
HAL Id: hal-04557378
https://hal.science/hal-04557378v1

Submitted on 24 Apr 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Integrating the Support for Machine Learning of
Inter-Model Relations in Model Views

James Pontes Miranda, Hugo Bruneliere, Massimo Tisi, Gerson Sunyé

To cite this version:
James Pontes Miranda, Hugo Bruneliere, Massimo Tisi, Gerson Sunyé. Integrating the Support for
Machine Learning of Inter-Model Relations in Model Views. The Journal of Object Technology, 2024,
The 20th European Conference on Modelling Foundations and Applications (ECMFA 2024), 23 (3),
pp.1-14. �10.5381/jot.2024.23.3.a4�. �hal-04557378�

https://hal.science/hal-04557378v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Journal of Object Technology | RESEARCH ARTICLE

Integrating the Support for Machine Learning of
Inter-Model Relations in Model Views

James Pontes Miranda∗, Hugo Bruneliere∗, Massimo Tisi∗, and Gerson Sunyé†

∗IMT Atlantique & LS2N (CNRS), France
†Nantes University & LS2N (CNRS), France

ABSTRACT Model-driven engineering (MDE) supports the engineering of complex systems via multiple models representing
various aspects of the system. These interrelated models are usually heterogeneous and specified using complementary
modeling languages. Thus, model-view solutions can be employed to federate these models more transparently. Inter-model
links in model views can sometimes be automatically computed via explicitly written matching rules. However, in some cases,
matching rules would be too complex (or even impossible) to write, but inter-model links may be inferred by analyzing previous
examples instead. In this paper, we propose a Machine Learning (ML)-backed approach for expressing and computing such
model views. Notably, we aim at making the use of ML in this context as simple as possible. To this end, we refined and
extended the ViewPoint Definition Language (VPDL) from the EMF Views model-view solution to integrate the use of dedicated
Heterogeneous Graph Neural Networks (HGNNs). These view-specific HGNNs are trained with appropriate sets of contributing
models before being used for inferring links to be added to the views. We validated our approach by implementing a prototype
combining EMF Views with PyEcore and PyTorch Geometric. Our experiments show promising results regarding the ease-of-use
of our approach and the relevance of the inferred inter-model links.

KEYWORDS MDE, Modeling languages, Model Views, Machine Learning, Graph Neural Networks.

1. Introduction
Complex systems engineering is challenging, notably because of
the various aspects to be tackled and information fragmentation
among stakeholders (Bruneliere et al. 2022; Afzal et al. 2018).
To overcome this, Model-Driven Engineering (MDE) fosters
using multiple models as fundamental artifacts to support ana-
lysts, engineers, etc., in performing their tasks more efficiently.
However, dealing with heterogeneous models defined in dif-
ferent modeling languages at various abstraction levels (e. g.,
Unified Modeling Language - UML, System Modeling Lan-
guage - SysML, Business Process Modeling Notation - BPMN,
or DSLs for problem-specific tasks) requires appropriate model
federation strategies.

JOT reference format:
James Pontes Miranda, Hugo Bruneliere, Massimo Tisi, and Gerson Sunyé.
Integrating the Support for Machine Learning of Inter-Model Relations in
Model Views. Journal of Object Technology. Vol. vv, No. nn, yyyy. Licensed
under Attribution - NonCommercial - No Derivatives 4.0 International (CC
BY-NC-ND 4.0) http://dx.doi.org/10.5381/jot.yyyy.vv.nn.aa

Model View solutions are efficient ways to deal with model
federation (Bruneliere et al. 2019). Model views are built over
one or several existing models, called contributing models, that
potentially conform to different metamodels. A model view
allows users to access information from different contributing
models in an integrated and transparent way. The elements
of the contributing models are integrated by adding new inter-
model links to the model view. Such links are the concrete
instances of an inter-model relation among the contributing
models. Sometimes, inter-model links can be automatically
computed via matching rules written by the engineers. How-
ever, specifying such rules requires a deep knowledge of the
involved models and metamodels. Moreover, these rules may
be too complex to write manually using a query language. Con-
sequently, automating the derivation of these rules has already
been identified as an important challenge (Bucchiarone et al.
2020).

Machine Learning (ML) approaches have already been ex-
ploited to improve various model management operations (De-

An AITO publication

http://dx.doi.org/10.5381/jot.yyyy.vv.nn.aa

hghani et al. 2022; Tang et al. 2019; Barriga, Heldal, et al. 2022;
Weyssow et al. 2022). For example, Graph Neural Networks
(GNNs), i. e., deep-learning models optimized for operation
on graph-structured data, have already been successfully used
in recommendation systems for model editing (Di Rocco et
al. 2021) or for the generation of structurally-realistic mod-
els (López & Cuadrado 2023). Among other benefits, they have
notably demonstrated their ability to capture interesting struc-
tural properties of model graphs from a limited set of examples.

In this paper1, we propose an ML-backed approach for com-
puting model views that require the inference of inter-model
links. Our objective is to simplify the view engineer’s work by
simplifying the use of ML as much as possible so that she/he
does not need to write ML code. To realize our approach, we
rely on the link prediction capabilities of GNNs. Unlike previ-
ous research efforts, we rely on Heterogeneous Graph Neural
Networks (HGNNs), a particular class of GNNs with native
support for graphs whose nodes and edges have different types
(which is the case in model views). As a result, we extended
the EMF Views solution (Bruneliere et al. 2020) and its View-
Point Definition Language (VPDL) to integrate HGNNs. The
engineer only needs to indicate 1) the relations to learn, 2) the
parts of the models involved in the learning process, and 3) a
relevant set of sample links. A declarative description of the
architecture and configuration for the corresponding HGNNs
is then automatically generated and can be manually updated.
These HGNNs are transparently trained and finally used to in-
fer inter-model links integrated into model views. We built a
prototype of our approach and applied it to two sample case
studies. We measured a promising accuracy in the inference of
inter-model links.

The remainder of this paper is structured as follows. Sec-
tion 2 introduces the main background of our work and moti-
vates it via a running example. Then, Section 3 presents the
proposed approach, and Section 4 describes its current imple-
mentation. Section 5 explains the evaluation we have performed
at this stage. Finally, Section 6 discusses the related work before
Section 7 concludes the paper by opening on the next steps of
our work.

2. Background and Motivation

2.1. Model Views
This section introduces the main concepts of model
views (Bruneliere et al. 2019). Our work focuses on the EMF
Views model-view solution (Bruneliere et al. 2020, 2015) that
uses the VPDL language to specify viewpoints and build corre-
sponding views.

As shown in Figure 1, different aspects of a given system
are represented by different models that conform to various
metamodels (i. e., modeling languages). At the metamodel-
level, a viewpoint is specified to determine which concepts and
properties from the contributing metamodels should appear or
not in corresponding views, and how these concepts should
be interrelated. At the model-level, a view is then built to

1 This journal paper extends the short paper published at the 39th ACM/SIGAPP
Symposium on Applied Computing (SAC 2024) (Pontes Miranda et al. 2024).

System

Metamodels

Models Model View

Viewpoint

Model

Virtual model

Legend:

conforms to

represents

based on

conforms to

based on

A
B

C
ABC

a
b

c

abc

Figure 1 Main concepts of model views

federate the different contributing models according to this
viewpoint specification. EMF Views materializes viewpoints
and views as virtual metamodels and models (respectively). A
virtual (meta)model is a particular type of (meta)model that
points to elements coming from the (meta)models it is based on.
Thus, there is no model element duplication: only the additional
information, notably the inter-model links, is stored in the view.

The selection of which concepts and properties from the con-
tributing metamodels must be included in the viewpoint is often
simple. However, the systematic definition of how to relate
concepts coming from different metamodels can be more chal-
lenging. Up to our current knowledge (Bruneliere et al. 2019),
the related work focuses on the manual definition of rules for
inter-model links, i. e., matching rules. We intend to address
scenarios where the engineers are not establishing matching
rules, but rather inferring inter-model links from previous exam-
ples. To this end, we propose to rely on Graph Neural Networks
(GNNs), presented in the next section.

2.2. Graph Neural Networks

GNNs are a class of deep learning models that can operate on
graph-structured data intending to learn structural and semantic
graph patterns (Scarselli et al. 2009; Kipf & Welling 2017).
Formally, being a graph G = (V, E), a set of nodes V connected
by edges in the set E, each node v ∈ V and edge e ∈ E, they
can be associated with some mapping functions ϕ(v) : V → A
and φ(e) : E → R, where A and R denote the sets of node
types and edge types, respectively. In homogeneous graphs,
|A| = |R| = 1, i. e., all nodes (and edges) have the same type.
In heterogeneous graph |A|+ |R| > 2, i. e., there are different
types of nodes and/or edges (Shi et al. 2022a).

2.2.1. Heterogeneous Graph Neural Networks Hetero-
geneous Graph Neural Networks (HGNNs) are neural networks
operating on heterogeneous graphs. An HGNN learns node
representations that capture the structural and semantic infor-
mation of the graph, considering the heterogeneity of nodes
and edges. As standard GNNs, these models learn informative
node representations through message passing and aggregation
mechanisms. In each message-passing step, information is ex-
changed between nodes and their neighboring nodes based on
the types of edges connecting them. As in other deep-learning
algorithms, node embeddings must be set up as a numerical
representation of its features.

2 Pontes Miranda et al.

2.2.2. Link Prediction (H)GNNs as inference machines can
be used for various downstream tasks, e. g. node predictions,
graph predictions, and link predictions. In this paper, we focus
on link prediction. Given a graph G, the link prediction task can
be defined as computing the likelihood of observing a link in
G between any two nodes vx and vy in V. Various techniques
have been proposed to tackle link prediction, e. g., for similar-
ity scores between nodes in social networks (Liben-Nowell &
Kleinberg 2003; Perozzi et al. 2014) or recommendation sys-
tems (Lü et al. 2012). Being those above vx and vy in V, the
likelihood of a link between vx and vy can be given by a pa-
rameterized function fθ(vx, vy). Being the embeddings uvx and
uvy , fθ can operate directly with these numerical vectors, so
fθ(vx, vy) ≈ fθ(uvx , uvy). The role of the HGNNs in this sce-
nario is to apply the message passing and aggregation layers on
the embedding vectors to capture more complicated information
based on node and edge types (Shi et al. 2022b).

We argue that the inference of inter-model links between
contributing models of a view can be reduced to a link prediction
task. In this paper, we show that HGNNs can be used to learn a
joint representation of the models and infer their links.

2.3. Running Example
We now introduce a running example that we use throughout
the paper to motivate our work and illustrate our proposed
approach. Since our integration of HGNNs with model views is
domain-independent, we have deliberately chosen not to present
a complex engineering example. We rather consider two simple
but significantly large models with real-world inter-model links
that we can actually use for training.

In our example, a Users model contains personal information
on users that can be extracted from a social network. A Movies
model contains information about movies that can be extracted
from a film database. We want to automatically compute a
model view containing users, movies, and links connecting each
user with the movies they probably watched.

If we were building this view without any information on
the movies actually watched by our users, we would embed
in the view some logical formula to estimate these links. For
instance we could suppose that every user watched all movies
tagged with the user’s occupation (because we are all interested
in movies that involve our job!). Of course such estimation
formula may be arbitrarily complex (supposing that the view-
point definition language contains a Turing complete expression
language) and may take into account any information in the
contributing models (i. e., the user profiles and movie database).

Let us instead suppose that we have also another large dataset,
similarly structured, describing other users, but including also
information about the movies actually watched by each users.
Now we can try to automatically exploit this historical dataset,
to provide a better estimation of the inter-model links between
our users and movies.

In practice, from the historical dataset, we want to auto-
matically learn a mathematical relation between each user and
the movies she/he watched. Then we want this relation to be
automatically applied in the view we are building to compute
new inter-model links between our users and the movies they

probably watched. Note that in this paper we are not interested
in an explanation of the logic of the learnt relation, but only
on obtaining accurate inter-model links for all users. For this,
we make use of HGNNs, integrated in the viewpoint definition
language.

In our experimentation, we build our models using data from
the well-known MovieLens dataset (Harper & Konstan 2016).
Later we show that the estimation we obtain in this case study
has good accuracy. However, the focus of the paper is not on ob-
taining a good estimation for links, as this is strongly dependent
on the considered use case, the quality of the dataset, and the
topology and parametrization of the HGNNs. Our contribution
lies in the integration of HGNNs in the view definition language,
aiming at increasing the usability of this technology by non-
experts in machine learning. In particular, view engineers do
not have to write any Python code, but only declarative specifi-
cations, to execute the training and inference of the HGNN.

Movies

Movie

id : EInt
title : EString

Genre

id : EInt
value : EString

Tag

name : EString

Users

User

id : EInt
name : EString
age : EInt

Occupation

value : EString

ZipCode

value : EString

[0..*] tags

[1..*] genres

[0..1] occupation

[0..1] address

[0..1] occupation

[0..1] address

[0..*] movies[0..*] users

[1..*] genres

[0..*] tags

Figure 2 Excerpts of the Users and Movies metamodels

Figure 2 shows excerpts of the two initial metamodels for
this example (expressed in EMF Ecore). Users are identified
by an id, have a name and an age. Each Movie is identified
by an id, has a title, and is also associated with a list of
Genres and a list of Tags. The figure also shows the inter-
model links between users and movies, which are only present
in the historical dataset. A User may have watched several
Movies, and a Movie may have been watched by several Users.

Movie

id : EInt
title : EString

User

id : EInt
name : EString

[0..*] watched

Figure 3 UsersAndMovies viewpoint metamodel

Figure 3 shows the desired viewpoint metamodel. We want
to obtain a view that includes ids and names of Users, ids and
titles of Movies, and a relation watched that lists for each
user the movies she/he (probably) watched.

Integrating the Support for Machine Learning of Inter-Model Relations in Model Views 3

Figure 4 VPDL file for defining a viewpoint for the running
case using an OCL matching rule

Before our extension, the viewpoint definition language in
EMF Views (VPDL) allowed only to express logical formulas
for estimating inter-model links, called matching rules. Figure 4
shows a possible definition in standard VPDL for such view,
with a simple matching rule.

The select part in VPDL is used to define which concepts
and properties from which metamodel(s) will appear in the view
(* means all properties). It also introduces new inter-model
relations, i. e. the watched relation between User and Movie
elements in our case. The from part allows users to declare the
concerned metamodels, i. e.Movies and Users in our running
example. Finally, the where part contains OCL-like expressions
specifying matching rules for new inter-model relations, i. e. for
watched in our case. In the example, we write a trivial rule that
checks that among the tags of the movie (indicated as t, i. e.
target of the possible link) there exists one whose name is equal
to the value of the occupation for the user (indicated as s,
i. e. source of the possible link). These OCL-like expressions
are then automatically converted by EMF Views into an Epsilon
Comparison Language (ECL)2 matching rule that is actually
used for computing the model view. It is worth mentioning
that the letters "s" and "t" come from the syntax employed in
EMF Views (inspired by the standard practice in ATL), where
"s" denotes the Source and "t" denotes the Target of a relation.
These variables are not defined directly in VPDL. Instead, they
are defined in the generated ECL file.

Essentially, VPDL is a DSL for model view definition that
includes a model query part. Having usability in mind, the
design of this DSL was directly inspired by the well-known
SQL constructs for defining views in databases (Bruneliere et
al. 2015, 2020). Thus, while queries can actually be used in
the ”WHERE” clause of VPDL for establishing new relations
through the matching rules, the DSL also offers dedicated ”SE-
LECT” and ”FROM” constructs.

As we said, this matching rule is not really representative
of a real-world estimation. Moreover, the example already
highlights important problems:

– A more realistic matching rule would require using a sta-
tistical programming library that is not available in VPDL.

– Engineers would have to use external tools to assess the
validity of the rule against real-world data.

2 https://www.eclipse.org/epsilon/doc/ecl/

In the following, we extend VPDL to define an automatic
learning process for such matching rules from a set of previous
examples, effectively bypassing these problems.

3. Proposed Approach

3.1. Overview
In the previous EMF Views approach (cf. the lower part of
Figure 5), the view engineer has to provide two artifacts: a View-
point definition at the metamodel level and a View definition
at the model level. In EMF Views, these two artifacts can be
partially generated from a specification in VPDL, as described
in the next subsection. Then, the View Builder takes these two
artifacts as inputs and builds a virtual model that materializes
the specified Model View. In our extended approach (cf. the
upper part of Figure 5), we complement EMF Views with a
new View Learning component to support the View Builder
base component. A set of assignments for GNN properties is
computed from the Viewpoint definition. It describes the archi-
tecture of the GNN and the hyperparameters for link prediction,
including training and embedding. A ML Specialist can possibly
edit the value of these properties, e. g. to fine-tune the learning
step. Training models are also required, including existing links
used as examples for learning. Such existing models can come
from different sources, e. g. they can be collected from legacy
projects. Then, the View Learning component takes these two
artifacts as inputs and generates a trained HGNN. The set of
inter-model links are computed by the View Builder component
using the trained HGNN, before constructing the corresponding
view.

Note that the EMF Views already supports delegating the
computation of inter-model links to external tools. Hence, our
proposed approach was able to reuse the standard structure of
the Viewpoint definition and the standard View Builder com-
ponent from EMF Views with no modifications. Moreover,
the approach aims at decoupling the contributions of the View
engineer and the ML specialist. Thus, the ML specialist can
support the engineer by working on improving the accuracy
and relevance of the inferred links without affecting the original
Viewpoint definition and View definition made by the View engi-
neer. Overall, we intend to make the use of ML as transparent as
possible from the View engineer perspective. This way, she/he
can focus solely on dealing with the modeling aspects while
delegating ML integration and execution to our approach (and
possible ML-specific optimizations to the ML specialist).

3.2. Extended ViewPoint Definition Language
We rely on the standard EMF Views for partially generating
the Viewpoint definition and View definition from a specifica-
tion in VPDL. Then, the View definition is manually completed
to point to the actual resources, i. e., the contributing models.
Additionally, our approach exploits our VPDL extension for gen-
erating default GNN architectures and hyperparameters (based
on previous experiments) for the learning process.

Figure 6 shows a snippet of our viewpoint specification in
Extended VPDL for our running example. In this new version,
the create and from parts remain unchanged. However, the

4 Pontes Miranda et al.

https://www.eclipse.org/epsilon/doc/ecl/

GNN
properties

View engineer

Viewpoint
definition

View
definition

ML Specialist

Trained
HGNN

Model

Virtual model

Legend:

File

Training
models

Create/Edit

Input/Output

Model View

View
Learning

View
Builder

Component

EMF Views

Figure 5 Overview of the proposed approach

Figure 6 Extended VPDL for the running case using ML

where part no longer contains an OCL-like expression but a
specific expression indicating, for each inter-model relation,
the properties of the two models and the training relation to be
considered for learning. It contains:

– A set of navigation paths starting from the source of the
relation s, indicating the properties that should be consid-
ered for characterizing the source element. In our case,
{s.id} indicates that the learning system will only use the
id of the user (and not the name, age, etc.).

– A set of navigation paths starting from the target of the re-
lation t, indicating the properties that should be considered
for characterizing the target element. In our case, {t.id,
t.genres.value} indicates that the learning system will
use the id of the movie and the list of its genres. Note
that the navigation expression can navigate the model to
access attributes of other model elements, e. g.Genre.

– A navigation path indicating an existing relation used as
the source of examples. This path is always represented
between the two previous sets, with a specific arrow no-
tation. In our case, <∼s.movies∼> indicates that the

learning system will consider the movies relation as the
set of examples to learn from (in the direction starting from
s).

3.3. View Learning Component
Figure 7 shows how the new View Learning component is orga-
nized internally. This component realizes the bridge between
EMF models and ML heterogeneous graphs. We create one het-
erogeneous graph per relation to learn. This graph is a bipartite
graph that contains only connections between nodes from the
source and target models. The bipartite graph that corresponds
to a given relation is constructed in the following way:

1. Embedding vectors (i. e., numerical representation in a
lower dimension) for nodes are built by retrieving only the
attributes involved in learning that relation (as indicated in
VPDL), and by pre-processing them according to the GNN
Properties.

2. An edge between two nodes is added if those nodes are
connected by that relation in the training models.

In a second step, the component reads the GNN properties
to instantiate a separate HGNN for each relation and performs
training and inference. As shown in Listing 1, the GNN proper-
ties are serialized in a JSON file split into information blocks
containing all necessary parameters for the HGNN definition,
embedding, and training. We opted for the JSON format to
allow for a straightforward modification of these parameters by
the ML specialist.

The core elements of the HGNN, detailing its message-
passing mechanisms and aggregation operations, are encap-
sulated by the ARCHITECTURE label. Each key within this block
3 A LINKS_PATH property can be added when inter-model links are serialized

in separate files.

Integrating the Support for Machine Learning of Inter-Model Relations in Model Views 5

Figure 7 Structure of View Learning and inference

1 {
2 " watched " : {
3 "ARCHITECTURE" : {
4 "OPERATOR" : "SAGEConv" ,
5 "CONVOLUTIONS" : 2 ,
6 "ACTIVATION" : " r e l u " ,
7 "HIDDEN_CHANNELS" : 64 ,
8 " CLASSIFIER " : " d o t _ p r o d u c t "
9 } ,

10 "TRAINING_PARAMETERS" : {
11 "EPOCHS" : 2 ,
12 "LEARNING_RATE" : 0 . 001 ,
13 "ADD_NEGATIVE_TRAINING" : f a l s e ,
14 "NEG_SAMPLING_RATIO" : 2 . 0 ,
15 "TRAINING_SPLIT" : 0 . 1 ,
16 "VALIDATION_SPLIT" : 0 . 1 ,
17 "SOURCE_MODEL_PATH" : " u s e r s . xmi " ,
18 "TARGET_MODEL_PATH" : " movies . xmi " 3

19 } ,
20 "EMBEDDINGS" : {
21 " s . i d " : " i d " ,
22 " t . i d " : " i d " ,
23 " t . g e n r e s . v a l u e " : " enum "
24 }
25 }
26 }

Listing 1 GNN properties JSON file

corresponds to a single aspect of the HGNN’s configuration:
The OPERATOR key denotes the type of layer used for aggre-
gation, while CONVOLUTIONS indicates the layer count. The
ACTIVATION key specifies the activation function employed
between layers, and the key HIDDEN_CHANNELS represents a
numerical value determining the feature dimensions within hid-
den layers. Furthermore, the CLASSIFIER key indicates the
function utilized to compute the final likelihood score for graph
edges (i. e., edge decoder).

The usual hyper-parameters for standard neural network
tasks as encapsulated by the TRAINING_PARAMETERS block, in-
cluding epochs (EPOCHS key), learning rate (LEARNING_RATE
key), and specific parameters for the link prediction task (e. g. ad-
dition of negative edges during training and strategies for edge
splitting in training-test-validation). Additionally, this block
encompasses the file paths for the View Learning component,
namely the serialized models utilized during training. In case
training links are stored in an independent file, this can be given
too in an additional property (LINKS_PATH). Since we consider
the inter-model link identification as a link prediction problem,
it makes sense to split the graph into links (i. e., the training/-
validation sets are split based on the links). Being so, the keys
ADD_NEGATIVE_TRAINING and NEG_SAMPLING_RATIO are re-
lated to different strategies during this split, specifically regard-
ing the inclusion or not of negative edges and the ratio for its
inclusion. TRAINING_SPLIT and VALIDATION_SPLIT, as the
name suggests, define how the links are split into training and
validation sets, respectively. The user gives the paths to the mod-
els used for training through the keys SOURCE_MODEL_PATH and
TARGET_MODEL_PATH.

The EMBEDDINGS block lists the properties specified for that
relation in VPDL. For each one of them, we select their corre-
sponding encoding scheme. For encoding, we currently support
the following:

– id - Encoded as a lookup table for the element/node;
– enum - Encoded as a set of a fixed list. The strategy used

is one-hot encoding;
– string - Uses a pre-trained language model to represent

strings numerically. The user can indicate which model to
use from the SentenceTransformers (Reimers & Gurevych

6 Pontes Miranda et al.

2019) library4. The current implementation is limited to
the use of SentenceTransformers library. However, the use
of other libraries, including MDE-specialized language
models (Hernández López et al. 2023), are also possible
with few adaptations;

– number - The value is simply cast to a float representation.

The definition of optimal default parameters is a problem that
depends on various factors: the task you are working on, the
characteristics of your graph data, or the GNN model’s architec-
ture being used, etc. Our work does not explicitly discuss the
definition of criteria for these default parameters. However, our
approach is designed precisely to simplify the work of the mod-
eler and let these parameterization tasks to the ML specialist.
Indeed, the ML specialist is more likely to have the necessary
domain knowledge in order to make informed decisions.

It is also worth mentioning that some parameters, such as
dataset split (e. g., 80 % for training and 20 % for validation)
and the initial learning rate (often set to 0.001), are standardized
within the ML community.

4. Implementation

This section describes the implementation of a prototype sup-
porting the proposed approach. This prototype is open-source
and publicly available5. We notably used the Eclipse Modeling
Framework, as a basis of EMF Views and its View Builder com-
ponent, and Xtext6 for the implementation of VPDL. The View
Learning component, mapping EMF models in a Python con-
text and allowing different HGNN architectures, requires the
use of the PyEcore7 and PyTorch Geometric8 Python libraries,
respectively.

Figure 8 shows the essential files and their organization
in the implemented prototype, applied to the running case.
Users.ecore (the source of the link) and Movies.ecore (the target
of the link) are the two metamodels considered in our viewpoint.
Users.xmi and Movies.xmi are the two models that conform to
the two previously mentioned metamodels (respectively) and
that contain the actual data to build the target view. In practice,
the view engineer writes in my_view.vpdl the VPDL specifi-
cation of her viewpoint. The viewpoint.eviewpoint descriptor
file is automatically generated from the VPDL specification. It
contains pointers to the contributing metamodels and the EMF
Views internal weaving model at the viewpoint-level (Brune-
liere et al. 2020). The my_view.eview descriptor file is also
automatically generated. It contains pointers to the correspond-
ing viewpoint descriptor file, to the contributing models, and
to the EMF Views internal weaving model at the view-level.
In parallel, the ML specialist checks and adapts accordingly
the gnn_properties.json complementary JSON file provided by
default. Once done, she/he also provides the user_movies.csv
inter-model relation file that is used by the view_learning.py

4 https://www.sbert.net/docs/pretrained_models.html
5 https://github.com/jameswpm/ECMFA_2024
6 https://www.eclipse.org/Xtext/
7 https://github.com/pyecore
8 https://pytorch-geometric.readthedocs.io/

Python code to build and train a proper HGNN.model. In addi-
tion, this Python code also produces a performance evaluation
chart (c. f. section 5). Finally, the relation_inference.py Python
code uses this trained ML model to generate the watched.xmi
inter-model links file. This newly generated file can be ulti-
mately used in the target view. To summarize, the View Learn-
ing component in our extended approach is implemented in
these two view_learning.py and relation_inference.py Python
files.

4.1. Limitations
On the VPDL side, we support the inference of several inter-
model relations, each one learned by accessing an arbitrary set
of properties of the training dataset.

For GNN properties, we currently support only a specific set
of values in the ARCHITECTURE section:

– The OPERATOR is either “SAGEConv” or “HANConv”;
– The number of CONVOLUTION layers is fixed to 2;
– The ACTIVATION function is either “relu” or “tanh”;
– The CLASSIFIER is systematically “dot-product”.

The current prototype is not fully integrated into the
Eclipse/EMF environment. At this stage, the engineers must
manually execute the provided Python scripts to launch training
and inference. Additionally, the CSV file containing relations
from previous models is considered as existing information
adapted from legacy projects. All these elements will be pro-
gressively improved in the next versions of our prototype.

When dealing with the use of ML techniques in the MDE do-
main, an already known challenge is the lack of suitable datasets
for training and benchmarking (Barriga, Rutle, & Heldal 2022).
Our current evaluation is limited to some examples that focus
on the use of domain models. Thus, it could be interesting to
check the tool performance with other types of models having a
more significant semantic gap.

5. Evaluation
To evaluate our approach, we consider three main aspects: 1)
the efficiency of the HGNN for link prediction on real-world
models, 2) how our approach compares to traditional solutions
in terms of the number of lines of code (LOC) necessary to
obtain a same result, and 3) the ability to learn pre-determined
attribute-based matching rules. For 1) and 2), we apply our
solution to the running example depicted in Section 2.3. For
3), we consider simple views on randomly generated models
conforming to minimal metamodels and containing different
relations.

5.1. Evaluation on the Running Example: Prediction Ac-
curacy

To evaluate that our solution works efficiently enough for the
running example, we created instances of the Users and the
Movies metamodels (see Figure 2), using data from the Movie-
Lens dataset provided by the GroupLens research lab (Harper &
Konstan 2016). The first column of Table 1 presents the figures
from the ml-latest-small dataset9, including the time spent for
9 https://grouplens.org/datasets/movielens/latest/

Integrating the Support for Machine Learning of Inter-Model Relations in Model Views 7

https://www.sbert.net/docs/pretrained_models.html
https://github.com/jameswpm/ECMFA_2024
https://www.eclipse.org/Xtext/
https://github.com/pyecore
https://pytorch-geometric.readthedocs.io/
https://grouplens.org/datasets/movielens/latest/

Trained HGNN

my_view.vpdl

user_movies.csvgnn_properties.json

writes

view_learning.py

movies.xmiusers.xmi

Movies.ecoreUsers.ecore

c2 c2

links_inference.py

reads

writes

reads

watched.xmi

writes

my_view.eview

refs
refsrefs

viewpoint.eviewpoint
writes

refs

refs

reads

reads reads

reads reads

refs

viewpoint_weaving.xmi

refs

view_weaving.xmi

refs refs

View
Learning

View
Builder

users.xmi movies.xmi

Figure 8 Main files in the prototype, applied to the running example (c2=conforms-to; refs=references)

training the HGNN.

MovieLens AB

nodes 610 Users, 9742 Movies 1000 As, 300 Bs

edges 100 863 5000

training time 58 s ∼50 s

Table 1 Dataset and training figures for MovieLens and AB

The evaluation metrics selected for the problem are the Re-
ceiver Operating Characteristic (ROC) curve and the respective
area under the curve (AUC_ROC). The AUC_ROC measures
the ability of a GNN model to distinguish between different
classes by plotting the true positive rate against the false posi-
tive rate (Fawcett 2006). A value close to one denotes a good
link prediction accuracy.

Figure 9 shows the resulting ROC curve for the watched
relation described in the Section 4, for different values of the
threshold. We can observe an AUC_ROC >= 0.9, denoting
good accuracy for this example.

5.2. Evaluation on the Running Example: LOC
With our approach, view engineers can now specify our exam-
ple model view via concise statements in the extended VPDL,
plus possibly modifying a JSON file for fine-tuning the ML
configuration. Indeed, for our running case this only involves

39 LOC, consisting of 9 lines of VPDL code and 30 lines of a
partially generated JSON configuration file.

We asked a proficient Python/PyTorch programmer to write
an equivalent program with the same input files. This resulted
in 38510 lines of Python code (excluding blank lines and com-
ments). As we stated, a main objective of our approach is to
hide the use of ML code as much as possible so that engineers
can focus on their modeling activities.

5.3. Learning Different Matching Rules
To evaluate this metric, we consider a different example from
our running one. Figure 10 shows the two metamodels (in
Ecore), each one containing one metaclass. The metamodel
named Left has a class A with one numerical attribute a and one
string attribute s besides its identifier. The metamodel named
Right has only a class B with three numerical attributes b, c and
d, and one string attribute s. Finally, a relation called allBs
relates class A to class B. This example is named the AB example.

In this experiment, we evaluate the capacity of our tool to
learn given matching rules on the Left and Right metamodels.
We start defining three matching rules:

– A.a = B.b, i. e. two elements are related if they have the
same numerical attribute

– A.a = B.c ∗ B.d, i. e. two elements are related based on a
simple mathematical operator (integer multiplication)

– A.s.contains(B.s), i. e. two elements are related based on
a simple string operator (containment).

10 Available in the project repository

8 Pontes Miranda et al.

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate(FPR)

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e(
TP

R)

recommend_Validation

AUC = 0.9091
No Skill

Figure 9 ROC curve for the running example

Threshold FPR TPR

5.8282 0.0000 0.0000

2.1575 0.0052 0.1364

1.7510 0.0105 0.2286

1.4524 0.0191 0.3095

1.1147 0.0314 0.4124

0.8142 0.0478 0.5066

0.4643 0.0742 0.6121

0.1082 0.1074 0.7065

-0.3633 0.1661 0.8081

-1.0493 0.2666 0.9044

-3.8462 0.7047 0.9945

-6.2632 0.9176 0.9994

Table 2 ROC curve for the running example (tabular form)

Note that these matching rules do not consider the structural
aspects of the model. We evaluated the capability of the HGNN
to learn from attribute values per node type. Given one of the
three matching rules, the sample models are generated with
random values, but the generator guarantees that all instances of
A have at least a matching element of type B for that matching
rule. Finally, the generator connects a random ratio of matching
elements, leaving many missing links, i. e. connections that
should exist but were not created. Once the data set is created,
we follow the same approach explained in the previous sections.

Figure 11 shows one ROC curve per matching rule. These
curves show good results (0.85 <= AUC_ROC <= 0.94)

Left

A

id : EInt
a : EFloat = 0.0
s : EString

Right

B

id : EInt
b : EFloat = 0.0
c : EFloat = 0.0
d : EFloat = 0.0
s : EString

[0..*] allBs

Figure 10 Metamodels for the AB example

considering the small amount of data we used (5000 connec-
tions for 4000 nodes). They show that, by using standard hyper-
parameters for HGNN definition and training, our tool can learn
simple matching rules on attribute values.

6. Related work

6.1. Model Views
Preserving the consistency and synchronization of a given model
view implies having efficient ways of creating and handling the
relations between the various models contributing to this view.
For example, the EMF Views solution (Bruneliere et al. 2015)
relies on a combination of model virtualization and matching
rules to dynamically initiate model views and such inter-model
links. Guerra et al. propose a formal approach for specifying
the relations between modeling languages through the use of
a pattern-based language for inter-modeling with a focus on
model-to-model transformations, model matching, and model
traceability (Guerra et al. 2010). Although their approach is
not explicit about model views, their definition of inter-model
links can be considered as a potential mechanism to compute
views based on patterns. Quite differently, the ModelJoin so-
lution (Burger et al. 2016) proposes to rely on a metamodel
generator and higher-order transformations to compute these
links on the fly. In the same vein, Boronat (Boronat 2019) intro-

Integrating the Support for Machine Learning of Inter-Model Relations in Model Views 9

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate(FPR)

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e(
TP

R)

relates_with_Validation

AUC = 0.9372
No Skill

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate(FPR)

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e(
TP

R)

relates_with_Validation
AUC = 0.8565
No Skill

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate(FPR)

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e(
TP

R)

relates_with_Validation
AUC = 0.8521
No Skill

Figure 11 ROC curves for different AB relations: A.a = B.b at the top, A.a = B.c ∗ B.d in the middle, and A.s.contains(B.s) at
the bottom

10 Pontes Miranda et al.

duces an independent model view synchronization mechanism
based on transformation techniques to deal with the interaction
between the original models and the view. To the best of our
knowledge, AI techniques have not yet been directly used in
such a model view context. We intend to make a step in this
direction with the work presented in this paper.

6.2. ML for MDE
ML has been widely used to support different Software Engi-
neering activities (Shafiq et al. 2021). It has also been applied
in the area of modeling approaches and languages (Burgueño,
Cabot, Wimmer, & Zschaler 2022) where AI/ML has already
been identified as a relevant way of addressing several impor-
tant challenges (Bucchiarone et al. 2020). Model consistency
management is a fundamental issue in model-based engineer-
ing and thus creates the need for relevant model repair tech-
niques (Macedo et al. 2017). As they require a smart automation,
such techniques are natural candidates for AI applications (Bar-
riga, Rutle, & Heldal 2022). For example, different approaches
propose the use of rule-based ML (Nassar et al. 2017), deci-
sion trees (Kretschmer et al. 2018), or Reinforcement Learning
(RL) (Iovino et al. 2020; Barriga, Heldal, et al. 2022), in order
to find the best sequence of actions for repairing a given model
and reaching a sufficient quality level. Groner et al. propose the
use of different ML techniques which are not based on Neural
Networks to predict the execution time of ATL model trans-
formations (Groner et al. 2023). However, the use of these AI
techniques does not appear to be the most appropriate in the
context of our present work. Indeed, we do not intend to fix
inconsistent models or to improve execution performance. We
rather want to better federate consistent models by automatically
inferring new links between them. On the (meta)modeling side,
Weyssow et al. (Weyssow et al. 2022) propose assistance for
metamodeling activities based on pre-trained language models.
Our proposal follows a similar research line.

6.3. Learning Constraints and Transformations
Among the work that applies ML to MDE, research on learning
constraints and transformations is the most similar to our effort.
Dang & Cabot (Dang & Cabot 2015) describes the InferOCL
tool dedicated to the automatic inference of OCL constraints for
conceptual models and metamodels based on examples. Their
objective is to increase the precision of domain description.
While we are also learning OCL expressions, we are more inter-
ested in particular expressions that express matching between el-
ements from two separate models. On the model transformation
side, there is significant literature on Model Transformations
by Example (MTBE) (Kappel et al. 2012; Strommer 2008), a
user-friendly approach that aims at generating transformation
rules from example of inter-model mappings. More recently,
Burgueño et al. proposed a generic neural network architec-
ture to support the automated inference of model-to-model and
model-to-text transformations (Burgueño, Cabot, Li, & Gérard
2022). Their objective is notably to limit potential implementa-
tion errors. Since views can be implemented by transformations,
we pay particular attention to these approaches. Compared to
these research efforts, we are addressing a more limited prob-

lem, computing the probability of the existence of a certain
link. This allows us to use HGNNs, a solution that showed high
performance in this specific problem.

6.4. GNNs for MDE
López & Cuadrado (López & Cuadrado 2023) focus on achiev-
ing structural realism by utilizing a deep auto-regressive model
combining a GNN and a Recurrent Neural Network (RNN).
Compared with existing generators, their evaluation demon-
strates its superior structural realism, consistency, diversity, and
scalability in generating new models. In parallel, Di Rocco et
al. (Di Rocco et al. 2021) develop and experiment with the
MORGAN tool, a GNN-based recommender system designed
to assist modelers in specifying metamodels and models. Al-
though different, these kinds of AI applications (especially the
last one) are closer to the context of our present work. The
related work shows that GNNs appear to be particularly adapted
to such scenarios where additional data must be inferred from
existing models, notably related to their structural aspects.

7. Conclusions and Future Work
In this paper, we proposed an approach for automatically in-
ferring inter-model links in the context of model views. This
approach relies on ML techniques, particularly on HGNNs. Its
objective is to support view engineers in specifying viewpoints
and corresponding views when inter-model links can be inferred
from a set of existing examples. The proposed approach intends
to lower the barrier of using ML in the context of model views.
It also facilitates collaboration with ML specialists who can help
the view engineer to improve the accuracy of the link prediction.

To this end, we refined and extended the existing VPDL
model view specification language from EMF Views to properly
integrate the automated generation and use of view-dedicated
HGNNs. In practice, we implemented our approach by com-
bining the Eclipse-based EMF Views solution with two Python
libraries, PyEcore and PyTorch Geometric, dedicated to model
handling and HGNNs, respectively. Based on this implemen-
tation, we conducted a first set of experiments that showed
promising results concerning the automated inference of inter-
model links, also reducing the number of ML code to be written
by engineers.

However, there is still room for future work regarding vari-
ous aspects of our solution. Among the different tracks to be
explored, we can notably mention the following:

– Modeling language: Our Extended VPDL and its compan-
ion files is a first version we plan to continue working on.
An immediate next step is to develop a dedicated language
for the previously presented JSON file for GNN Proper-
ties and to integrate it more smoothly with VPDL. To
this purpose, we will study the potential reuse of existing
work related to DSLs for supporting ML activities (Giner-
Miguelez et al. 2023; Rajaei et al. 2021).

– Systematically evaluating the learning capability: We
showcased the expressiveness of our language and ap-
proach by implementing a few model views with different
inter-model relations. However, additional experiments

Integrating the Support for Machine Learning of Inter-Model Relations in Model Views 11

are still required to systematically assess which matching
rules could be effectively replaced by a trained HGNN.
Moreover, we also plan to experiment with our approach
more generally in the context of the inference of matching
rules within model transformations.

– Support more variability in GNN architectures: While the
current GNN properties allow us to effectively address
the running example, more options to describe GNNs and
training processes could help with edge cases. For exam-
ple, while we support the aggregation function selection,
we do not support standard internal parameters for each
function, e. g. learning additive bias, application of lin-
ear transformation after activation layers, normalization
of output, etc.. These values can vary among different
aggregation functions.

– Improving the inference capability of the approach: HGNN
performance could be further optimized through offline
hyper-parameter tuning or by exploring alternative archi-
tectures. We may allow users to choose among threshold se-
lection strategies (e. g., based on the provided AUC_ROC
metric or adding new complementary metrics (Koyejo et
al. 2014)). In some cases, these improvements will require
further extending VPDL. For instance, we want to support
the specification of meta-paths by the user in order to guide
the discovery of complex relations.

On the evaluation aspect, our approach can benefit by incor-
porating a comprehensive analysis of each of the main HGNN
default parameters, including possible integration with other
ML automation techniques (i. e. AutoML) for hyperparameter
optimization. Another improvement for future work includes
evaluating different examples from the MDE domain, including
when these models have a higher semantic gap between them,
distinct from our running example. These new datasets will
potentially enable us to evaluate the relation between the es-
tablished metrics and the models’ size. In a different direction,
future work can also include using different ML techniques to
complement other aspects of the definition and use of Model
Views, enabling comparisons between the use of GNNs and
other potential approaches.

Acknowledgments
This work was partially funded by the AIDOaRt European
project, an ECSEL Joint Undertaking (JU) project under grant
agreement No. 101007350, and by a complementary grant from
the French region Pays de la Loire.

References
Afzal, W., Bruneliere, H., Di Ruscio, D., Sadovykh, A., Mazz-

ini, S., Cariou, E., . . . Smrz, P. (2018, September). The
MegaM@Rt2 ECSEL project: MegaModelling at Runtime
– Scalable model-based framework for continuous develop-
ment and runtime validation of complex systems. Micropro-
cessors and Microsystems, 61, 86–95. Retrieved 2023-06-
30, from https://www.sciencedirect.com/science/article/pii/
S014193311830022X doi: 10.1016/j.micpro.2018.05.010

Barriga, A., Heldal, R., Rutle, A., & Iovino, L. (2022, October).
PARMOREL: a framework for customizable model repair.
Software and Systems Modeling, 21(5), 1739–1762. Retrieved
2022-11-09, from https://doi.org/10.1007/s10270-022-01005
-0 doi: 10.1007/s10270-022-01005-0

Barriga, A., Rutle, A., & Heldal, R. (2022, February). AI-
powered model repair: an experience report—lessons learned,
challenges, and opportunities. Software and Systems Model-
ing. Retrieved 2022-03-15, from https://link.springer.com/
10.1007/s10270-022-00983-5 doi: 10.1007/s10270-022
-00983-5

Boronat, A. (2019, November). Code-First Model-Driven Engi-
neering: On the Agile Adoption of MDE Tooling. In 2019
34th IEEE/ACM International Conference on Automated Soft-
ware Engineering (ASE) (pp. 874–886). (ISSN: 2643-1572)
doi: 10.1109/ASE.2019.00086

Bruneliere, H., Burger, E., Cabot, J., & Wimmer, M. (2019,
June). A feature-based survey of model view approaches.
Software & Systems Modeling, 18(3), 1931–1952. Retrieved
2022-01-26, from http://link.springer.com/10.1007/s10270
-017-0622-9 doi: 10.1007/s10270-017-0622-9

Bruneliere, H., de Kerchove, F. M., Daniel, G., Madani, S.,
Kolovos, D., & Cabot, J. (2020, July). Scalable model views
over heterogeneous modeling technologies and resources.
Software and Systems Modeling, 19(4), 827–851. Retrieved
2022-01-11, from http://link.springer.com/10.1007/s10270
-020-00794-6 doi: 10.1007/s10270-020-00794-6

Bruneliere, H., Muttillo, V., Eramo, R., Berardinelli, L., Gómez,
A., Bagnato, A., . . . Cicchetti, A. (2022, October). AIDOaRt:
AI-augmented Automation for DevOps, a model-based frame-
work for continuous development in Cyber–Physical Systems.
Microprocessors and Microsystems, 94, 104672. Retrieved
2023-06-30, from https://www.sciencedirect.com/science/
article/pii/S0141933122002022 doi: 10.1016/j.micpro.2022
.104672

Bruneliere, H., Perez, J. G., Wimmer, M., & Cabot, J. (2015,
October). EMF Views: A View Mechanism for Integrating
Heterogeneous Models.. Retrieved 2022-01-07, from https://
hal.inria.fr/hal-01159205 doi: 10.1007/978-3-319-25264-3
_23

Bucchiarone, A., Cabot, J., Paige, R. F., & Pierantonio, A. (2020,
January). Grand challenges in model-driven engineering: an
analysis of the state of the research. Software and Systems
Modeling, 19(1), 5–13. Retrieved 2022-07-19, from https://
doi.org/10.1007/s10270-019-00773-6 doi: 10.1007/s10270
-019-00773-6

Burger, E., Henss, J., Küster, M., Kruse, S., & Happe, L. (2016,
May). View-based model-driven software development with
ModelJoin. Software & Systems Modeling, 15(2), 473–496.
Retrieved 2023-07-07, from https://doi.org/10.1007/s10270
-014-0413-5 doi: 10.1007/s10270-014-0413-5

Burgueño, L., Cabot, J., Li, S., & Gérard, S. (2022, Febru-
ary). A generic LSTM neural network architecture to in-
fer heterogeneous model transformations. Software and
Systems Modeling, 21(1), 139–156. Retrieved 2023-07-
07, from https://doi.org/10.1007/s10270-021-00893-y doi:
10.1007/s10270-021-00893-y

12 Pontes Miranda et al.

https://www.sciencedirect.com/science/article/pii/S014193311830022X
https://www.sciencedirect.com/science/article/pii/S014193311830022X
https://doi.org/10.1007/s10270-022-01005-0
https://doi.org/10.1007/s10270-022-01005-0
https://link.springer.com/10.1007/s10270-022-00983-5
https://link.springer.com/10.1007/s10270-022-00983-5
http://link.springer.com/10.1007/s10270-017-0622-9
http://link.springer.com/10.1007/s10270-017-0622-9
http://link.springer.com/10.1007/s10270-020-00794-6
http://link.springer.com/10.1007/s10270-020-00794-6
https://www.sciencedirect.com/science/article/pii/S0141933122002022
https://www.sciencedirect.com/science/article/pii/S0141933122002022
https://hal.inria.fr/hal-01159205
https://hal.inria.fr/hal-01159205
https://doi.org/10.1007/s10270-019-00773-6
https://doi.org/10.1007/s10270-019-00773-6
https://doi.org/10.1007/s10270-014-0413-5
https://doi.org/10.1007/s10270-014-0413-5
https://doi.org/10.1007/s10270-021-00893-y

Burgueño, L., Cabot, J., Wimmer, M., & Zschaler, S. (2022,
June). Guest editorial to the theme section on AI-enhanced
model-driven engineering. Software and Systems Model-
ing, 21(3), 963–965. Retrieved 2023-07-07, from https://
doi.org/10.1007/s10270-022-00988-0 doi: 10.1007/s10270
-022-00988-0

Dang, D.-H., & Cabot, J. (2015). On Automating Inference of
OCL Constraints from Counterexamples and Examples. In
V.-H. Nguyen, A.-C. Le, & V.-N. Huynh (Eds.), Knowledge
and Systems Engineering (pp. 219–231). Cham: Springer
International Publishing. doi: 10.1007/978-3-319-11680-8
_18

Dehghani, M., Kolahdouz-Rahimi, S., Tisi, M., & Tamzalit, D.
(2022, June). Facilitating the migration to the microservice ar-
chitecture via model-driven reverse engineering and reinforce-
ment learning. Software and Systems Modeling, 21(3), 1115–
1133. Retrieved 2022-11-09, from https://doi.org/10.1007/
s10270-022-00977-3 doi: 10.1007/s10270-022-00977-3

Di Rocco, J., Di Sipio, C., Di Ruscio, D., & Nguyen, P. T.
(2021, October). A GNN-based Recommender System to
Assist the Specification of Metamodels and Models. In 2021
ACM/IEEE 24th International Conference on Model Driven
Engineering Languages and Systems (MODELS) (pp. 70–81).
doi: 10.1109/MODELS50736.2021.00016

Fawcett, T. (2006, June). An introduction to ROC analysis. Pat-
tern Recognition Letters, 27(8), 861–874. Retrieved 2023-06-
28, from https://www.sciencedirect.com/science/article/pii/
S016786550500303X doi: 10.1016/j.patrec.2005.10.010

Giner-Miguelez, J., Gómez, A., & Cabot, J. (2023, August).
A domain-specific language for describing machine learn-
ing datasets. Journal of Computer Languages, 76, 101209.
Retrieved 2023-07-07, from https://www.sciencedirect.com/
science/article/pii/S2590118423000199 doi: 10.1016/j.cola
.2023.101209

Groner, R., Bellmann, P., Höppner, S., Thiam, P., Schwenker,
F., & Tichy, M. (2023, April). Predicting the performance
of atl model transformations. In Proceedings of the 2023
acm/spec international conference on performance engineer-
ing (p. 77–89). New York, NY, USA: Association for Com-
puting Machinery. Retrieved from https://dl.acm.org/doi/
10.1145/3578244.3583727 doi: 10.1145/3578244.3583727

Guerra, E., de Lara, J., Kolovos, D. S., & Paige, R. F. (2010).
Inter-modelling: From theory to practice. In D. C. Petriu,
N. Rouquette, & y. Haugen (Eds.), Model driven engineering
languages and systems (p. 376–391). Berlin, Heidelberg:
Springer. doi: 10.1007/978-3-642-16145-2_26

Harper, F. M., & Konstan, J. A. (2016, January). The Movie-
Lens Datasets: History and Context. ACM Transactions on
Interactive Intelligent Systems, 5(4), 1–19. Retrieved 2023-
06-15, from https://dl.acm.org/doi/10.1145/2827872 doi:
10.1145/2827872

Hernández López, J. A., Durá, C., & Cuadrado, J. S. (2023,
October). Word embeddings for model-driven engineer-
ing. In 2023 acm/ieee 26th international conference on
model driven engineering languages and systems (models)
(p. 151–161). Retrieved from https://ieeexplore.ieee.org/
document/10344175?denied= doi: 10.1109/MODELS58315

.2023.00036
Iovino, L., Barriga Rodriguez, A., Rutle, A., & Heldal, R.

(2020). Model Repair with Quality-Based Reinforcement
Learning. 19. Retrieved 2022-07-19, from https://hvlopen
.brage.unit.no/hvlopen-xmlui/handle/11250/2737208 (Ac-
cepted: 2021-04-12T07:41:21Z Publisher: AITO — Asso-
ciation Internationale pour les Technologies Objets) doi:
10.5381/JOT.2020.19.2.A17

Kappel, G., Langer, P., Retschitzegger, W., Schwinger, W., &
Wimmer, M. (2012). Model Transformation By-Example: A
Survey of the First Wave. In A. Düsterhöft, M. Klettke, & K.-
D. Schewe (Eds.), Conceptual Modelling and Its Theoretical
Foundations: Essays Dedicated to Bernhard Thalheim on
the Occasion of His 60th Birthday (pp. 197–215). Berlin,
Heidelberg: Springer. Retrieved 2023-07-07, from https://
doi.org/10.1007/978-3-642-28279-9_15 doi: 10.1007/978-3
-642-28279-9_15

Kipf, T. N., & Welling, M. (2017). Semi-Supervised Classifi-
cation with Graph Convolutional Networks. In International
Conference on Learning Representations. Retrieved from
https://openreview.net/forum?id=SJU4ayYgl

Koyejo, O. O., Natarajan, N., Ravikumar, P. K., &
Dhillon, I. S. (2014). Consistent Binary Classi-
fication with Generalized Performance Metrics. In
Advances in Neural Information Processing Systems
(Vol. 27). Curran Associates, Inc. Retrieved 2023-07-07,
from https://proceedings.neurips.cc/paper_files/paper/2014/
hash/30c8e1ca872524fbf7ea5c519ca397ee-Abstract.html

Kretschmer, R., Khelladi, D. E., & Egyed, A. (2018, May).
An automated and instant discovery of concrete repairs for
model inconsistencies. In Proceedings of the 40th Inter-
national Conference on Software Engineering: Compan-
ion Proceeedings (pp. 298–299). New York, NY, USA:
Association for Computing Machinery. Retrieved 2022-
07-19, from https://doi.org/10.1145/3183440.3194979 doi:
10.1145/3183440.3194979

Liben-Nowell, D., & Kleinberg, J. (2003, November). The
link prediction problem for social networks. In Proceedings
of the twelfth international conference on Information and
knowledge management (pp. 556–559). New York, NY, USA:
Association for Computing Machinery. Retrieved 2023-06-
23, from https://dl.acm.org/doi/10.1145/956863.956972 doi:
10.1145/956863.956972

López, J. A. H., & Cuadrado, J. S. (2023, April). Generating
Structurally Realistic Models With Deep Autoregressive Net-
works. IEEE Transactions on Software Engineering, 49(4),
2661–2676. (Conference Name: IEEE Transactions on Soft-
ware Engineering) doi: 10.1109/TSE.2022.3228630

Lü, L., Medo, M., Yeung, C. H., Zhang, Y.-C., Zhang, Z.-
K., & Zhou, T. (2012, October). Recommender sys-
tems. Physics Reports, 519(1), 1–49. Retrieved 2023-06-
23, from https://www.sciencedirect.com/science/article/pii/
S0370157312000828 doi: 10.1016/j.physrep.2012.02.006

Macedo, N., Jorge, T., & Cunha, A. (2017, July). A Feature-
Based Classification of Model Repair Approaches. IEEE
Transactions on Software Engineering, 43(7), 615–640. (Con-
ference Name: IEEE Transactions on Software Engineering)

Integrating the Support for Machine Learning of Inter-Model Relations in Model Views 13

https://doi.org/10.1007/s10270-022-00988-0
https://doi.org/10.1007/s10270-022-00988-0
https://doi.org/10.1007/s10270-022-00977-3
https://doi.org/10.1007/s10270-022-00977-3
https://www.sciencedirect.com/science/article/pii/S016786550500303X
https://www.sciencedirect.com/science/article/pii/S016786550500303X
https://www.sciencedirect.com/science/article/pii/S2590118423000199
https://www.sciencedirect.com/science/article/pii/S2590118423000199
https://dl.acm.org/doi/10.1145/3578244.3583727
https://dl.acm.org/doi/10.1145/3578244.3583727
https://dl.acm.org/doi/10.1145/2827872
https://ieeexplore.ieee.org/document/10344175?denied=
https://ieeexplore.ieee.org/document/10344175?denied=
https://hvlopen.brage.unit.no/hvlopen-xmlui/handle/11250/2737208
https://hvlopen.brage.unit.no/hvlopen-xmlui/handle/11250/2737208
https://doi.org/10.1007/978-3-642-28279-9_15
https://doi.org/10.1007/978-3-642-28279-9_15
https://openreview.net/forum?id=SJU4ayYgl
https://proceedings.neurips.cc/paper_files/paper/2014/hash/30c8e1ca872524fbf7ea5c519ca397ee-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2014/hash/30c8e1ca872524fbf7ea5c519ca397ee-Abstract.html
https://doi.org/10.1145/3183440.3194979
https://dl.acm.org/doi/10.1145/956863.956972
https://www.sciencedirect.com/science/article/pii/S0370157312000828
https://www.sciencedirect.com/science/article/pii/S0370157312000828

doi: 10.1109/TSE.2016.2620145
Nassar, N., Radke, H., & Arendt, T. (2017). Rule-Based Repair

of EMF Models: An Automated Interactive Approach. In
E. Guerra & M. van den Brand (Eds.), Theory and Practice
of Model Transformation (pp. 171–181). Cham: Springer
International Publishing. doi: 10.1007/978-3-319-61473-1
_12

Perozzi, B., Al-Rfou, R., & Skiena, S. (2014, August). Deep-
Walk: online learning of social representations. In Proceed-
ings of the 20th ACM SIGKDD international conference
on Knowledge discovery and data mining (pp. 701–710).
New York, NY, USA: Association for Computing Machinery.
Retrieved 2023-06-23, from https://dl.acm.org/doi/10.1145/
2623330.2623732 doi: 10.1145/2623330.2623732

Pontes Miranda, J., Bruneliere, H., Tisi, M., & Sunyé, G. (2024,
April). Towards the Integration Support for Machine Learn-
ing of Inter-Model Relations in Model Views. In The 39th
ACM/SIGAPP Symposium on Applied Computing (SAC ’24).
Avila, Spain. doi: 10.1145/3605098.363614

Rajaei, Z., Kolahdouz-Rahimi, S., Tisi, M., & Jouault, F. (2021,
June). A DSL for Encoding Models for Graph-Learning
Processes.. Retrieved 2023-07-07, from https://hal.science/
hal-03252919

Reimers, N., & Gurevych, I. (2019, November). Sentence-
BERT: Sentence Embeddings using Siamese BERT-
Networks. In Proceedings of the 2019 Conference on Empir-
ical Methods in Natural Language Processing and the 9th
International Joint Conference on Natural Language Pro-
cessing (EMNLP-IJCNLP) (pp. 3982–3992). Hong Kong,
China: Association for Computational Linguistics. Retrieved
2023-06-29, from https://aclanthology.org/D19-1410 doi:
10.18653/v1/D19-1410

Scarselli, F., Gori, M., Tsoi, A. C., Hagenbuchner, M., & Mon-
fardini, G. (2009, January). The Graph Neural Network
Model. IEEE Transactions on Neural Networks, 20(1), 61–80.
(Conference Name: IEEE Transactions on Neural Networks)
doi: 10.1109/TNN.2008.2005605

Shafiq, S., Mashkoor, A., Mayr-Dorn, C., & Egyed, A. (2021).
A Literature Review of Using Machine Learning in Software
Development Life Cycle Stages. IEEE Access, 9, 140896–
140920. (Conference Name: IEEE Access) doi: 10.1109/
ACCESS.2021.3119746

Shi, C., Wang, X., & Yu, P. S. (2022a). Introduction.
In C. Shi, X. Wang, & P. S. Yu (Eds.), Heterogeneous
Graph Representation Learning and Applications (pp. 1–
8). Singapore: Springer. Retrieved 2023-06-22, from
https://doi.org/10.1007/978-981-16-6166-2_1 doi: 10.1007/
978-981-16-6166-2_1

Shi, C., Wang, X., & Yu, P. S. (2022b). Platforms and
Practice of Heterogeneous Graph Representation Learn-
ing. In C. Shi, X. Wang, & P. S. Yu (Eds.), Heteroge-
neous Graph Representation Learning and Applications (pp.
285–310). Singapore: Springer. Retrieved 2023-06-27,
from https://doi.org/10.1007/978-981-16-6166-2_10 doi:
10.1007/978-981-16-6166-2_10

Strommer, M. (2008). Model Transformation By-Example (Doc-
toral dissertation, Vienna University of Technology, Vienna).

Retrieved 2023-07-07, from https://publik.tuwien.ac.at/files/
PubDat_166165.pdf

Tang, X., Wang, Z., Qi, J., & Li, Z. (2019). Improving code
generation from descriptive text by combining deep learning
and syntax rules. Proceedings of the International Conference
on Software Engineering and Knowledge Engineering, SEKE,
2019-July, 385–390. (ISBN: 1891706489) doi: 10.18293/
SEKE2019-170

Weyssow, M., Sahraoui, H., & Syriani, E. (2022, June).
Recommending metamodel concepts during modeling ac-
tivities with pre-trained language models. Software and
Systems Modeling, 21(3), 1071–1089. Retrieved 2023-02-
07, from https://doi.org/10.1007/s10270-022-00975-5 doi:
10.1007/s10270-022-00975-5

About the authors
James Pontes Miranda is a PhD student in the NaoMod Team at
IMT Atlantique, LS2N (CNRS) in Nantes, France. His current
research focus is on the use and adaptation of Machine Learning
techniques in the context of model views and their concrete
applications within the AIDOaRt project. You can contact the
author at james.pontes-miranda@imt-atlantique.fr.

Hugo Bruneliere is a senior researcher in the NaoMod Team at
IMT Atlantique, LS2N (CNRS) in Nantes, France. His research
interest is in designing and adapting model-based techniques
and architectures to address software and systems engineering
issues. His works have been recently applied in the context of
complex Cyber Physical Systems or in the area of Cloud/Fog
Computing (among others). He has also a long-term experience
on leading research activities and working in the context of
large collaborative projects with both industrial and academic
partners (including the AIDOaRt project). You can contact the
author at hugo.bruneliere@imt-atlantique.fr.

Massimo Tisi Massimo Tisi is an associate professor in the De-
partment of Computer Science of the Institut Mines-Telecom
Atlantique (IMT Atlantique, Nantes, France), and deputy leader
of the NaoMod team, LS2N (UMR CNRS 6004). His research
interests revolve around software and system modeling, do-
main specific languages, and applied logic. He contributes to
the design of the ATL model-transformation language and in-
vestigates the application of deductive verification techniques
to model-driven engineering. You can contact the author at
massimo.tisi@imt-atlantique.fr.

Gerson Sunyé is an associate professor at the University of
Nantes (France) in the domain of software engineering and
distributed architectures and the scientific leader of the NaoMod
team. He received the PhD degree in Computer Science from the
University of Paris 6 in 1999 and the Habilitation from Nantes
University in 2015. He has 4 years of industry experience in
software development. He is the author of several papers in
international conferences and journals in software engineering.
His research interests include software testing, design patterns
and large-scale distributed systems. You can contact the author
at gerson.sunye@ls2n.fr.

14 Pontes Miranda et al.

https://dl.acm.org/doi/10.1145/2623330.2623732
https://dl.acm.org/doi/10.1145/2623330.2623732
https://hal.science/hal-03252919
https://hal.science/hal-03252919
https://aclanthology.org/D19-1410
https://doi.org/10.1007/978-981-16-6166-2_1
https://doi.org/10.1007/978-981-16-6166-2_10
https://publik.tuwien.ac.at/files/PubDat_166165.pdf
https://publik.tuwien.ac.at/files/PubDat_166165.pdf
https://doi.org/10.1007/s10270-022-00975-5
mailto:james.pontes-miranda@imt-atlantique.fr?subject=Your paper "Integrating the Support for Machine Learning of Inter-Model Relations in Model Views"
mailto:hugo.bruneliere@imt-atlantique.fr?subject=Your paper "Integrating the Support for Machine Learning of Inter-Model Relations in Model Views"
mailto:massimo.tisi@imt-atlantique.fr?subject=Your paper "Integrating the Support for Machine Learning of Inter-Model Relations in Model Views"
mailto:gerson.sunye@ls2n.fr?subject=Your paper "Integrating the Support for Machine Learning of Inter-Model Relations in Model Views"

