap never becomes

negative which confirms the absence of residual penetration and that the Signorini conditions are correctly

satisfied. After about 20 ms, vibration magnitudes and gap start to slowly shift between the meshes but this

lag seems to be limited. Consequently, it is considered that the nonlinear dynamics is correctly captured

with 36 nodes only. The question is now to identify the origin of this torque increase. Precessional speed

is thus investigated and is defined here as the tangential speed of the rotor. It implies that the vector vprec is

aligned with unit tangential vector t, and that its component 𝑣prec along t is, see Figure 9(b)

𝑣prec ≈
𝑥𝑟 ¤𝑦𝑟 − 𝑦𝑟 ¤𝑥𝑟√︁

𝑥2
𝑟 + 𝑦2

𝑟

. (51)
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Figure 8: Convergence study of structural vibration: 36 nodes ( ) and 72 nodes ( ). Solution is converged for

𝑡 < 30 ms. Then, a constant phase shift takes place in the rest of the simulation.
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Figure 9: Rotor precessional speed: forward precessional motion at the very beginning of the simulation and then

negative speed on average, reflecting partial contact in backward precession.

This precessional speed tends to decrease with a negative mean value in Figure 9(a) reflecting that backward

precessional motion becomes dominant. Hence, the response for the reference case is characterized by a

partial rub with backward precessional motion. This behavior is known to come with higher amplitude of

the rebounds [21] which is confirmed by the slight increase of the vibration amplitude of the rotor with

time, leading to higher contact efforts. However, contact does not become fully annular and dry whip is

not initiated in the simulation time for the reference case.

The main difference between the two meshes lies in the thermodynamics response. Both cases give

the same time evolution for the frictional energy, as shown in Figure 10, computed according to

𝑄 𝑓 (𝑡) =
𝑁e−1∑︁
𝑗=0

∫ 𝑡

0

𝜇 |𝑣T, 𝑗 (𝜏) |𝜆 𝑗 (𝜏)d𝜏. (52)

However, the temperature profiles at the end of the simulation differ. The configuration with 36 elements

shows negative temperature for nodes that are not screwed, which is non-physical since the frictional

power at these nodes is positive, so that there are always heat sources and not sinks. This is a purely

numerical phenomenon related to mesh refinement. With 𝑁e = 72, the temperature at the end of the

simulation and far from screw nodes lies between 689 ◦C and 1055 ◦C with 904 ◦C on average. For a

stator in stainless steel, the melting point is at 𝑇𝑚 = 1540 ◦C. For zero initial temperature, it implies that

the stator does not melt excepting at the screw points. Assuming that the initial temperature was around

300 ◦C, which is a realistic value for a gas turbine in nominal operation, the above range would represent a

temperature elevation. However, the stator temperature away from the screws would remain under the

melting point. Most of the contact efforts (and so the attendant frictional energy) are concentrated at the

screws as confirmed by the Lagrange multipliers for nodes 10, 11 (no screw) and 9 (screw) in Figure 11.

As the precessional speed lies between −2 m/s and 2 m/s, it leads to a precessional frequency which could

exceed 400 Hz. As a consequence, the thermal influence zone around the screws is very narrow and if the
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Figure 10: Thermal response: 36 nodes ( ), 72 nodes ( ). Total frictional energy is identical with mesh

refinement but temperature disctibution shows extremely local peaks at screw nodes.
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Figure 11: Evidence of contact efforts and frictional energy concentration at screw nodes with 𝑁e = 36: 𝑗 = 9 (4th

screw) ( ), 𝑗 = 10 ( ) and 𝑗 = 11 ( ).

mesh is not sufficiently refined within this layer, results may be non-physical. The issue can be solved by

increasing the number of mesh elements and the configuration with 72 nodes case indeed provides more

reliable information.

4.2. Sensitivity to the friction coefficient

As mentioned in the literature review, multiple mechanical parameters are known to influence the emergence

of backward precessional motions, one of them being the friction coefficient. One seeks to investigate the

variation of the rotational speed max values when the friction coefficient is increased. Speed transients

in Figure 12 confirm that Ωmax decreases with 𝜇. However, 𝜇 must be chosen carefully since an abrupt
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Figure 12: Sensitivity of the rotational speed transient to the friction coefficient: 𝜇 = 0.1 (ref) ( ), 𝜇 = 0.12 ( ),

𝜇 = 0.15 ( ), and 𝜇 = 0.2 ( ).

decrease is obtained for 𝜇 ≥ 0.15. This phenomenon reflects that dry whip is taking place, i.e. fully

annular backward precessional motion. The dynamical response is further investigated for 𝜇 = 0.15 with
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mesh refinement. It turns outs that Ωmax is identical for all mesh sizes, in Figure 13(a), and velocity profiles

are similar until 𝑡 = 135 ms. Again, perfect match is predicted for 𝑡 < 30 ms for the rotor displacement

𝑥𝑟 (𝑡) in Figure 13(b). Then, a phase lag takes place and dry whip is initiated in a time frame between 135

and 160 ms, which is more accurate than for a model with rigid stator and rotor. Fully annular contact is
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Figure 13: Mesh convergence analysis for 𝜇 = 0.15: 𝑁e = 36 ( ), 𝑁e = 48 ( ), 𝑁e = 60 ( ).

confirmed by frictional torque that never vanishes after 150 ms.
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Figure 14: Dynamical response for 𝜇 = 0.15 and 𝑁e = 36.
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Figure 15: Precessional velocity for dry whip: 𝑁e = 36 and 𝜇 = 0.15.

Violent dry whip also emerges with an abrupt increase of the precessional velocity in absolute value

as shown in Figure 15. In other words, kinetic energy is transferred from rotation to vibration through

frictional mechanisms. Let us consider the front view of a rotorshaft with circular section depicted in

Figure 16. In case of backward precessional motion, in Figure 16(b), the friction force Ff acts against

Ω but in favour of vprec. The consequence is that the rotor displacement, Figure 13(b), is amplified by a

factor 10. Figure 17 also shows that the stator suffers significant deformation that could indicate a response

out of the elastic domain for material properties. However, once 𝑡 > 160 ms, frictional torque, presented in

Figure 14(a) for 𝑁e = 36, tends exponentially to zero and precessional speed stabilizes at −20 m/s. This
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Figure 16: Description of velocities and efforts during a dry whip instability because friction force acts in the

direction of vibration speed vprec and opposed to rotational velocity Ω.
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Figure 17: Stator deformation ( ) and contact interface during dry whip phase at 𝑡 = 160 ms: stator initial

shape ( ), contact points ( ) and screws nodes ( )

reflects a transition from dry whip to dry whirl, i.e. rolling motion without sliding. Indeed, the friction

force is still non-zero but the tangential relative speed at contact points is nearly zero and friction no longer

produces work. As a result, global frictional power (in Watts)

¤𝑄 𝑓 (𝑡) =
𝑁e∑︁
𝑗=1

𝜇 |𝑣T, 𝑗 (𝑡) |𝜆 𝑗 (𝑡) (53)

reduces to zero with time. Note that during dry whirl, frictional torque shows high frequency oscillations

between negative and positive values, see Figure 14(a). Literature [27] explains that these sign switches

are caused by the Coulomb friction law chosen restricted to sliding, see Equation (31). Although the

relative velocities at nodes 𝑣T, 𝑗 for 𝑗 = 1, . . . , 𝑁e tend to zero, they do not strictly equal zero and slightly

change of sign, while the normal forces (𝜆 𝑗) remain always positive.

To conclude, a higher friction coefficient implies a decrease of Ωmax. For 𝜇 > 0.12, dry whip is

triggered, involving an exponential increase of efforts and braking torque. A transition from this unstable

regime to dry whirl takes place once the relative velocity between the rotor and the stator goes to zero. A

friction force still exists but it no longer produces work and structural vibrations are mitigated.

4.3. Sensitivity to the number of screws and magnitude of springs stiffness

The structural stiffness of the stator is known to affect the maximum rotational velocity. Depending on the

engine type, the fixing conditions and stator stiffness may vary, and one must ensure that the stator design

is in agreement with the speed limitation objective. Besides, it is important to identify if there exist stator

configurations that lead to melting far from the screws. In the present work, the stiffness is modified in the

following ways:

• the number of screws is reduced but stiffness of the connected springs is unchanged, or
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• the number of screws is kept at 12 but the springs stiffness 𝑘𝐵𝑢, 𝑘𝐵𝑣 and 𝑘𝐴 are all increased/decreased

by 10 %.

First, the number of screws, i.e. the number of springs, is set to 5 so that the whole stator becomes softer.

It is important to keep in mind that these springs are a condensed model of plain parts that aim to simplify

the boundary conditions applied to the stator. In order to work with the same number of elements as in the

reference case, 𝑁e is set to 35. The friction coefficient is 𝜇 = 0.1. Figure 18(a) shows that with fewer

screws, the braking torque becomes less efficient since Ωmax is higher by 12 %. Besides, the temperature
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Figure 18: Sensitivity of thermomechanical response to screws number: reference 𝑁sc = 12 ( ) and 𝑁sc = 5 ( ).

distributions in Figure 18(b) demonstrates that temperature peaks always correspond to the locations

of the screws. Temperature in the vicinity of the screws presents again negative values related to the
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Figure 19: Influence of screws number on contact response at simple node located on 𝜙 = 𝜋/9: 𝑁sc = 12 (ref) ( )

and 𝑁sc = 5 ( ).

lack of nodes. However, with same mesh refinement (𝑁e = 70 close to the 72 nodes for reference case),

the temperature far from the screw nodes is lower when 𝑁sc decreases. Indeed, temperature in these

regions ranges between 582 ◦C and 1014 ◦C, as shown in Figure 10(b). The average temperature value

drops to 815 ◦C, which represents a reduction of 9.84 %. As already mentioned, this solution represents a

temperature elevation if a non-zero initial condition is considered. For instance, if 𝑇0 ≈ 300 ◦C, fusion

would not take place. This result may seem paradoxical since the rotational velocity, and so the relative

sliding velocity (𝑣T), are higher by 12% when 𝑁sc drops from 12 to 5. That increase of sliding velocity is

compensated by lower normal contact efforts. This is an expected outcome when the structure is softer and

is confirmed by transient of normal forces. For instance, 𝐹N at the node with polar coordinate 𝜙 = 𝜋/9 on

the stator, see Figure 19(a), is smaller when 𝑁sc decreases during the whole simulation. One can also

notice that the number of contact occurrences drops from 23 to 16 when the screws number decreases but

they last longer. Contact is maintained during roughly 5 ms while this duration never exceeds 3 ms when

𝑁sc = 12. As a result, slightly less heat is generated at nodes, as confirmed in Figure 19(b), but the lower

contact efforts predicted with fewer screws lead to a less efficient braking mechanism.

In the second case study, transients of rotational velocity in Figure 20(a) indicate that when the stiffness

at the screws is increased, then Ωmax decreases. This statement is in agreement with literature [14] who

also found that contact efforts increased with stiffer stator supports. Indeed, Figure 20(b) confirms that
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Figure 20: Sensitivity of thermomechanical response to springs stiffness with 𝑁e = 36: reference ( ), −10 % ( )

and +10 % ( ).
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Figure 21: Influence of supports stiffness on the temperature profile: reference ( ), −10 % ( ), +10 % ( )

contact effort 𝐹N for a screw node (here node 𝑗 = 9 corresponding to the 4th screw) depends proportionally

on stiffnesses 𝑘𝐵𝑢, 𝑘𝐵𝑣 and 𝑘𝐴. This dependency is also reflected in the algorithmic of the solution

method. For a given predicted penetration, a softer structure, or softer supports in this case, implies that

the required effort to correct the gap is smaller. Stator stiffness also affects temperature profile. It seems

that the relative sliding velocity decrease involved in the frictional energy is not dominant with regard

to the increase of the contact effort. As a result, peaks at screws and average temperature increase with

the stator support stiffness, see Figure 21. Indeed, with stiffness reduced (resp. increased) by 10 %, the

average temperature equals 828 ◦C (resp. 1032 ◦C). For the stiffer stator, temperature reaches 1226 ◦C
locally. One should thus consider that melting wear takes place elsewhere that at the screws.

Therefore attention must be paid in the modeling of the stator supports. They should be calibrated

with experiments since the rotordynamics response may not fulfill the objective Ωmax < Ωlim in a stiffness

margin of 10 %.

4.4. Thermal effect analysis

In the above investigation, the only coupling parameter between structural dynamics and thermodynamics

is friction. The objective is now to include thermal expansion and investigate how it affects the speed

transient. The thermal expansion coefficient for steel is set to 𝛼 = 1.05 × 10−5 K−1. According to

Figure 22(a), it turns out that Ωmax is slightly decreased by 2 % and that the deceleration phase becomes

steeper with thermal dilatation. Again, the torque generated by friction, shown in Figure 22(b), exceeds

its counterpart from aerodynamics. However, it is not obvious that the frictional torque is higher when

thermal dilation is considered although one can see in Figure 23 that the corresponding frictional energy

is effectively greater, mechanism which should be understood. Figure 24 shows portions of the frictional

energy provided individually to a screw node and a neighbor classical node. For any screw node, see for

instance Figure 24(a) for node 19, the frictional energy is greater when thermal dilation is accounted

for. For node 18, in Figure 24(b), the amount of thermal energy received decreases. It also seems that

the energy reaches a plateau, which means there is no more heat source at the considered node. This

comment holds for any classical node. Actually, the gap function at the classical node 18, indicated in

Figure 25(b), shows that there is permanent contact separation after 220 ms. The thermal expansion is
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Figure 22: Sensitivity of mechanical response: without thermal dilatation ( ) and with thermal dilatation ( ).
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Figure 23: Frictional energy generated on the entire contact interface without dilatation ( ) and with dilatation ( ).
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Figure 24: Energy source provided locally to stator nodes by friction, increases for any screw node with thermal

dilatation, while it decreases for other nodes: 𝛼 = 0 ( ) and 𝛼 = 1.05 × 10−5 K−1 ( ).

already observable on the gap function. While the maximum rotor-stator distance equals about twice the

initial gap in the reference case, this distance increases to more than 3 mm, which is close to 4𝑔0.

The main conclusion of this analysis is that the stator expands due to the increased temperature but

not homogeneously within the structure. This is illustrated in Figure 26 where the first quarter of the

deformed ring at the end of the simulation is plotted. Because of the petal-shape of the stator, contact is

concentrated at screws that were already carrying most of the contact efforts. These petals appear because

the structure is stiffer at the screws. One could imagine that they are almost clamped. Heat affects more

the rest of the ring that bends to the outer side. Higher efforts at the screws and smaller efforts on the

other ones does not have much effect on the rotational velocity: the friction-induced braking is not altered

by thermal expansion. However, the temperature magnitude predicted at the screw nodes is not realistic.

More complex phenomena could take place such as wear and melting and thermal expansion could amplify

metal fusion in the vicinity of the screws.
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Figure 26: Rotor-Stator contact interface with thermal dilatation at the end of simulation 𝑡 = 300 ms for a 90◦-sector:

Rotor rigid disc ( ), stator deformed shape ( ), contact points ( ) and screws ( ). Amplitudes are magnified by a

scale factor 5 for illustration purposes. Blue points represent screw nodes and black ones, conventional nodes. A

node marked with a cross indicates closed contact.

5. Conclusions

The present work proposed to investigate how unilateral and frictional contact occurrences combined with

thermomechanical coupling affect the unknown rotational velocity transient of a free turbine. A constant

driving torque is initially applied to the turbine which as a consequence tends to accelerate. However, it is

expected that frictional mechanisms overcome that torque in such a way that the turbine eventually slows

down. Such a response is expected to involve strongly non-linear dynamics because the unknown rotational

velocity that governs gyroscopic and inertial effects, and must be addressed properly. The rotordynamics

is nonlinear even without structural interaction and required an adaptation of Carpenter’s algorithm.

Moreover, unilateral contact with friction couples the structural dynamics to the thermodynamics though

the generation of heat sources at the contact points. Linear thermodynamics and dilation were developed

in the governing equations. Both physics are simultaneously solved with strong coupling within the same

time-stepping solution method.

The investigation of the transient response is conducted on a rotor-stator system where the rotor was

assumed to be perfectly rigid. The stator assembly, made of three parts in practice, was simplified into a

flexible circular ring, connected to a point mass, and supported by springs at the screws level. The ring was

meshed with curved Bernoulli beams elements. Results showed that for a given reference configuration,

the rotational velocity remains bounded, reflecting the ability of the frictional torque to overcome the

prescribed aerodynamic torque and brake the turbine. The origin of such high contact efforts is that the

dynamic response is governed by backward precessional motion. Boundary conditions applied on the

stator with stiff springs placed on a finite number of nodes, reflecting the presence of screws, caused a

major disparity of contact effort mainly concentrated on these nodes. For the reference case, contact

remained partial but the vibration of the structures is amplified which are the characteristics of a response

in backward precessional motions. The rotorshaft entered into unstable dry whip operating conditions

when the friction coefficient was increased. The thermal solution showed that a huge frictional power is

generated, reaching hundreds of kiloWatts at screw nodes, because of the high rotational velocity and

high contact efforts. As a result, temperature peaks beyond the melting point of the considered material
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are found on the screw nodes. This extremely localized heat distribution reflects that the discretization

mesh must be sufficiently refined to avoid non-physical results. Sensitivity studies provided responses in

agreement with the existing literature and demonstrated that the stator spring supports must be designed

carefully. Many screw points with stiffer springs certainly make the braking property of friction more

efficient, but this comes with more heat generated at nodes that are more likely to wear by melting.

Eventually, thermal expansion, when accounted for, does not significantly affect the speed transient, but the

stator presented a non-uniform outward deformation. The obtained petal-shaped topology forces contact

events to occur at the screw nodes only. The predicted screws temperature is rather qualitative since the

implemented thermodynamics model is limited in its scope.
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Appendix A. Elementary matrices for the stator

The matrices below represent elementary mass, stiffness and thermal dilatation matrices for a curvilinear

Bernoulli beam element:

Me =
𝜌𝑆ℓe

420

©­­­­­­­­­­
«

156 22ℓe 0 0 54 −13 0 0

4ℓe
2 0 0 13ℓe −3ℓe

2 0 0

156 22ℓe 0 0 54 −13ℓe

4ℓe
2 0 0 13ℓe −3ℓe

2

sym. 156 −22ℓe 0 0

4ℓe
2 0 0

156 −22ℓe

4ℓe
2

ª®®®®®®®®®®
¬

(A.1)

Ke = 𝜌𝑆ℓe

©­­­­­­­­­­­­­­«

6𝑆
5ℓe

𝑆
10

− 𝑆
2𝑅𝑠

− 𝑆ℓe

10𝑅𝑠

6𝑆
5ℓe

𝑆
10

− 𝑆
2𝑅𝑠

𝑆ℓe

10𝑅𝑠
2𝑆ℓe

15
𝑆ℓe

10𝑅𝑠
0 − 𝑆

10
−𝑆ℓe

30
− 𝑆ℓe

10𝑅𝑠

𝑆ℓe
2

60𝑅𝑠

𝐴 𝐵 𝑆
2𝑅𝑠

− 𝑆ℓe

10𝑅𝑠
𝐶 𝐹

𝐷
𝑆ℓe

10𝑅𝑠
− 𝑆ℓe

2

60𝑅𝑠
−𝐹 𝐺

𝑠𝑦𝑚. 6𝑆
5ℓe

− 𝑆
10

𝑆
2𝑅𝑠

− 𝑆ℓe

10𝑅𝑠
2𝑆ℓe

15
𝑆ℓe

10𝑅𝑠
0

𝐴 −𝐵
𝐷

ª®®®®®®®®®®®®®®¬

,K𝑢𝑇,𝑒
=
𝛼𝐸𝑆

60

©­­­­­­­­­­­­­«

30 30

−5ℓe 5ℓe

− 21ℓe

𝑅𝑠
− 9ℓe

𝑅𝑠

− 3ℓe
2

𝑅𝑠
−2ℓe

2

𝑅𝑠

−30 −30

5ℓe −5ℓe

− 9ℓe

𝑅𝑠
− 21ℓe

𝑅𝑠
2ℓe

2

𝑅𝑠

3ℓe
2

𝑅𝑠

ª®®®®®®®®®®®®®¬
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𝐴 =
13ℓe

4𝑆𝑅2
𝑠 + 13ℓe

4𝐼𝑧 − 84𝐼𝑧ℓe
2𝑅2

𝑠 + 420𝐼𝑧𝑅
4
𝑠

35ℓe
3𝑅4

𝑠

𝐵 =
11ℓe

4𝑆𝑅2
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4
𝑠
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2𝑅4

𝑠

𝐶 = 3
3ℓe
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2𝑅2

𝑠 − 280𝐼𝑧𝑅
4
𝑠

70ℓe
3𝑅4

𝑠

𝐷 =
ℓe

4𝑆𝑅2
𝑠 + ℓe
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2𝑅2

𝑠 + 420𝐼𝑧𝑅
4
𝑠

105ℓe𝑅
4
𝑠

𝐹 =
2520𝐼𝑧𝑅

4
𝑠 − 13ℓe

4𝑆𝑅2
𝑠 − 13ℓe
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2𝑅2

𝑠
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2𝑅𝑠4

𝐺 =
840𝐼𝑧𝑅
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𝑠 − 3ℓe

4𝑆𝑅2
𝑠 − 3ℓe
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420ℓe
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.

Appendix B. Formulation of normal and tangential contribution matrices of Lagrange multipliers

The matrices CN and CT define respectively the Jacobians of the normal, and tangential distances associated

to the active nodes 𝑗 ∈ A of the stator. The index of node 𝑗 in the set A is defined by variable 𝑘 . In other

words, each column vector C
(𝑘 )
N

(resp. C
(𝑘 )
N

) is computed as ∇q𝑑
𝑗

N
(q) (resp. ∇q𝑑

𝑗

T
(q)) and is empty

except for degrees of freedom of the rotor and of node 𝑗 belonging to the stator. Portion of contributions

vectors for the rotor are stressed by 𝑟 index and come directly from Equations (37) and (40):




C
(𝑘 )
N,𝑟
(q) = 1

𝛿
𝑗

N
(q)
(0, 0,−(𝑥𝑠𝑗 (q) − 𝑥𝑟 ),−(𝑦𝑠𝑗 (q) − 𝑦𝑟 ), 0)⊤

C
(𝑘 )
T,𝑟
(q) = 1

𝛿
𝑗

N
(q)
(0, 0, (𝑦𝑠𝑗 (q) − 𝑦𝑟 ),−(𝑥𝑠𝑗 (q) − 𝑥𝑟 ),−𝑅𝑟 )⊤

(B.1)
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The analytic expressions of C
(𝑘 )
N

and C
(𝑘 )
T

portions for stator (stressed by extra index 𝑠) require to apply

a composed derivation on the 𝑗 th node cartesian coordinates (𝑥𝑠𝑗 , 𝑦𝑠𝑗). Injecting Equation (17) into

Equations (37) and (40) and proceeding to gradient operation thus leads to the following matricial form




C
(𝑘 )
N,𝑠
(q) = 1

𝛿
𝑗

N
(q)

(
(𝑥𝑠𝑗 (q) − 𝑥𝑟 )P𝑥 + (𝑦𝑠𝑗 (q) − 𝑦𝑟 )P𝑦

)
U

C
(𝑘 )
T,𝑠
(q) = 1

𝛿
𝑗

N
(q)

(
−(𝑦𝑠𝑗 (q) − 𝑦𝑟 )P𝑥 + (𝑥𝑠𝑗 (q) − 𝑥𝑟 )P𝑦

)
U

(B.2)

Appendix C. Adaptation of Carpenter’s algorithm to thermomechanical applications

Algorithm 1 is the modified Carpenter algorithm accounting for nonlinear rotordynamics because of

inertial and gyroscopic effects, multi-constraint management and thermomechanical coupling.

Algorithm 1 Carp-oneVC

Require: q0, q1

for 𝑖 = 1, . . . , 𝑁 − 1 do

{Initial guess for contact-free solution}

q
𝑝,0

𝑖+1 ← q𝑖

{Nonlinear solver: finds solution q
p

𝑖+1 of Equation (33) with initial guess q0
𝑖+1}

Solve M̄(q𝑝

𝑖+1)q
𝑝

𝑖+1 + D̄(q𝑝

𝑖+1)q𝑖 + K̄(q𝑝

𝑖+1)q𝑖−1 − f̄𝑖 = 0

{Gap computation through Equation (37)}
for 𝑗 = 1, . . . , 𝑁e do

𝑑
𝑗

N
← 𝛿

𝑗

𝑁
(q𝑝

𝑖+1) − 𝑅r − 𝑎
end for

{Search of active constraints}

A← { 𝑗 |𝑑 𝑗

N
< 0}

if A = 𝜙 then

{No correction}
𝚲𝑖+1 ← 0

q𝑖+1 ← q
p

𝑖+1
else

{Correction}
v
𝑝

𝑖
← (q𝑝

𝑖+1 − q𝑖)/ℎ
g
𝑝

𝑖+1 ← [𝑑
𝑗

N
| 𝑗 ∈ A]

for 𝑘 = 1, . . . , |A| do

C
(𝑘 )
N
← ∇q𝑑

𝑗

N

C
(𝑘 )
T
← ∇q𝑑

𝑗

𝑇

v
(𝑘 )
T
← C

(𝑘 )
T

v
𝑝

𝑖

C
(𝑘 )
𝜗
← 𝜗𝑠

𝜗𝑠+𝜗𝑟
𝜇 |v(𝑘 )

T
|

end for

CNT ← ∪ |A |𝑘=1
C
(𝑘 )
N
− 𝜇sign(v(𝑘 )

T
)C(𝑘 )

T

{Block merge of mechanical and heat contributions of multipliers}
CNT𝜗 ← (CNTC𝜗)⊤
{Correction}
𝚲𝑖+1 ← −(C⊤NM̄(qp

𝑖+1)
−1CNT𝜗)−1g

p

N,𝑖+1
q𝑖+1 ← q

p

𝑖+1 + M̄(qp

𝑖+1)
−1CNT𝜗𝚲𝑖+1

end if

end for
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