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Abstract

The cross-flow swinging dynamics of a cube pendulum is studied ex-
perimentally in a flow at high Reynolds numbers (Re ∼ 105) with a low
free-stream turbulence intensity. A galloping instability is observed and
results in the exponential growth of the swinging motion. The onset of
galloping is found to be very sensitive to the static yaw angle of the cube.
Despite the 3D geometry of the cube, flow mechanisms similar to the case
of a square cylinder appear to govern the onset of the instability. A quasi-
steady linear model of the motion is assessed to predict the stability of
the pendulum.

For the lowest reduced velocity investigated (U∗ = 18.5), unsteady
phenomena arise during the saturation phase of the pendulum oscillations.
From the analysis of the unsteady loads and the pressure distribution on
the faces of the cube, an unsteady phase delay between the wake and
the pendulum dynamics is identified. It produces an energy loss in the
pendulum motion which favors its saturation.

Keywords – galloping instability, pendulum, 3D bluff body, unsteady

1 Introduction
Fluid-structure interactions (FSI) involving bluff bodies is a wide subject raising issues
ranging from structural safety in wind or water engineering to energy harvesting from
flows [1]. FSI on bidimensional cylindrical bodies have been extensively studied [2,
3, 4, 5, 6] (non exhaustive list) and have multiple practical applications in civil and
aeronautical engineering, for instance in the design of slender buildings, bridge decks
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or aircraft wings. Less investigated, FSI between a tridimensional tethered bluff body
and the surrounding wind has nevertheless an importance in many cases, such as loads
lifted by a helicopter [7] or a tower crane [8, 9]. In these cases, control laws based on
models of the pendulum dynamics can be used to reduce the oscillations and stabilize
the system [7, 9]. Cable car engineering is an application closer to this study, where
FSI raises several issues concerning the safety, comfort, and availability of the lines. A
few studies tackle the sensitivity of a cable car to the wind and the safety engineering
still relies on basic criteria and requires periodic checks [10]. The existing works on the
subject mainly focus on field measurements, on modelling of the pendulum dynamics
[11] and on the vertical oscillations induced by the cables [12], but the aerodynamic
mechanisms responsible for the pendulum oscillations are not characterized.

The type of FSI that may occur is related to the reduced velocity U∗. It is defined
as the ratio between the advective frequency of the flow U0/D - based on the free
stream velocity U0 and the side length D of the solid - and the natural frequency f0 of
the solid [13, 6]. Two main distinct mechanisms of interaction leading to FSI may arise
between a bluff body and the surrounding flow: modal coupling such as vortex-induced
vibration (VIV) and aerodynamic coupling such as flutter, including galloping. On a
bidimensional square cylinder, VIV tend to occur at a reduced velocity around 7-8
[14, 15, 13], whereas galloping occurs over a wide range of reduced velocities limited
by a lower critical velocity driven by mass and damping parameters of the system [2,
16]. Galloping is a common phenomenon. A typical example in wind engineering is
the galloping instability of the deck of a bridge that appears as a cross-flow oscillation
or/and a torsional motion [17]. The shape of the bluff body is the main parameter
governing the apparition of a galloping instability because of the sensitivity of the
mean aerodynamic loads to the attitude of the body. The galloping instability of
bidimensional cylinders has been extensively studied, in particular on the rectangular
cylinder [18, 19, 15] (non-exhaustive list). However, the problem of a tridimensional
bluff body in FSI is less commonly tackled due to its increased flow complexity [20,
21, 22], and most of the existing studies focus on low Reynolds numbers and VIV.

Nakamura [15] offers an understanding of the basic mechanism of the galloping in-
stability occurring on a rectangular cylinder from flow visualizations and local pressure
measurements. On both sides of the static prism, the flow separates at the leading
edges and does not reattach as the aspect ratio - defined as the length over the cross-
stream thickness of the section - is low enough, creating a large recirculation region
with the wake with nearly constant pressure distribution along both lateral sides. A
high reduced velocity ensures that a transversal motion of the body is slow enough not
to produce an pitch angle that could cause flow reattachment on the windward side.
Thus, during a transversal motion, the shear layer on the motion side (windward side)
moves closer to the body and becomes more curved, whereas the shear layer on the
leeward side moves away from it and becomes less curved. Consequently, the pressure
on both sides is unbalanced with a stronger depression on the windward side, resulting
in a global aerodynamic force that amplifies the motion. For bidimensional rectangu-
lar cylinders, the aspect ratio of the cross-section is an important parameter driving
the onset of transverse galloping [2, 18]. In a flow with low free-stream turbulence
intensity, galloping is observed for an aspect ratio lower than 2 [23]. An aspect ratio
of 3 or larger allows the flow to reattach on the sides, which tends to stabilize the
system [18]. The upstream flow turbulence also influences the stability as it influences
the flow reattachment on the sides [4, 23].

To the best of the authors’ knowledge, no study in the literature investigates
the mechanisms of transverse galloping occurring on tridimensional parallelepipeds in
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comparison with bidimensional rectangular cylinders.
The paper tackles the the swinging motion induced by galloping observed on a

tethered tridimensional bluff body - a cube pendulum - at high Reynolds numbers
(Re ∼ 105) and high reduced velocities. It is organized as follows. The experiments
are described in section 2. A quasi-steady approach is assessed to characterize the
stability of the cube pendulum in section 3. An analysis of the pressure distribution
over the static cube at various yaw angles is provided in section 4. Finally, the swinging
motion of the cube pendulum is investigated in section 5.

2 Experiments and measurement methods

2.1 Main characteristics of the setups

tethered

cube

trajectography

cameras

aerodynamic

balance

cardan

joint

Jules Verne S120

Figure 1: Pictures of the two setups: the Jules Verne setup on the left and the
S120 setup on the right

Two complementary setups involving a tethered cube in two subsonic closed-loop wind
tunnels at two different scales are used. An experiment is performed inside the S120
wind tunnel at ISAE-ENSMA and another one inside the Jules Verne (JV) wind tunnel
of CSTB in Nantes. In both experiments, a cube is connected by a rod to a cardan
joint attached to a rigid steel structure (figure 1). The tethered cube in the JV setup
is 2.5 times larger than the one in the S120 setup. The cardan joints are made of two
almost perfect bearings and one bearing is blocked to allow only one degree of freedom
(DoF): the circular motion around the free stream direction as illustrated in figure 2a.
The mechanical damping of each bearing has been experimentally characterized and
is one to two orders of magnitude smaller than the aerodynamic damping for both
experiments. Table 1 introduces the main characteristics of the two setups.
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Setup A (m2) D (m) H (m) m (kg) λm ( s−1)

S120 1.2 0.2 0.2 3.3 5× 10−3

JV 30 0.5 0.6 19.8 1.5× 10−3

Table 1: Main characteristics of the setups: the area A of the test section, the
side length D of the cube, the length H of the rod, the mass m of the tethered

system, and the mechanical damping λm of the bearing

Figure 2: (a, b) Conventions used in the study: pendulum angle relative to the
vertical axis ϕ, static yaw angle β0 and dynamic yaw angle δβ of the cube

(c) Position of the pressure probes and integration surfaces on the cube for the
derivation of the aerodynamic loads

Ramamurthy and Lee [24] showed that the influence of the wall proximity on the
drag coefficient of a prism with an equilateral triangle section can be neglected when
the distance of the prism to the wall is larger than the characteristic length of the
prism section. For a circular cylinder, this distance increases up to twice the cylinder
diameter. Even if a tethered cube is not a prism, this information leads us not to
consider the measurements when the cube makes an angle larger than 15◦ with the
vertical axis in the S120 setup, which corresponds to a maximal distance of 2D between
the edges of the body and the walls of the test section. On the opposite, the influence
of the walls can be neglected in the JV setup for all angles of oscillation as the minimal
distance between the walls and the swinging cube is 4 times larger than the side length
of the cube D.

The blockage ratio in the S120 and the JV setups is 3.4% and 0.8% respectively.
It remains below 5% so it is expected to have a negligible impact on the measured
aerodynamic coefficients and no correction was applied on the measured coefficients
[25, 26, 27]. In both wind tunnels the free-stream turbulence intensity is below 1%.
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2.2 Two complementary setups
The reduced velocity U∗ is defined as :

U∗ =
U0

Df0
(1)

It is an important parameter of this study that represents the ratio between the period
of the swinging motion T0 = 1/f0 – here expressed from the natural frequency of the
swinging motion f0 – and the advective time-scale of the flow D/U0. The pendulum
frequency f0 is expressed from the distance L between the center of gravity of the
system to the fixed point. In both setups, the rod is light enough compared to the
cube so that the center of gravity of the whole system can be approximated as the
barycentre of the cube: f0 =

√
g/L and L = H +D/2. Thus, according to eq. 1, the

larger the scale of the cube pendulum, the lower U∗.
Despite their similarity, the two setups are used in different and complementary

ways. Two different scales are studied to investigate a wide range of reduced velocities.
The S120 setup focuses on a single high reduced velocity, whereas a wide range of lower
reduced velocities is investigated in the JV setup. The lowest U∗ investigated is below
the critical value of U∗ = 20 given by Blevins [13] above which no unsteady phenomena
is expected to occur.

The S120 setup is used to study the sensitivity of the stability of the system to the
static yaw angle β0 of the cube at a constant free stream velocity U0, so at a constant
U∗. This angle, illustrated in figure 2b, corresponds to the angular position of the
cube around the rod that can be set before any experiment: the cube cannot rotate
around the rod during the motion. In this setup, the experimental system dynamics
are confronted with a quasi-steady model built to predict the stability of the pendulum.

In the JV setup, the angle β0 is blocked at 0◦, so the free stream is normal to the
front face of the cube. The uncertainty on β0 is ±1◦ and can lead to slight asymme-
tries in the dynamics of the pendulum oscillation. However, this uncertainty remains
small enough to be expected to not influence the aerodynamic mechanisms driving
the motion. In this configuration, galloping instability occurs and is investigated with
pressure measurements at different flow speeds, so at different reduced velocities.

Table 2 summarizes the ranges of the parameters investigated in each setup.

Setup β0 (◦) U0 (m/s) U∗ Re

S120 [0, 45] 15 82.4 1.9× 105

JV 0 [4.8, 14.6] [18.5, 57] [1.5, 4.7]× 105

Table 2: Parameters investigated in the two setups: static yaw angle β0, mean
flow velocity U0, reduced velocity U∗ and Reynolds number Re

2.3 Metrology
In both setups, motion tracking by cameras is performed on the cube. The cameras
are visible in figure 1. In the S120 setup, 4 Vicon V5 5Mpx cameras with a focal
length of 12.5mm track 4 circular markers of diameter 0.01D on the rear face of the
cube at a rate of 200Hz. In the JV setup, 5 Qualisys Oqus 4Mpx cameras with a focal
length of 20mm track 4 circular markers of diameter 0.02D on the bottom face of the
cube at a rate of 200Hz. In addition to the motion tracking system in the JV setup,
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a set of 2 unidirectional accelerometers Kistler 8316A with a range of ±10g is used.
These are sensitive to both static and dynamic movements and provide the angles of
the pendulum to the vertical axis with ±0.5◦ of uncertainty.

In the S120 setup, a strain gauge 6-component aerodynamic balance is used to
provide the static aerodynamic loads on the cube with a maximal uncertainty of ±5%
at the reference speed U0 = 15m/s. The balance is mounted inside a profiled arm
lifting the cube from the ground of the wind tunnel. In the JV setup, the static
loads on the tethered cube are measured using an ATI Omega 170 strain gauge 6-
component aerodynamic balance, mounted at the base of the steel structure over the
cardan joint (figure 1), with an uncertainty of ±3% on the measured loads for the
reference configuration at U0 = 15m/s. In both setups, the average aerodynamic
loads on the cube over at least 2 minutes are measured with the balance at static
yaw angles between 0◦ and 45◦. This range can then be extended to [−180◦, 180◦] by
symmetry considerations.

The whole arrangement of the JV setup including the tethered cube and the steel
structure has been dynamically characterized in both torsion and flexion to ensure
that its structural behavior would not interfere with the measurements or in the fluid-
structure coupling. The main modes of the structure appear decoupled from the
pendulum dynamics.

Local unsteady pressure measurements are performed with a corona of 32 pressure
taps on the front, rear, and lateral faces of the JV cube as depicted in figure 2c. These
pressure taps are linked by 1m long vinyl tubings to two pressure scanners PSI 32HD
of ±2500Pa range. The measurements are a posteriori corrected to compensate for
the pressure distortions induced by the tubings using a priori calibration of the tubing
system on an in-house test bench. The frequency response of the system is flat on the
whole range of measurement up to the sampling frequency of 200Hz. This frequency is
2 orders of magnitude larger than the pendulum frequency (∼ 0.5Hz) and much larger
than the advective frequency of the flow (U0/D ≤ 30Hz). For the reference configura-
tion in a mean flow at U0 = 15m/s, measurements have an uncertainty of ±5% of the
reference dynamic pressure. Reference conditions (static pressure, temperature, and
air humidity) are taken in the test section at a distance 5D upstream of the location
of the pendulum to ensure homogeneous flow conditions.

Finally, local pressures are used to compute the aerodynamic loads by integration
over the cube faces. On the lateral, rear, and front faces, each local pressure is asso-
ciated with a vertical strip depicted in figure 2c, and added up to compute the global
pressure loads acting on the face. The aerodynamic loads are then derived from the
pressure loads measured on each face. This approximation of the aerodynamic loads
is based on a corona of pressure probes because the 3D distribution of static wall
pressure is not available in this experiment. However, the resulting mean static loads
match well with the static loads measured with the aerodynamic balance (figure 3),
with a maximal difference of 4.5% relative to the mean drag coefficient measured with
the balance. This observation for the 3D cubic geometry is very important because
this methodology provides a straightforward way to determine experimentally the dy-
namic loads on the swinging cubes and to discuss the departure from quasi-steady
flow conditions. The static aerodynamic coefficient Cϕ = CLcos(β0) + CDsin(β0) is
the component of the aerodynamic force normal to the lateral faces of the cube, with
CD and CL the drag and lift coefficients respectively. CD is in the streamwise direc-
tion and CL is orthogonal to the free-stream and to the pendulum arm axis. This axis
corresponds to the direction of motion when the cube is oscillating with no initial yaw
angle β0, which is the main focus of this study.
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derived from the pressure measurements and the one measured with the
balance in the JV setup, according to the static yaw angle β0

3 Stability analysis

3.1 Quasi-steady model of the bluff body pendulum dy-
namics

The stability of the pendulum system is assessed using the quasi-steady theory that
allows to use of the mean static aerodynamic loads measured on the tethered bluff
body in the pendulum momentum equation around equilibrium. The linearization of
this equation for a small angular displacement from equilibrium reduces the pendu-
lum dynamics to a second-order differential equation whose damping term drives the
stability of the system. All the steps are described below.

To simplify the problem, the weight and the aerodynamic force are applied at the
center of mass of the cube, which is supposed aligned with the rod at a distance L from
a perfect pivot joint. The aerodynamic effect of the rod on the motion is neglected
compared to that of the cube. In the following equations, g = 9.81m/s−2 is the
gravitational acceleration, ρ the air density, S = D2 the reference surface of the cube,−→
U0 the mean flow velocity,

−→
U the apparent flow velocity and

−→
V the cube velocity (figure

2b). The axis system is chosen such that the freestream velocity U0 is aligned with the
x⃗ axis. The cylindrical coordinate system (e⃗r, x⃗, e⃗ϕ) is used to put in equations the
cross-flow swinging motion of the cube as sketched in figure 2. The origin is located
at the fixed pivot joint, which is the center of rotation of the system. ϕ is the angle
made by the pendulum with the vertical axis. The mean angle ϕ̄ for which the static
momentum balance is achieved between the aerodynamic loads on the cube pendulum
and its weight depends on the static yaw angle of the cube β0. CD and CL represent
the drag and lift coefficients of the tethered cube and Cϕ represents the aerodynamic
coefficient along the axis of motion e⃗ϕ: Cϕ(β, t) = CD(β, t)sin(δβ) + CL(β, t)cos(δβ).
These coefficients correspond to the aerodynamic loads scaled by 0.5ρSU2. An upper
bar is used to write the mean static aerodynamic coefficients. The momentum equation
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at equilibrium projected along e⃗ϕ reads:

−mg sin(ϕ̄(β0)) +
1

2
ρSU2

0 Cϕ(β0) = 0 (2)

When the tethered cube is oscillating with a velocity V⃗ = Lϕ̇ e⃗ϕ, the squared magni-
tude of the apparent velocity is U2 = U2

0 + V 2 and the effective yaw angle of the on-
coming freestream is β = β0 + δβ where δβ = −arctan(V/U0) represents the dynamic
yaw angle depicted in figure 2b. The momentum balance for the system projected
along e⃗ϕ reads:

mL ϕ̈ = −mg sin(ϕ) +
1

2
ρSU2 Cϕ(β, t) (3)

Then, subtracting the static balance (eq. 2) from the momentum balance (eq. 3) gives
the momentum equation around equilibrium (eq. 4):

mL ϕ̈ = −mg
[
sin(ϕ)− sin(ϕ̄(β0))

]
+

1

2
ρS

[
U2 Cϕ(β, t)− U2

0 Cϕ(β0)
]

(4)

At this point, two hypotheses are introduced. First, the quasi-steady hypothesis,
which supposes U∗ high, allows to consider aerodynamic coefficients as slowly varying
in time and thus to approximate them as the mean static aerodynamic coefficients:
Ci(β, t) = Ci(β) for CD, CL and Cϕ. The validity of the quasi-steady hypothesis will
be discussed in this paper. Secondly, small angular displacements from the equilib-
rium position ε = ϕ− ϕ̄ are considered so that equation 4 can be linearized at first
order in ε. This approximation is justified because the linear model focuses on the
onset of the instability, so for small displacements around the equilibrium. This sup-
poses δβ = −Lε̇/U0 at first order in ε̇ and allows to linearize the aerodynamic term of
equation 4 in δβ.

Cϕ(β) = Cϕ(β0) + δβ
dCϕ

dβ

∣∣∣
β0

+ o(δβ) (5)

dCϕ

dβ

∣∣∣
β0

= CD(β0) +
dCL
dβ

∣∣∣
β0

+ o(1) (6)

sin(ϕ)− sin(ϕ̄(β0)) = cos(ϕ̄(β0)) ε+ o(ε) (7)

Finally, the linearization of equation 4 using the linearized expressions (eqs. 5, 6, 7)
gives a second order differential equation in ε (eq. 8) with the pseudo-frequency ω0 (eq.
9) and the aerodynamic damping coefficient λ (eq. 10) of the linear model. λ′ (eq.
11) represents the reduced aerodynamic damping coefficient depending only on the
mean static aerodynamic characteristics of the studied bluff body. If the pendulum
is vertical at equilibrium (ϕ̄(β0) = 0), ω0 is the pseudo-frequency of a free simple
pendulum

√
g/L.

ε̈+ 2λ ε̇+ ω2
0 ε = 0 (8)

ω0 =
√

g
L
cos(ϕ̄(β0)) (9)

λ = ρSU0
4m

λ′ (10)

λ′ =
dCϕ

dβ

∣∣∣
β0

= CD(β0) +
dCL
dβ

∣∣∣
β0

(11)

According to this model, the pendulum system is stable if λ > 0 and unstable if
λ < 0, so λ′ < 0. The system is unstable at a given angle β0 if Cϕ exhibits a nega-
tive slope around β0, which is equivalent to CD(β0) +

dCL
dβ

∣∣∣
β0

< 0. This inequation
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corresponds to the Den Hartog criterion, characteristic of the galloping instability [3],
showing that the transverse galloping instability is characterized by a negative static
lift gradient that counterbalances the stabilizing drag.

Assuming the validity of the quasi-steady hypothesis during the swinging motion,
the mean static aerodynamic loads can also be used in equation 3 to build a non-linear
model simulating the pendulum oscillations.

3.2 Experimental validation of the quasi-steady model

Figure 4: a) Evolution of the mean static drag and lift coefficients CD and CL

with the static yaw angle of the cube β0 for U0 = 15m/s for the S120 setup
b) Reduced aerodynamic damping coefficient λ′ of the tethered cube and

standard deviation σϕ of the angle ϕ derived from measurements at
U0 = 15m/s for different static yaw angles β0 for the S120 setup ; the red area

shows the unstable region

The mean static aerodynamic loads on the cube are measured to draw the stability
map λ′(β0) (figure 4). The drag and lift coefficients presented in figure 4a are in line
with the data gathered from the literature on a square cylinder in a flow with low free-
stream turbulence intensity [17, 18, 19, 28, 5]. The negative lift gradient characteristic
of galloping instability is visible. From these static measurements, the quasi-steady
model predicts an instability of the pendulum when β0 ∈ [−9◦, 9◦] (figure 4b).

Dynamic measurements are realized in the same configuration to assess the linear
model for different static yaw angles β0 from 0◦ to 40◦. This configuration corresponds
to a high reduced velocity U∗ = 82.4 for which the quasi-steady theory is expected
to be valid. An example of galloping instability occurring in the JV setup for β0 = 0
is provided in the supplementary movie. The standard deviation of the pendulum
angular position σϕ in dynamic measurements is used as a qualitative indicator to
visualize the range of β0 for which galloping occurs. σϕ is much higher in an unstable
configuration than in a stable one, but its exact value for unstable configurations is
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not relevant as the amplitude of the swinging motion grows exponentially and the
experiment has to be stopped before reaching too large amplitudes. The resulting
experimental unstable region is the same as the one predicted by the model (figure
4b), which validates the quasi-steady linear model as a relevant tool to predict unstable
configurations of the cube pendulum.

4 Pressure distribution over the static cube
Analysis of pressure fluctuations and mean value can be used to identify and under-
stand some key flow mechanisms in the galloping instability. The pressure distribution
is measured over the cube faces in static configuration for various yaw angles β0 > 0 in
addition to the loads measured by the balance. Measurements last at least 2 minutes
to get the average value Cp and the standard deviation C′

p of the pressure coefficient
Cp at each probe location of the corona. The results are shown in figure 5. The front-
most pressure probes on the windward and leeward sides are identified as A and B
respectively. The side pressure distribution is quasi-symmetrical for low β0 but loses
its symmetry as β0 increases, mainly due to a pressure increase at the rear part of the
windward side. From β0 = 14◦, a peak of C′

p and a strong pressure increase at the
rear part of the windward side is observed. This is characteristic of flow reattachment.
The peak of C′

p indicates the fluctuation of the reattachment point, and the average
reattachment point is expected to be located downstream this peak [29]. The location
of the maximum mean pressure can be used to define a region of the windward face
where instantaneous flow attachment can occur [29]. The mean location of this region
is estimated as the location of the peak of C′

p and its extent as twice the distance
between the maximum of Cp and the peak of C′

p and is illustrated on figure 6b. It
is referred as "fluctuation zone of the reattachment point" and is obtained for several
values of β0 (figure 6a). The reattachment point moves forward as β0 increases. The
small peak of C′

p observed for β0 = 9◦ might indicate an intermittent reattachment
that is not visible from mean pressure measurements. For large β0, flow reattachment
may occur very close to the upstream edge of the cube but cannot be detected with
the present distribution of sensors. These patterns are similar to the ones observed in
the literature on square cylinders [17, 29, 28, 5].

Before reattachment, the suction is larger on the front part of the windward side
(figure 5e). This indicates non-symmetrical lateral separated regions and a higher flow
velocity around the windward vertical leading edge due to the yaw angle. The shear
layer on the windward side is closer to the cube and more curved after separation at
the leading edge than on the leeward side [28, 30, 15]. These non-symmetric patterns
produce a global aerodynamic load favorable to the galloping instability (figure 4), as
observed by Nakamura on a square cylinder [15].

In figure 4a, the drag and lift curves exhibit a change of slope between β0 = 10◦

and β0 = 15◦, which is also noticed in the case of a square cylinder [17, 28]. Thus,
the onset of the flow reattachment marks a drastic change of the flow pattern as dCϕ

dβ

becomes positive, causing an inversion of the direction of the lateral aerodynamic load,
visible through the change of sign of Cϕ around 14◦.

10



0

0

=1° 0

45

0
=4°

0
=6°

0
=9°

0
=14°

0
=19°

0
=24°

0
=34°

0
=44°

w
in

d
w

a
rd

U

Windward sideCp

Cp'

Leeward side

le
e
w

a
rd

a) b)

c) d)

e)

x/D

x/D

D

X

x

er

0.2 0.4 0.6 0.8 1

0 0.2 0.4 0.6 0.8
-1

-0.5

0

0.5

1

0.2 0.4 0.6 0.8 1

0 1 00.2 0.4 0.6 0.8
0

0.05

0.1

0.15

0.2

1 0

A

A

B

B

0
(°)

0
(°)

0 30
-1

-0.5

0

0.5

1

15 45

CpA

CpB

(e)

(e)

Figure 5: Distribution of Cp (a,b) and C ′
p (c,d) on the lateral faces of the cube

at various static yaw angles β0 for the JV setup
e) Evolution of the Cp measured at the two frontmost probes on the windward

and leeward sides, respectively CpA and CpB , see dashed zone in a) and b)
respectively

11



0 0.2 0.4 0.6 0.8 1

4

9

14

19

24

29

34

39

44

x/D

Figure 6: a) Evolution with β0 of the fluctuation zone of the reattachment
point on the windward face measured for the JV setup ; it is defined as twice

the distance between the maximum of Cp and the peak of C ′
p around the

location of the peak of C ′
p

b) 2D schematic representation of the flow reattachment with an illustration of
the distribution of Cp and C ′

p on the windward face

5 Swinging motion analysis
This section focuses on the experiments realized in the JV wind tunnel with the free
stream normal to the front face of the cube, a configuration that exhibits galloping
instability. A visualization of this instability is provided in the supplementary movie.
In this specific case, β0 = 0◦ so β = δβ. |β|max refers to the maximal absolute yaw
angle reached in each period of oscillation. Galloping and turbulence-induced vibration
cannot be properly differentiated at low amplitudes of oscillations in β. Therefore, the
time origin t = 0 of the pendulum oscillations is set when |β|max reaches 1.5◦.

5.1 Phases of the swinging motion
In all the experiments, the cube pendulum starts oscillating from rest and a quasi-
exponential amplification of the amplitude of the motion is first observed. The swing-
ing motions measured for various reduced velocities reveal a quasi-superimposed am-
plification of |β|max by scaling the time with the damping coefficient λ introduced in
the stability analysis (eq. 10) as t∗ = −λt (figure 7a). This similitude shows that the
development of the swinging motion induced by galloping is mainly driven by the yaw
angle. As the oscillations are quasi-sinusoidal and |β| reaches quite low values (below
15◦), it is possible to simply link |β|max to the the maximal absolute angle ϕ reached
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in each period of oscillation |ϕ|max and U∗ (eq. 12) where |ϕ̇|max ≈ 2πf0|ϕ|max.

|β|max ≈ tan(|β|max) =
L|ϕ̇|max

U0
≈ 2πf0L|ϕ|max

U0
= 2π

L

D

|ϕ|max

U∗ (12)

Knowing that L/D is constant in the experiments, the similitude in |β|max means that
the higher the reduced velocity, the larger the amplitude of the pendulum oscillations.
For U∗ from 39.9 to 57, the experiments had to be stopped because the mechanical
setup did not allow oscillations with |ϕ|max larger than 50◦. However, the beginning of
saturation of the oscillations is visible for U∗ = 39.9 but could not be observed entirely
(figure 7a). Thus, according to the previous remark, lower reduced velocities down to
18.5 are investigated to observe the full development of the swinging motion, including
the saturation phase that is expected to occur at lower amplitudes of oscillations in ϕ.
No static measurements have been done at these lower reduced velocities.

|
| m

a
x

(°
)

b)a)

0 2 4 6 8 10
0

3

6

9

12
U*= 39.9

U*= 48.1

U*= 57

0 30 60 120

f
0

- t - t

90

U*= 18 5 U*= 22 2 U*= 25.9

Figure 7: Evolution of the maximal absolute yaw angle reached in a period of
oscillation |β|max

a) for three different reduced velocities with the reduced time t∗ = −λt
b) for 3 successive low reduced velocities U∗ to investigate the saturated state;

the JV wind tunnel velocity U0 is increased step by step in this dedicated
experiment

Among the experiments realized at lower U∗, one consists of investigating the sat-
urated state of the motion for three successive reduced velocities. The experiment
starts from rest at U∗ = 18.5. Once the swinging motion is saturated, U∗ is increased
up to 22.2 by increasing U0. The process is then repeated to investigate U∗ = 25.9.
Figure 7b presents the evolution of the envelope of |β|max during this experiment and
clearly shows a saturation of the motion for |β|max ≈ 12 − 13◦ for the three reduced
velocities investigated. One can notice a slight increase in the amplitude of saturation
as U∗ increases.

The fact that the motion saturates indicates a balance between the energy received
by the pendulum from the flow and the energy given by the pendulum to the flow.
An analysis of the energy transfers is thus realized to characterize the different phases
of the swinging motion. The instantaneous power P received by the cube pendulum

13



from the flow (eq. 13) is derived from the cube velocity V and the aerodynamic loads
F along e⃗ϕ, which is computed with the instantaneous pressure measurements. The
energy W received during one period of oscillation is derived from P as detailed in
eq. 14, and scaled by the mean kinetic energy of the flow crossing the cube section
in one period of oscillation (eq. 16). P ∗ and W ∗ refer respectively to the reduced
instantaneous power and the reduced periodic energy received by the cube pendulum.
P > 0 when Cϕ and β have opposite signs (eq. 13).

P = V · F = Lϕ̇× 1
2
ρSU2Cϕ = − 1

2
ρSU3 Cϕ tan(β) (13)

W =
∫ t+T0

t
P dt = T0 ⟨P ⟩T0 (14)

P ∗ = P
1
2
ρSU3

0
= −

(
U
U0

)3

Cϕ tan(β) (15)

W ∗ = W
1
2
ρSU3

0T0
= ⟨P ∗⟩T0 (16)

Figure 8 presents the energy transfers between the cube pendulum and the flow
for U∗ = 18.5 and U∗ = 39.9. In the quasi-exponential part of the amplification,
P ∗ ≥ 0 so the pendulum is always accelerated by the flow. This quasi-exponential
phase is similar for the two reduced velocities in terms of energy transfers. Around
|β|max = 6− 7◦, the growth rate of the amplitude of oscillation starts decreasing and
the saturation process starts, with a plateau followed by a decrease of W ∗ down to
zero. For U∗ = 18.5, an increasing power loss is observed during the transition part
of the saturation phase. However, no power loss is observed for U∗ = 39.9.

To quantify these periodic energy gains and losses, WR and WL are introduced
respectively as the cumulative energy received by the pendulum and the cumulative
energy lost by the pendulum over one period of oscillation. Both are positive values
defined such as W = WR −WL. The evolution with |β|max of the periodic loss-gain
ratio WL/WR is shown for various reduced velocities from 18.5 to 48.1 in figure 9. As
previously observed in figure 8, the energy loss is non-negligible from |β|max ≈ 6◦ for
the lowest reduced velocity U∗ = 18.5. This is not the case for U∗ ≥ 39.9 for which
WL/WR ≈ 0: the power loss is negligible. Consequently, the mechanism of saturation
depends on the reduced velocity.

The quasi-steady non-linear model briefly introduced in section 3.1 (eq. 3) is used
to obtain the evolution of WL/WR under the quasi-steady assumption from the static
aerodynamic coefficients displayed in figure 9. The static coefficients for U∗ = 18.5
are missing in this study, but it is assumed that they are close to the static coefficients
obtained at a higher Reynolds number of the same order of magnitude. In this range
of Reynolds number (O(105)), static coefficients are expected to remain fairly constant
for this cubic geometry with sharp edges. The hypothetical quasi-steady behavior at
U∗ = 18.5 is thus approached using the static coefficients obtained at a higher flow
velocity.

The model predicts an energy loss from |β|max ≈ 12◦ and a saturation at a max-
imum yaw angle |β|max ≈ 14.5◦ for all U∗. This is consistent with the change of
sign of Cϕ around the reattachment angle pointed out in section 4. However, this
does not match with the case at U∗ = 18.5 for which the loss-gain ratio starts a slow
increase at |β|max ≈ 6◦ and strongly increases from |β|max ≈ 10◦, values lower than
in the quasi-steady case. As a consequence, a lower |β|max is reached in the saturated
state (around 12.5◦). This is also visible in figure 7b where the oscillations saturate
at |β|max lower than 14.5◦. The measurements at higher reduced velocities are more
in agreement with the quasi-steady assumption as the energy loss-gain ratio is very
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small. Thus, for the lowest reduced velocity investigated U∗ = 18.5, the quasi-steady
theory does not hold anymore, and it appears that unsteady phenomena come into
play in the saturation process.

The different phases of the swinging motion are now investigated in detail to iden-
tify the unsteady flow mechanisms at stake in the development of the galloping insta-
bility
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Figure 8: Energy transfers and time-evolution of |β|max during the swinging
motion at U∗ = 18.5 and U∗ = 39.9, with the reduced instantaneous power P ∗

and the reduced periodic energy W ∗ received by the pendulum
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different reduced velocities according to the maximum absolute yaw angle

reached in each period |β|max;
Experimental measurements are compared with the results given by the

non-linear quasi-steady model

5.2 The quasi-exponential amplification phase
The quasi-exponential amplification phase of the swinging motion is investigated from
the pressure measurements to assess the quasi-steady hypothesis and tackle the mech-
anism of galloping instability. This phase corresponds approximately to |β|max ≤ 6◦

for all the reduced velocities investigated. This is the value from which the growth
rate of the amplitude of oscillation starts decreasing (figure 7 and 8). The local pres-
sure measurements are spatially integrated to get the instantaneous aerodynamic loads
acting on the cube during its swinging motion. Phase-averaging of these aerodynamic
loads is performed to get the evolution of the dynamic loads with the yaw angle β.
These dynamic loads are then compared to the mean static loads derived from pressure
measurements on the static cube. In a typical setup involving a square cylinder with a
spring-damper system, the quasi-steady theory is usually validated by comparing the
oscillation amplitude of the experiment with the one predicted by the model [19]. The
method used in this paper is more direct as the oscillation frequency is low and the
dynamic loads are accessible and can be directly compared to the static ones.

The data of interest is phase-averaged in time over 3 periods of oscillations (approx-
imately 1200 samples). The trials are repeated in the same configuration up to 3 times
to increase the number of samples. The minimum number of samples used to get an av-
erage value is set to 48. From the standard deviation σ of the experimental coefficient
Cϕ obtained from static measurements at various yaw angles, a 95% confidence inter-
val of the mean value can be derived as follows [31] : I95% = ±1.96

√
σ2/N ≈ ±0.027

(with N = 48 the minimum number of samples). This interval corresponds to ±20%
of the absolute mean value of Cϕ in static configuration at β0 = 6◦. It is acceptable
in the scope of this study.
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cube during the amplification phase, for several reduced velocities U∗

Figure 10 shows the evolution of the static and phase-averaged dynamic coefficients
Cϕ according to β, for several reduced velocities at |β|max ≤ 5◦, so in the quasi-
exponential amplification phase. The dynamic loads in the two half-periods of the
swinging motion are collapse and fit well with the static loads. Thus, for each yaw angle
investigated, the cube experiences the same force as if it was held stationary at the
same yaw angle, which is the definition of a quasi-steady behavior. Consequently, the
amplification phase is quasi-steady and the use of the quasi-steady theory is justified
in the stability analysis. The negative slope of the aerodynamic force along e⃗ϕ -
characteristic of galloping - is observed on both static and dynamic loads evolutions.
The quasi-linear evolution of Cϕ around β = 0 also explains the quasi-exponential
growth of the amplitude of oscillation like in a second order differential system, as
obtained with the linearized momentum equation 8. Finally, Cϕ and β have opposite
signs as the slope is negative so the energy transfers are exclusively from the flow to
the pendulum (P ≥ 0 according to eq. 13), consistently with the energy transfers
presented in figure 8.

As the quasi-steady theory is valid for low |β|max, the mean static pressure distri-
butions presented in figure 5 for the static yaw angle β0 = 1◦ and β0 = 4◦ can be used
to understand the physical mechanisms driving the galloping instability. The local
pressure distribution on the two sides of the cube is nearly uniform and the depression
is larger on the windward side. This tends to amplify the motion as the resulting
aerodynamic force aligns with the direction of motion. As discussed in section 4, these
pressure patterns are related to non-symmetrical evolutions of the separated shear
layers along the lateral faces and unbalanced flow velocity around the vertical leading
edges of the cube. Nakamura [15] observed the same patterns from pressure measure-
ments and flow visualization on a galloping square cylinder. Thus, the mechanism of
galloping occurring on the cube pendulum and the one occurring on a bi-dimensional
square cylinder seem to be the same despite the tridimensional shape of the cube.
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5.3 The saturation phase
As in section 5.2, phase-averaging of the dynamic loads obtained from the pressure
measurements is performed during the saturation phase of the motion. In a saturated
state, more than 3 periods are used to process the phase-averaging. As explained in
section 2.2, the uncertainty on the static yaw angle β0 is responsible for the asymme-
tries in the cube pendulum dynamics visible in figure 11.
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Figure 11: Evolution with β of the dynamic and static coefficient Cϕ of the
cube derived from the phase-averaged local pressure measurements during the

saturation phase at U∗ = 39.9 (a) and U∗ = 18.5 (b);
The areas where the pendulum gains (P > 0) and loses (P < 0) power are

separated by dotted lines

Initially superimposed at the end of the quasi-steady amplification phase, the dy-
namic loads of the two half-periods of oscillation (ϕ > 0 and ϕ < 0) dissociate to form
a cycle during the saturation phase (figure 11). The cycle gets larger and larger until
the saturated state is reached, which does not occur for U∗ = 39.9 and higher reduced
velocities as the experiments had to be stopped not to reach the mechanical limits
of the setup in amplitude. In addition to the energy transfer analysis, these observa-
tions based on the dynamic loads confirm that unsteady phenomena occur during the
saturation phase.

This unsteadiness produces an aerodynamic force opposed to the pendulum motion
when the cube starts going down between A and B and between C and D in figure
11 : β · Cϕ - like tan(β) · Cϕ - becomes positive so P ∗ becomes negative (eq. 13).
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The braking force increases as |β|max increases, and it balances the accelerating force
in the saturated state for U∗ = 18.5 (figure 8). Contrary to the case at U∗ = 18.5,
there is an aerodynamic braking force only at low |β| for U∗ = 39.9, so the power loss
P ∗ = Cϕ tan(β) remains low. This is consistent with the negligible resulting power
loss observed for U∗ ≥ 39.9 in figure 9.

The aerodynamic behavior of the pendulum for U∗ = 39.9 in figure 11a shows that,
for the largest |β|max reached (|β|max ≈ 9◦), the dynamic loads are nearly equals to
the corresponding static loads. On the contrary, they are different for β ≈ 0. This
suggests that the dynamic loads drift from the static loads with a maximal difference
around β = 0 (extreme positions of the pendulum) but both remain quite close to
each other around the extreme yaw angles reached in a period of oscillation (vertical
position). This is confirmed for U∗ = 39.9 by the comparison between the distribution
of the pressure coefficients Cp along the lateral faces of the cube for |β|max ≈ 9◦ in
figure 12.

The investigation of the time-evolution of β provides a better understanding of this
phenomenon. As depicted in figure 13 for this sinusoidal motion, the time-variation
rate of β, noted |β̇|, is maximum in the vicinity of β = 0 while it reaches its minimum
in the vicinity of |β|max. Our interpretation is therefore that, at the maximum yaw
angle |β|max, the flow has more time to recover and to reorganize like in a quasi-
steady configuration. The characteristic time of the variations of β can be defined as
Tβ = |β|max/|β̇|β=0. As |β̇|β=0 ≈ ω0 |β|max, Tβ is basically 1/ω0, or T0/2π.
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a) Windward side b) Leeward side

mean static Cp

dynamic instantaneous Cp max

0 0.2 0.4 0.6 0.8 10 0.2 0.4 0.6 0.8 1

x/D

-1.1

-1

-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

= 9°

= 1° (moving upward)

�

9°max

U*=39.9

Figure 12: Comparison of the distribution of pressure coefficients Cp on the
lateral faces of the cube for |β|max = 9◦ and U∗ = 39.9, measured on the static

cube and the swinging cube
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The ratio Tβ/Tadv = U∗/2π is of the order of 3 for U∗ = 18.5, where Tadv = D/U0

is the flow advective time. The pressure data can be used to study the response of
the wake to the yaw angle variations imposed by the swinging motion. It is proposed
here to make use of the two side frontmost probes A and B introduced in section 4,
located on each side of the cube as depicted in figure 5, as a first indicator of the
wake dynamics in response to a variation of β. The time evolution of the difference
∆CF

p = CA
p − CB

p is investigated during the swinging motion. It can be compared to
the quasi-steady evolution of the same quantity derived from static measurements for
varying β, noted here ∆CF

p QS
. As an example, figure 14 presents the comparison

between ∆CF
p and ∆CF

p QS
during the saturation phase for U∗ = 39.9. A clear time

delay is observed between the two quantities. In order to quantify this time delay,
noting that ∆CF

p QS
= 0 for β = 0, the time lag τ is defined for each half period of

oscillation as τ = t(∆CF
p = 0)− t(∆CF

p QS
= 0) – see figure 14 – which corresponds to

the difference τ = t(∆CF
p = 0)− t(β = 0).

The ratio Tβ/Tadv = U∗/2π compares the forcing time scale and the advective
time scale. It is then interesting to compare the time lag τ with each of these time
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scales. This is performed in figure 15 where τ is obtained using a sliding average over
three periods of oscillations. In figure 15a, the quasi-steady dynamics observed for
large U∗ corresponds to τ ≪ Tβ whereas the departure from quasi-steady dynamics
corresponds to τ ∼ Tβ . τ also increases significantly with |β|max for |β|max ≤ 6◦ while
a plateau of the ratio τ/Tβ is reached for |β|max ≥ 8◦. Such behavior is believed to
be associated with flow attachment along the windward surface for these large |β|max,
inducing a time lag driven by the slow transition between attached and detached states
[32, 33] during the motion of the cube. This will be studied in a future experimental
campaign using particle image velocimetry (PIV) measurements. Figure 15b presents
the evolution of τ scaled by the flow advective time Tadv. With this scaling, a clear
similitude is observed between all the reduced velocities which means that the flow
response to the changes in upstream yaw angle drives the delay. For |β|max ≥ 8◦,
τ/Tadv ∼ 2 whereas τ/Tadv is smaller in the fully separated regime.

Figure 16 provides a visualization of the phase averaged pressure distribution dur-
ing half a period of oscillation in the saturated state for U∗ = 18.5. The cube pendulum
moves up between A and C and moves down between C and E. Flow reattachment is
clearly observed in step A on the windward side around |β| = |β|max. The braking
effect observed for U∗ = 18.5 when the pendulum goes downward (figure 11b) is found
to be produced by suction on the leeward side visible in steps C and D of figure 16.
The upstream part of the pressure distribution on the side faces is nearly identical in
B and D despite a strongly opposite yaw angle (−8◦ and 8◦ respectively), indicating
that the variation of β between B and D is too fast for the lateral separated regions to
immediately reorganize. The resulting time lag between the pendulum and the wake
dynamics appears while the pendulum moves up and persists while the cube moves
down. It leads to a temporary suction on the leeward side and is thus responsible for
the unsteady aerodynamic behavior.

Consistently, a higher reduced velocity produces a shorter time delay, which means
a thinner cycle of dynamic loads (figure 11). The resulting braking force occurs at
lower |β| and produces a smaller energy loss: the pendulum dynamics gets closer to
the quasi-steady dynamics.
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6 Conclusions
A cube pendulum in a flow at high Reynolds number with low free-stream turbulence
intensity exhibits a galloping instability on a wide range of reduced velocities. Gal-
loping occurs when the cube makes a static yaw angle β0 ∈ [−9◦, 9◦] with the mean
flow. A quasi-steady linear model based on the linearized momentum equations of the
pendulum provides the same stability criterion as the Den Hartog criterion for bidi-
mensional cylinders and proves to be a relevant tool for predicting the stability of the
cube pendulum. Despite the tridimensional shape of the cube, the observed gallop-
ing instability is driven by the same physical mechanisms as the galloping instability
observed on bidimensional square cylinders.

The pendulum swinging motion induced by galloping ends up saturated in ampli-
tudes. Among the reduced velocities investigated, the lowest one - U∗ = 18.5 - reveals
unsteady phenomena during the saturation process. A phase delay between the wake
and the pendulum dynamics produces an aerodynamic braking force when the cube
pendulum moves down, which is responsible for a premature saturation of the pen-
dulum oscillation. This aerodynamic time delay has been characterized and is found
to scale with the flow advective time and to produce an unsteady effect only when it
is of the order of magnitude of the maximum time-variation rate of the yaw angle β.
This unsteady delay also seems to be influenced by separation-reattachment dynamics
as a periodic reattachment occurs on the windward side of the cube. Consistently,
for higher reduced velocities, the aerodynamic response delay is shorter and the cube
pendulum follows a more quasi-steady behavior.

The study strongly relies on pressure measurements, however a velocity field is nec-
essary to fully understand the cube pendulum wake dynamics, especially in unsteady
configurations. A further study of the velocity field surrounding the cube could pro-
vide insight into the particular unsteady effects observed during saturation, allowing
to investigate in detail the flow reorganization in the downward phase of the swinging
motion. The investigation of low reduced velocities also turns out to be critical in
future works about FSI on a bluff body pendulum. Indeed, for real-world applications
concerning cable cars, for instance, the range of reduced velocities is low, and unsteady
effects are expected to be dominant. Finally, more DoF, the shape of the bluff body,
and the upstream flow turbulence are some factors whose influence on the pendulum
dynamics is currently studied.
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