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Abstract. The hybrid modelling framework of gene regulatory networks
(hGRNs) is a functional framework for studying biological systems, tak-
ing into account both the structural relationship between genes and the
continuous time evolution of gene concentrations. The goal is to identify
the variables of such a model, controlling the aggregated experimental
observations. A recent study considered this task as a free optimisation
problem and concluded that metaheuristics are well suited. The main
drawback of this previous approach is that panmictic heuristics converge
towards one basin of attraction in the search space, while biologists are
interested in �nding multiple satisfactory solutions. This paper inves-
tigates the problem of multimodality and assesses the e�ectiveness of
cellular genetic algorithms (cGAs) in dealing with the increasing dimen-
sionality and complexity of hGRN models. A comparison with the second
variant of covariance matrix self-adaptation strategy with repelling sub-
populations (RS-CMSA-ESII), the winner of the CEC'2020 competition
for multimodal optimisation (MMO), is made. Results show evidence
that cGAs better maintain a diverse set of solutions while giving better
quality solutions, making them better suited for this MMO task.

Keywords: cellular genetic algorithm, epistatic and multimodal optimisation
problem, RS-CMSA-ESII, hybrid GRN, chronotherapy, real-world application

1 Introduction

Studying the dynamics of gene regulatory networks (GRNs) aims to understand
the various cellular processes and pathways that empower a living organism
to carry out essential functions, such as metabolic processes and the ability to
adapt to environmental disturbances. Modelling such GRNs allows novel and
better cognisance of disease initiation and progression, opening new perspec-
tives in pharmacological �elds such as chronotherapy, which can be viewed as
the practice of administering medication at speci�c times during the day, taking
into account the body's natural rhythms and the varying e�ects of the treat-
ment. By logically following the activation or inhibition of genes and proteins
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under di�erent conditions, biologist modellers can create models of these com-
plex systems based on actual knowledge. That led to numerous modelling GRN
frameworks such as di�erential, stochastic or discrete ones [22], each of them
presenting its advantages and drawbacks. Whereas it is not too di�cult to enu-
merate the di�erent genes playing a role in a particular context as well as the
known regulations between them, the common impediment remains the identi-
�cation of the variables that govern the GRN dynamics.

In the present work, we consider hybrid frameworks [7] called hGRNs. They
add to the discrete ones the time spent in each discrete state, allowing experimen-
tal observations to be represented as irregularly spaced time series of observable
events. It has been shown that the hybrid model can exhibit these events in
the same order and at the right time only if the dynamic variables that control
the model behaviour satisfy a set of constraints. The design of these minimal
constraints on the hGRN variables has been automated. An attempt has been
made to use a continuous Constraint Satisfaction Problem (CSP) solver to ex-
tract solutions but faced di�culties when the number of variables increased [8].
Recently, [17] showed that the CSP, exhaustively characterising the set of so-
lutions, can be expressed as a free optimisation problem (FOP) by indirectly
handling constraints thanks to metaheuristics. The CSP was transformed into
a non-separable, non-trivial, continuous, and single objective problem in which
the search space increases exponentially with the number of genes in the hGRN.
One limitation of this approach is that such algorithms are panmictic and can
only identify one basin in the search space. From a modelling perspective, ex-
hibiting a diverse sampling of biologically satisfactory solutions allows biologists
to reason not only on one possible identi�cation but also on a set of sensible ones.
Therefore, this work focuses both on validating the previous approach on hGRNs
involving more genes and complex dynamics and on the multimodal aspect of the
identi�cation problem. RS-CMSA-ESII is a new niching method for MMO that
emerged as the most successful available method when robustness and e�ciency
are considered at the same time and does not make any assumptions such as
distribution, shape, and size of the basins [2]. This CEC'2020 top niching-based
algorithm is the logical choice to be tested as a baseline to gain more insights
on its ability to �nd a set of solutions without having any assumptions on the
modes. In the meantime, cGAs are well-known heuristics to tackle epistatic and
multimodal tasks [4, 5] since the diversity maintenance is guaranteed thanks to
the structure and ratio of the population, unlike RS-CMSA-ESII which employs
mechanisms with di�erent sub-populations running in parallel. So, this research
aims to address the problem of the hGRN variables identi�cation to obtain a
diverse set of quality solutions for increasingly complex models while seeking to
identify the most suitable method for achieving these goals.

To meet these objectives and based on the research hypotheses set out above,
the article is organised as follows: Section 2 describes the hGRN continuous op-
timisation problem by detailing: (i) the de�nition of the hybrid model along with
its dynamics, (ii) the experimental observations that serve as input, and (iii) how
this problem has been treated as an FOP. Section 3 encompasses an overview
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of RS-CMSA-ESII and cGAs from a multimodal perspective. Section 4 proposes
experiments comparing CMA-ES, GA, multiple cGAs with varying ratios and
structures, and RS-CMSA-ESII on three di�erent hGRNs of increasing com-
plexity. Experimental results and statistical tests are presented and discussed.
Finally, conclusions are drawn in Section 5.

2 hGRN variables optimisation

2.1 Hybrid gene regulatory networks

Hybrid modelling of gene regulatory networks (GRNs) aims to describe the ef-
fect of regulations between genes in a biological system by taking into account
the continuous time component. Traditionally, a GRN is a directed graph in
which vertices express abstractions of one or multiple biological genes (v1, v2),
and edges that act as either activation (→) or inhibition (⊣) represent regula-
tions (Figure 1a). This static representation seems of limited interest since it
does not integrate any dynamics. However, from Figure 1a, the corresponding
discrete dynamics (Figure 1b) can be built. First, grey boxes are obtained from
the previous GRN by enumerating all possible states S: each grey square box
identi�es a discrete state η ∈ S de�ned by the level of the GRN genes. If we
suppose that the maximum level of each gene vi is 1, then the top right box is
the state where each gene is expressed at its maximum level and is denoted by
η = (ηv1 , ..., ηvn ). In Figure 1, this state is η = (ηv1 , ηv2

) = (1, 1). From this �rst
step, transitions between discrete states can be drawn (black arrows) and sym-
bolise the discrete evolution of the concentration of the gene products. Although
the obtained discrete state graph of Figure 1b is deeply interesting for logical
reasoning about regulatory changes, it disregards temporal information, which
is nevertheless crucial, for example, for optimising medical treatments by taking
account of biological rhythms.
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Fig. 1: Example of a GRN depicted as a directed graph (a), its discrete state
graph (b), and a possible dynamic of its hybrid state graph (c) (taken from [17]).
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The hybrid modelling framework adds the notion of temporal continuous
evolution to the previous dynamics by adding linear continuous trajectories (red
straight lines) to the discrete transitions of a GRN (pictured with dotted red
lines in Figure 1c). On a trajectory, a point is called a hybrid state and given by
its position π within a discrete state η. As an example, the initial hybrid state hi

in Figure 1c has the coordinates ((ηv1 , ηv2 )
t
, (πv1

, πv2 )
t) = ((0, 0)t , (0.25, 0.25)t).

To determine a complete trajectory through a set of discrete states, hGRN mod-
els require an initial hybrid state hi and a vector of the evolution of concentra-
tions in each discrete state, called celerity vector. This vector gives the direction
and celerity of each gene v ∈ V in a discrete state η ∈ S, e.g. the celerity of v1
in η = (0, 0) is denoted Cv1,(0,0). In the general case, the celerity of v in η is a
�oated value de�ned as Cv,η.

The aim is to identify celerity vectors to generate valid hGRN models of the
biological system under study. Such a determination could help biologists make
new interpretations about the possible dynamics of the system.

2.2 Biological knowledge

The identi�cation process requires some input data, which allows the modeller
to validate or not a possible valuation of continuous variables. While much
work [10, 18, 20, 21] is based on gene expression data, our approach takes into
consideration already-formalised information analysed by biologists derived from
both biological data and expertise.

The formalism abstracts the knowledge extracted from biological experiments
under the form of constraints on the global trajectory: it must (i) start from
an initial hybrid state hi = (ηi, πi), (ii) verify a triplet of properties in each
successive discrete state (∆t, b, e) where ∆t expresses the time spent; b delineates
the observed behaviours during the continuous trajectory; e speci�es the next
discrete state transition, and (iii) reach the �nal hybrid state hf = (ηf , πf ). Let
us detail the biological knowledge (BK) used for the example of Figure 1c:

{hi}
⎛
⎜⎜
⎝

5.0
noslide (v2)

v1+

⎞
⎟⎟
⎠
;
⎛
⎜⎜
⎝

7.0

slide
+ (v1)

v2+

⎞
⎟⎟
⎠
;
⎛
⎜⎜
⎝

8.0
noslide (v2)

v1−

⎞
⎟⎟
⎠
;
⎛
⎜⎜
⎝

4.0

slide
− (v1)

v2−

⎞
⎟⎟
⎠
{hf }

hi = ((0, 0)t , (πv1 , πv2 )
t) represents both the initial and �nal state (hi = hf ).

Starting from hi, the time spent by the trajectory inside the discrete state
η = (0, 0) is approximately 5 hours (∆t = 5.0). Within this state, the celerity
should move towards the next discrete state of v1 (v1+) so as to increase the
concentration level of gene v1 until it reaches the right border without touch-
ing either the top or the bottom border (noslide(v2)) and then jump into the
neighbour state η = (1, 0). In this new discrete state, the trajectory evolves for 7
hours (∆t = 7.0) in the direction of ηv2 = 1 (v2+) but, this time, the trajectory
reaches the right border, which corresponds to the maximum admissible concen-
tration of v1 (slide

+(v1)). This process continues until the trajectory reaches hf .
Any valuation of dynamic variables, i.e. celerity vectors, leading to a trajectory
satisfying this BK is considered admissible.



cGAs for identifying variables in hGRNs 5

2.3 Single objective and multimodal optimisation problem

Searching for celerity values that satisfy BK initially led to characterising the
problem as a CSP and solving it by constraint-based programming [8]. On the
one hand, this constraint-based programming method was able to exhaustively
�nd the over-approximated sets of solutions, but as the number of dimensions
increased, such a method was unable to extract even one particular solution.

A recent attempt [17] has recently formulated the problem as being single-
objective by proposing an adequate �tness function consisting of three criteria
and testing this approach on the hGRN model of Figure 1c (only two genes). In
this preliminary study, the decision vector to be optimised consisted of �nding
the initial hybrid state hi and all celerity values of all discrete states:

hi, {Cv,η∣v ∈ V, η ∈ S} (1)

Thus, for example, �nding an admissible valuation of Figure 1c satisfying BK
was equivalent to �nding the optimal parameter set of:
x = (hi;Cv1,(0,0);Cv2,(0,0);Cv1,(1,0);Cv2,(1,0);Cv1,(1,1);Cv2,(1,1);Cv1,(0,1);Cv2,(0,1)).
In this previous work, the �tness function is de�ned as the sum of three distances,
each corresponding to one of the criteria associated with BK:

f (x) = ∑
η
d∆t(tr, BK) + db(tr, BK) + de(tr, BK) (2)

where d∆t(tr, BK) is the distance between the expected time given by BK (∆t)
and the time spent in the current state by the considered trajectory; db(tr, BK)
represents the distance between the trajectory behaviour inside the discrete state
and the property of BK; and de(tr, BK) compares the expected next discrete
state according to BK with the discrete state into which the considered trajectory

enters. The function domain is (∏v∈V [0, bv])×[0, 1]
n×R∣C∣

where n is the number
of genes and ∣C∣ is the total number of celerities to identify, i.e. the length of
the decision vector. The codomain is R+

.
Minimising these three criteria led to the identi�cation of admissible celerity

values. However, the optimisation problem becomes increasingly complex when
considering hGRN models with many genes. It implies more celerity values to
identify and more complex interactions, leading to harder implicit constraints.
The continuous CSP solver was unable to extract even one particular solution
when considering a model with �ve genes, leading to 240 variables in the decision
vector. Furthermore, the task is multimodal: it is interesting to �nd diverse so-
lutions to provide biologists with evidence for di�erent interpretations of hGRN
dynamics. The approach proposed by [17] did not address this issue. The pe-
culiarities of this optimisation problem are: (i) there is an in�nite number of
solutions that satisfy the BK constraints, and (ii) the optima solutions lie on a
neutral landscape, i.e. a plateau. Indeed, solutions form a measure zero set due to
the equality constraints on the time criterion in the �tness function. Therefore,
the optimisation procedure requires the ability to sample, in a continuous land-
scape, global and local optima plateaus of measure zero. These considerations
speci�c to this optimisation problem cannot be addressed only by panmictic
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schemes. Therefore, the limits of the mentioned approach are tested by intro-
ducing experiments with well-known multimodal heuristic algorithms on higher
dimensional hGRNs.

3 RS-CMSA-ESII and cGAs for MMO

RS-CMSA-ES [1] was designated the most successful niching method for the
CEC'2013 MMO test suite. In this initial version, several parallel subpopulations,
each following the evolution scheme of CMSA-ES [9], aim at �nding distinct
global minima. CMSA-ES is an adapted version of CMA-ES [14], diminishing
the complexity of the adaptation process and implying fewer hyperparameters
tuning. RS-CMSA-ES gathers several techniques and encompasses them as a
new algorithm for MMO without making any assumption about the �tness land-
scape: taboo points (points from which the o�spring of a subpopulation must
maintain a su�cient distance, i.e. the centre of the �tter subpopulations and
the previously identi�ed basins), the normalised Mahalanobis distance, and the
Ursem's hill-valley function [23]. The new variant RS-CMSA-ESII [2] introduces
an update of the adaptation schemes for the normalised taboo distances, new ter-
mination criteria for subpopulation evolution, and an improvement of the time
complexity thanks to (i) a new initialisation strategy of subpopulations, and (ii)
a more accurate metric for the determination of critical taboo regions thanks
to the properties of Mahalanobis distance. The RS-CMSA-ESII superiority over
successful niching methods in static MMOs made it an ideal candidate for this
study.

cGAs are well-known methods for addressing multimodal and epistatic prob-
lems [4, 5]. They are a subclass of GAs in which the population is structured in
a speci�ed topology, allowing individuals to interact only with their neighbours.
The topological structure de�nes a connected graph where a vertex represents
an individual, and an edge represents the possibility of interaction between two
individuals: each individual, in this graph, can only mate with its neighbours.
Therefore, in a cGA, the choice of the population topology and the neighbour-
hood are two parameters that guide the search and control the solutions' di�u-
sion speed along the graph. The radius introduced in [5] directs the dispersion
strength based on the chosen neighbourhood: the higher the radius, the more
spread out a neighbourhood's pattern is, and so the harder a good solution will
reach other individuals of the population because there will be more intermedi-
ate individuals to the most distant individual. Furthermore, [19] introduced the
ratio measure controlling the balance between exploration and exploitation. It is
de�ned as a trade-o� between the radii of the neighbourhood and the population
structure: reducing the ratio leads to the promotion of exploration. Overlapping
neighbourhoods also help to explore the search space because the slow di�usion of
solutions through the population allows exploration by preserving diversity [3,4].
On the one hand, this leads cGAs to �nd several optima compared to GAs and
to be well suited for complex problems. On the other hand, this is often at the
expense of slower convergence towards global optima.
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Fig. 2: Interaction graphs of the 2G (a), 3G (b), and 5G (c) hGRN.

name Nb. genes Decision vector len. BK

example cycle (2G) 2 8 given in Section 2.2

circadian cycle (3G) 3 20 [7]

cell cycle (5G) 5 240 [6]

Table 1: Description of hGRN models.

In the following section, tests have been set up to compare the RS-CMSA-
ESII performance along with cGAs to demonstrate which method is best suited
to our multimodal task. Di�erent structure and ratio values for cGA are ex-
perimented with to evaluate their performance. We compared all the results
with standard panmictic metaheuristics on three hGRN models of increasing
complexity to assess the suitability of their diversity mechanism for such MMO
problems.

4 Experimental study

The three hybrid models of GRN are depicted in Figure 2 and described in Ta-
ble 1 in terms of (i) the number of genes, (ii) the length of the decision vector
to optimise, and (iii) constraints from BK utilised for evaluating candidate so-
lutions.

4.1 Optimisation methods and parameters search

The comparison is carried out between (µ+λ) GA, CMA-ES, six synchronous
cGAs with di�erent ratios and neighbourhood structures, and RS-CMSA-ESII.

The two continuous metaheuristic implementations come from PyMoo [11],
and each of the hyperparameters chosen is identical to those detailed in [17].
Their population size is also 500. Since we were interested in observing the in�u-
ence of the cGAs parameters to �nd those most suitable for solving the di�erent
hGRN problems, multiple sets of parameters were tested (listed in Table 2). The
names of the neighbourhoods follow the classical notation: the label Ln (linear)
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name population neighbourhood ratio

cGAL5 5x10 L5 0.279
cGAl9 10x10 L9 0.367

cGAL29 15x15 L29 0.719
cGAL41 21x21 L41 0.851

cGAL13 7x7x7 L13 0.607
cGAC9 7x7x7 C9 0.408

Table 2: Description of tested cGAs parameters.

for the neighbourhoods composed by the n nearest neighbours in a given axial
direction (north, south, west and east) while the label Cn (compact) designates
the neighbourhoods containing the n − 1 nearer individuals to the considered
one (in horizontal, vertical, and diagonal directions). The population size and
the neighbourhood structure vary so that we can test (i) low ratio cGAs with a
small population size and, conversely, (ii) high ratio cGAs with a larger popu-
lation, both in a toroidal 2G square grid, and (iii) 3G neighbourhood structure.
To ensure fair results, their implementation is also based on the standard GA
implementation provided in PyMoo. RS-CMSA-ESII implementation is taken
from [2] with the control parameters set to their default values.

Each experiment is run 50 times to obtain statistically signi�cant results.
The termination criteria chosen is the number of function evaluations (NFE):
100, 000 for 2G and 3G and 200, 000 for 5G. These values were chosen based on
the relative complexity and the decision vector length.

4.2 Results

For each algorithm, problem dimension and at each generation, we compute the
best candidate solution so far, repeat executions 50 times, and compute the
Mean Best Fitness (MBF). The monotonic evolution of all algorithms is shown
in the left column of Figure 3. It can be observed that (i), as expected, panmictic
metaheuristics perform worse than cGAs in all cases since they reach a plateau
faster and attain a higher �tness score after convergence; (ii) cGAL13, cGAL29,
and cGAL41 stand out among the algorithms tested since, on the one hand,
they have a slower convergence, and on the other hand, even when the maximum
budget is attained, their curves show that the search process could have pursued
its convergence; and (iii) RS-CMSA-ESII performs worse than CMA-ES.

In addition, Cumulative Distribution Function (CDF) curves are constructed
on the right side of Figure 3 for each hGRN considered. Each CDF curve de-
scribes the probability of �nding a solution at, or below, a given �tness score.
For instance, in 3G, there is almost an 80% probability that a user will obtain
a solution with a �tness score less than or equal to 10

−4
with cGAL9 given
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100,000 NFE. From these plots, (i) cGAs don't often �nd the overall best solu-
tion (the one with the lowest �tness score) but results are rarely unsatisfactory
(> 1), (ii) in all cases, CMA-ES can deliver top results (satisfactory and precise
solutions) as it is of poor performance (not solving the problem), (iii) RS-CMSA-
ESII similarly to CMA-ES has mixed performance and does not �nd any single
satisfactory valuation in 5G.

In MMO, the chi-square-like performance statistic and maximum peak ra-
tio are common measures to identify a maximum number of optima (local and
global). However, both of these measures assume the number and locations of
the global optima are known a priori. This assumption does not hold in our case,
so the scoring function used is introduced in [16] and de�ned as:

sc(P, θl, θu) = ∑
Bj∈Bink(clustσ (P ),θl,θu)

wj ∣Bj ∣ (3)

This alternative performance measure suggests the selection of a threshold
interval [θl, θu] covering all �tness score values considered interesting by an ex-
pert. θl is the ideal point while θu is an upper bound below which �tness values
are judged satisfactory. In our case, θl = 0 and θu = 10

−2
. 10

−2
is a precision error

Fig. 3: Monotonic evolution of MBF values (left) and CDF curves of overall best
results (right) for the three hGRNs.
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coherent with biological expertise. For instance, a trajectory which would slide
in a state during a fraction of seconds (< θu) before going to the next discrete
state is a satisfying trajectory despite BK stating noslide(v). The score mea-
surement uses density-based clustering with parameter σ to remove redundancy
between candidate solutions clustered closely around the same local optimum.
In this study, DBSCAN [13] is parametrised with σ = 10

−1
which is the maxi-

mum Euclidean distance between two samples for one to be considered as in the
neighbourhood of the other. Equidistant binning is then used to adapt the distri-
bution weights: more emphasis is put on higher quality optima than lower ones.
The number of bins is kept at 16. This score assesses the combined quality of the
found candidate solutions while it is not prone to be misled by redundancy. Ta-
ble 3 shows numerical values for the mean scores where bold results highlight the
best performance for each model dimension. The comparison indicates that small
ratio cGAs (cGAL9 and cGAL5) are to be preferred for 2G, whereas cGAs with
a higher ratio perform better in the 3 and 5G cases, as shown by cGAL41 and
cGAL29. It should also be noted that, in 5G, the extrema ratio values (cGAL5
and cGAL41) are penalised for being too exploratory or exploitative. cGAC9
has interesting results in all three cases but never stands out.

Table 4 summarises statistics of the last population clustered: it contains only
the �tness values of the best candidate solutions (< θu) gathered around each
distinct optima found by clustering. The best results (column by column) are
shown in bold. The average of the mean and standard deviation of the clustered
results is reported, as well as the overall minimum �tness scores (the reader can
refer to the leftmost point of each corresponding CDF curve). When considering
one particular run, it may appear that an algorithm did not �nd any solution
below θu. In such cases, the maximum value θu is considered: this results in a
normalised average with the ideal value being θl, and θu the nadir one. It can
be observed that cGAL9 �nds, on average, higher quality optima than other
algorithms in 2 and 5G. In 3G, cGAL29 identi�es satisfying solutions with a
lower �tness score on average.

Algorithms 2G 3G 5G

GA 12.13 148.09 8.29
CMA-ES 3e-3 0.275 29.32
cGAL9 19.99 63.47 21.11
cGAL5 16.82 30.07 2.04
cGAL13 7.33 290.59 0.03
cGAC9 13.78 162.28 34.11
cGAL29 13.90 182.18 49.81

cGAL41 1.56 311.07 0.0
RSCMSAII 1e-2 0.275 0.0

Table 3: Overview of the average performance measurement over 50 runs.



cGAs for identifying variables in hGRNs 11

Algorithms
2G 3G 5G

mean ± std min mean ± std min mean ± std min

GA 1e-3 ± 2e-4 4e-8 4e-4 ± 2e-6 5e-8 99e-4 ± 94e-4 6e-3
CMA-ES 98e-4 ± 96e-4 2e-11 7e-3 ± 2e-13 1e-13 9e-3 ± 9e-3 1e-5
cGAL9 8e-4 ± 8e-4 3e-7 1e-4 ± 7e-6 8e-14 85e-4 ± 7e-3 2e-4
cGAL5 1e-3 ± 9e-4 3e-7 9e-4 ± 2e-4 1e-9 95e-4 ± 94e-4 3e-3
cGAL13 6e-3 ± 2e-3 4e-4 3e-4 ± 4e-4 5e-6 1e-2 ± 98e-4 7e-3
cGAC9 1e-3 ± 1e-3 3e-6 1e-4 ± 8e-6 4e-9 9e-3 ± 8e-3 3e-4
cGAL29 3e-3 ± 2e-3 3e-5 9e-7 ± 1e-5 1e-9 79e-4 ± 7e-3 2e-4
cGAL41 8e-3 ± 3e-3 2e-3 2e-3 ± 16e-4 5e-5 1e-2 ± 0 1e-2

RSCMSAII 8e-3 ± 1e-20 8e-8 7e-3 ± 2e-13 1e-13 1e-2 ± 0 1e-2

Table 4: Summary of clustered results.

4.3 Statistical analysis

A statistical validation campaign was conducted to evaluate the observed di�er-
ences in the reported performance values of all algorithm pairs for each di�erent
hGRN. We consider two null hypotheses H

1
0 which states that the observed per-

formance scores are equal, and H
2
0 which states that the average �tness scores

obtained by clustering are similar. These null hypotheses are duplicated for each
of the hGRN dimensions considered. To test them, we �rst employed the Fried-
man rank-sum test to assess whether at least two methods exhibit signi�cant
di�erences. The p-values for the null hypotheses show, at a α = 5% con�dence
level, that the di�erences are signi�cant. The choice between parametric and non-
parametric tests is made according to the independence of the samples (seeds are
di�erent), whether or not the data samples are normally distributed, and the ho-
moscedasticity of the variances [12]. As neither normality nor homoscedasticity
conditions required for the parametric tests application hold, the non-parametric
Wilcoxon signed-rank test was performed. In a complementary way, to reduce
the issue of Type I errors in multiple comparisons, the Bonferroni correction
method was applied. [15] gives the score +1 (resp. -1) for the superior (resp. in-
ferior) algorithm whenever the considered null hypothesis could be signi�cantly
rejected. A score of 0 is assigned when neither algorithm is signi�cantly better
than the other. Since we have three di�erent case studies (2G, 3G, 5G), for each
pair of algorithms and each null hypothesis, we sum the three obtained scores
to estimate which one is globally better considering the three hGRNs. Table 5
(resp. Table 6) show these sums according to the pairwise Wilcoxon tests (resp.
Bonferroni correction): a positive number for algorithm in line l shows that it
was signi�cantly better than the algorithm in column c (considering the three

hGRNs). For example, according to the Bonferroni correction applied on H
1
0 , we

can state that cGAL29 is signi�cantly better than RS-CMSA-ESII for the three
study cases but compared to cGAL41, we can only say that it is globally better:
cGAL29 may have scored +2 and cGAL41 +1 or cGAL29 may have scored +1
and cGAL41 0.
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CMA-ES cGAL9 cGAL5 cGAL13 cGAC9 cGAL29 cGAL41 RSCMSAII

GA +2 +2 0 −2 0 +1 0 +1 −2 −1 −2 −1 0 +2 +2 +2
CMA-ES −2 −2 −2 −2 −1 −1 −2 −2 −2 −2 −1 −1 0 +1
cGAL9 +3 +2 +1 +3 0 +1 0 0 +1 +3 +3 +3
cGAL5 0 0 −1 0 −1 −1 0 +2 +2 +2
cGAL13 −1 −3 −1 −3 0 +2 +2 +2
cGAC9 −1 −1 +1 +3 +3 +3
cGAL29 +1 +3 +3 +3
cGAL41 +2 +1

Table 5: Pairwise Wilcoxon statistical tests of H
1
0 (left) and H

2
0 (right).

CMA-ES cGAL9 cGAL5 cGAL13 cGAC9 cGAL29 cGAL41 RSCMSAII

GA +2 +2 0 0 +1 0 0 +1 0 0 −1 0 0 +2 +2 +1
CMA-ES −2 −2 −2 −2 −2 −2 −2 −2 −2 −2 −2 −2 0 0
cGAL9 +1 +1 0 +2 0 0 0 +1 0 +2 +2 +2
cGAL5 0 +1 −1 −1 −1 0 0 +2 +2 +1
cGAL13 0 −2 −1 −3 0 +2 +2 0
cGAC9 0 0 0 +2 +2 +2
cGAL29 +1 +3 +3 +3
cGAL41 +2 0

Table 6: Bonferroni post-hoc analysis of H
1
0 (left) and H

2
0 (right) with bolded

di�erences compared to Table 5.

If we analyse the conclusions supported by the tests, based on the acceptance
or rejection of the above hypotheses, we arrive at the following �ndings: on the
di�erent tasks, cGAL9 and cGAL29 are more competitive in �nding more optima
than other algorithms with better �tness values on average. RS-CMSA-ESII lags
as the panmictic algorithms maintain greater diversity in their population across
di�erent hGRN landscapes.

4.4 Visualisation

Figure 4 shows the diversity of solutions of cGAL9 tested on hGRNs with 2,
3 and 5 genes. Please note that three di�erent graph types are modelled to
emphasize the same phenomenon: the evolution of gene products concentration.
In 2G (Figure 4a) and 3G (Figure 4b), the discrete states can be represented
as squares and cubes. However, in 5G (Figure 4c), the choice has been made to
represent the evolution of concentration (in y-axis) as a function of the time spent
(in x-axis) for the di�erent genes. This visually con�rms that the application
of evolutionary computation allows us to exhibit very di�erent solutions, each
consistent with BK.
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(a) (b) (c)

Fig. 4: Admissible trajectories obtained with cGAL9 on the 2G (a), 3G (b), and
5G (c) hGRN.

5 Conclusion

hGRN variable identi�cation is framed as an ideal tool to help biologists develop
hypotheses and facilitate the design of their experiments. This study proposes
an improvement to [17] since (i) it shows that evolutionary computation can
outperform constraint-based approach by dealing with higher dimensional mod-
els, the 5G cell cycle in this study, and (ii) it is now able to �nd a diverse set
of optima solutions instead of a unique one. CGAs have shown superiority over
the best available niching-based algorithm (RS-CMSA-ESII) by maintaining di-
versity within the population structure. Surprisingly, RS-CMSA-ESII does not
ensure diversity in the results: only one solution is found. In our case, optima are
located on a neutral landscape: there is an in�nite number of solutions forming
a null set. Therefore, for sampling a continuous landscape with global and local
optima plateaus of measure zero, the mechanisms employed by RS-CMSA-ESII
are not suitable. Because the Ursem's hill-valley test fails, it ensures that only
one subpopulation at a time evolves, leading to a single solution. That entails
the degenerate use of the metaheuristic, explaining the disappointing results of
RS-CMSA-ESII. In the case of cGAs, maintaining diversity through population
structure helps to preserve diversity in the parameter space and thus enables
us to obtain a diversity in the phenotype space. Future works will consider the
development of speci�c diversity mechanisms to better leverage the multimodal-
ity issue on a neutral landscape: the design of an appropriate self-adaptive cGA
to obtain quality results while maximising the number of optima. At the same
time, introducing larger biological systems will lead to applying large-scale op-
timisation.
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