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Abstract: We consider basic diffeological structures that can be highlighted naturally within the
theory of the Vinogradov spectral sequence and equation manifolds. These interrelated features are
presented in a rigorous and accurate way, that complements some heuristic formulations appearing
in very recent literature. We also propose a refined definition of the Vinogradov spectral sequence
using diffeologies.
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1. Introduction

Let us agree, for the purpose of this introduction, that a full equation manifold is defined
as the set EM(∞) of all sequences of real numbers

(x1, . . . , xn, u1, . . . , um, u1
x1

, u1
x2

. . . , . . . , ui
xi1

xi2 ...xik
, . . .)

satisfying a given differential equation and all its differential consequences. In standard
cases, we would say that EM(∞) is an “in finite-dimensional manifold”. For instance,
we could imagine that if we are considering the heat equation, EM(∞) would be an in
finite-dimensional hyperplane. The de Rham complex on a full equation manifold EM(∞)

can be bigraded, exploiting the fact that this space can be equipped with a (flat) Ehresmann
connection. This bigrading gives rise to the variational bicomplex on EM(∞). The spectral
sequence associated with this bicomplex, obtained from filtration by vertical degree, is the
Vinogradov spectral sequence. The importance of this structure for the study of geometric
aspects of differential equations is highlighted in [1]. In addition, we cite the very relevant
works [2–4] by Vinogradov, the textbook [5] edited by Krasil’shchik and Vinogradov, and
we direct the reader to [1,5] for precise references to the work of some the “pioneers” such
as Olver, Tulczyjew, Tsujishita, and Takens. We very much regret that the second reference
listed in the bibliography of [1] has never appeared in print, as it would certainly be the
standard treatise on the subject.

Now, the geometric study of equation manifolds is generally performed by restricting
the domain of geometric objects to a smooth locus, that is, to a smooth submanifold of
infinite jet space that is contained in the full equation manifold. The fact that this viewpoint
is interesting is due to the (generally) non-triviality of the associated variational bicomplex;
see for instance [6,7]. We question this procedure in the present work in view of [8,9],
in which the notion of diffeology is highlighted as a necessary tool for the study of the
geometry of jet spaces and related objects, and following our own papers [10,11]: in [10],
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we propose a Frölicher structure for diffieties (a diffiety is a structure more general than
a full equation manifold. It appears prominently in the works of A. Vinogradov; see for
instance [4,5]), and we highlight a sufficient condition that allows us to build the C-spectral
sequence (in this work, call we call this sequence the “Vinogradov spectral sequence”
following [2,3], because of the use of the notation C in the context of Frölicher spaces);
in [11], we introduce a hierarchy of differential equations posed on equation manifolds.

We chose to use diffeological spaces (and Frölicher spaces) in the current context
primarily because of technical considerations. We wished to avoid introducing a new
framework unnecessarily, but it appears to us that, given the current state of knowledge,
diffeologies indeed provide a satisfactory structure for (infinite-dimensional) differential
geometry, especially in the presence of complexities such as singularities (in the case of
equation manifolds) or the absence of global atlases.

Our exposition is organized as follows: We give a short presentation of full equation
manifolds of partial differential equations, as commonly defined in the existing literature
in Section 2, and we present a short introduction to diffeologies and Frölicher spaces in
Section 3. Notably, in this section, we establish a new result on the comparison of two natu-
ral diffeologies on a space of functions (see Theorem 1). Subsequently, in Sections 4 and 5,
we explore the interplay between equation manifolds and diffeologies, we describe the
diffeological content of an equation manifold, and we propose a diffeological Vinogradov
spectral sequence. The spectral sequence presented herein is more general than the one
appearing in [10]. We present our conclusions and outlook in Section 6.

2. On Equation Manifolds and Partial Differential Equations

Let us first focus on jet spaces. We consider a finite-dimensional fiber bundle E with
typical fiber F (with dim(F) = n) over a smooth manifold M of dimension m, which can be
non-compact. We also consider a generic local trivialization φ : U × F → E of E over an
open subset U of M. The manifold M is the space of independent variables, and the typical
fiber is the space of dependent variables.

Let us consider local coordinates xi, 1 ≤ i ≤ n on M and uα, 1 ≤ α ≤ m on F. Assume
that s1(xi) = (xi, sα

1(xi)) and s2(xi) = (xi, sα
2(xi)) are two local sections of the bundle

E → M defined about a point p = (xi) in M. We say that s1 and s2 agree to order k at p ∈ M
if s1, s2 and all the partial derivatives of the sections s1 and s2, up to order k, agree at p. This
notion determines a coordinate-independent equivalence relation on local sections of E, see
for instance [12] or [13]. We let jk(s)(p) represent the equivalence class of the section s at p;
we call this equivalence class the k-jet of s at p.

Definition 1. The k-order jet bundle of E is the space

Jk(E) =
⋃

p∈M
Jk(p) ,

in which Jk(p) denotes the set of all the k-jets jk(s)(p) of local sections s at p.

The jet bundle Jk(E) possesses a natural manifold structure; it fibers over Jl(E), l < k,
and also over M. Local coordinates on Jk(E) are

(xi, uα
0 , uα

i1 , uα
i1i2 , . . . , uα

i1 ...ik ) ,

in which

uα
0(jk(s)(p)) = sα(p) , uα

i (jk(s)(p)) =
∂sα

∂xi
(p) , uα

i1i2(jk(s)(p)) =
∂2sα

∂xi1 ∂xi2
(p) ,

and so forth, where jk(s)(p) ∈ JkE and (xi) 7→ (xi, sα(xi)) is any local section in the
equivalence class jk(s)(p). Simply put, we think of the variables x1, . . . , xn, u1, . . . , um,
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and partial derivatives uα
i1,...ij

(up to the kth order) as adapted coordinates on Jk(E). In

these coordinates, the projection map πk
M : Jk(E) → M (the “source map”) given by

(xi, uα
0 , uα

i1
, . . . , uα

i1 ...ik
) 7→ (xi) factors through the projection map πk : Jk(E) → E; on a local

generic trivialization, φ : U × F → E, πk = πk
M × βk where βk is the local target map. The

projections πk
l : Jk(E) → Jl(E), l < k are defined in obvious ways.

We can be a little more precise: for e ∈ E, (πk)−1(e) is a vector space modeled on the
direct sum

k⊕
i=1

Li(Rm,Rn) ,

where Li(Rm,Rn) is the space of i-linear symmetric mappings on Rm with values in Rn.
Therefore, Jk(E) can be understood as:

• A finite-dimensional vector bundle over E with typical fiber
⊕k

i=1 Li(Rm,Rn).
• A finite-dimensional fiber bundle over M with typical fiber

F ×
(

k⊕
i=1

Li(Rm,Rn)

)
.

An extended exposition of the properties of k-jets can be found in [12–14].
The infinite jet bundle π∞

M : J∞(E) → M is the inverse limit of the sequence of
jet bundles

. . . → Jk+1(E) → Jk(E) → . . . → J0(E) = E → M (1)

under the standard projections πk
l : Jk(E) → Jl(E), k > l and πk

M : Jk(E) → M. The section
of π∞

M corresponding to the family of compatible sections {jk(s)} is denoted by

j∞(s) : M → J∞(E) .

A kth-order partial differential equation (hereafter understood as either a scalar equa-
tion or a system) ∆ = 0, in which ∆ depends on independent variables x1, . . . , xn, dependent
variables u1, . . . , um, and a finite number of partial derivatives of uα with respect to the
variables xj, clearly determines a subset of an appropriate jet bundle Jk(E), in which E → M
is an (n + m)-dimensional fiber bundle over an n-dimensional manifold M. In this paper,
we define the equation manifold of ∆ = 0 as EMk = ∆−1(0) ⊂ Jk(E) (or EMk

∆, if there is
risk of confusion). In spite of its name, the set EMk

∆ may not be a bona fide manifold,
that is, it may carry singularities or hidden constraints (indeed, a subtler definition of
equation manifolds would take into account the symmetries of the theory (for example, the
diffeomorphism invariance of Einstein equations), but we will not consider this case in this
article). In order to circumvent this problem, almost all authors restricted their investigation
to a smooth submanifold (in the classical sense) of Jk(E) contained in EM∆ and, in this
section, we will follow their lead. Such a smooth submanifold of Jk(E), set-theoreticaly
included in EM∆, will be called in this paper a smooth locus. The restriction to a smooth
locus is actually the standard way to deal with differential geometric structures on EM∆.
It is very interesting to note that this viewpoint was already well established by the end
of the XIXth century, as Goursat’s book on second order partial differential equations
(see, e.g., [15] [Chp. II]) testifies.

Intrinsic definitions of jet bundles and equation manifolds appear for instance in [5];
see also our paper [11] for a brief review. As we just stated, we assume here that
EM(k) ⊂ Jk(E) is a submanifold of Jk(E) such that the map

πk |EM(k) : EM(k) → M

is also a bundle. Then, a local section s of π is a solution of the system of PDEs ∆ = 0 if and
only if the graph of the section jk(s) is contained in EM(k). The set
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EM(k+n) ={
jk+n(s)(p) | the graph of jk(s) is tangent to EM(k) with order ≥ n at jk(s)(p) ∈ EM(k)

}
is the n-th prolongation of EM(k).

Let us go back to the infinite jet bundle J∞(E). We say that a function f : J∞(E) → R
is smooth if it factors through a finite-order jet bundle, that is, if f = fk ◦ π∞

k for some
smooth function fk : Jk(E) → R, in which π∞

k : J∞(E) → Jk(E) denotes the canonical
projection from J∞E onto Jk(E). A natural class of differential forms on J∞(E) is defined
in an analogous way. With respect to tangent vectors, we note that the sequence of finite-
dimensional bundle projections (1) allows us to form the sequence of tangent spaces

. . . → TJk+1(E) → TJk(E) → . . . → TE → TM . (2)

The inverse limit of this sequence is the tangent bundle TJ∞(E) . There is a unique
distribution C on J∞(E), such that, for any point m ∈ M and any local section s of π, we have, on
a neighbourhood of m,

Cj∞(s)(m) = j∞(s)∗(Tm M) . (3)

This distribution has rank equal to dim(M) and is called the Cartan distribution on
J∞(E).

Taking the n-th prolongation of EM(k) and restricting the projections πk+n
k+n−1 appro-

priately, we obtain the sequence of maps

. . . → EM(k+n) πk+n
k+n−1−−−−→ EM(k+n−1) → . . . → EM(k) (4)

which (under natural conditions of regularity, assuming that all prolongations S(k+n) are
submanifolds of Jk+n(E), which implies that all projections in (4) are bundle mappings;
see [14]), we obtain the infinite prolongation EM(∞) of the given PDE system. We call EM(∞)

the full equation manifold of the system.
The sequence (4) allows us to form a corresponding sequence of tangent spaces as

in (2). Its inverse limit defines TEM(∞), and we define differential forms on EM(∞) via
pull-back by the canonical inclusion ι : EM(∞) ↪→ J∞E.

The restriction of the Cartan distribution C to EM(∞) will be denoted by CEM(∞) and

it will be called the Cartan distribution on EM(∞). A crucial remark is that it satisfies the
integrability condition [

CEM(∞) , CEM(∞)

]
⊂ CEM(∞) . (5)

3. A Crash Introduction to Diffeological and Frölicher Spaces

Geometry on spaces extending beyond conventional manifolds requires specialized
treatment, as noted, for instance, in [16] [Preface], and as sketched out in the preceding
section. We believe that, for this purpose, diffeological spaces (or, the more restricted frame-
work of Frölicher spaces used in [17] in a mathematical physics context; see also [18–20])
can serve as a natural setting, particularly for the geometric study of differential equations.

We define diffeological and Frölicher spaces following [16,21–23]. To be succinct, our
presentation follows, roughly, the recent review [24]. Other relevant references for our
specific needs are [8,9,20,25–32].

Definition 2. Let X be a non-empty set. A p-parametrization on X is a map from an open subset
of Rp to X. A diffeology on X is a set P of parametrizations on X such that

- For all p ∈ N, any constant map Rp → X is in P .
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- Let { fi : Oi → X}i∈I be a family of compatible maps that extend to a map f :
⋃

i∈I Oi → X.
If { fi : Oi → X}i∈I ⊂ P , then f ∈ P .

- Let f ∈ P be a p-parametrization with domain O, O′ ⊂ Rq an open set, and g : O′ → O a
smooth map. Then, f ◦ g ∈ P .

If (X,P) and (X′,P ′) are diffeological spaces, a map f : X → X′ is smooth if and only
if f ◦ P ⊂ P ′.

Definition 3. A Frölicher space is a triple (X,F , C) such that C is a set of paths R → X, F is a
set of functions from X to R, and these sets satisfy:

- a function f : X → R is in F if and only if, for any c ∈ C, f ◦ c ∈ C∞(R,R);
- a path c : R → X is in C if and only if, for any f ∈ F , f ◦ c ∈ C∞(R,R).

If (X,F , C) and (X′,F ′, C ′) are Frölicher spaces, a map f : X → X′ is smooth if and
only if F ′ ◦ f ◦ C ⊂ C∞(R,R).

For example, if X is a finite-dimensional smooth manifold, we can take F as the set
of all smooth maps from X to R, and C the set of all smooth paths from R to X. If X is
paracompact, it can be proven that indeed (X, C∞(X,R), C∞(R, X)) is a Frölicher structure
on X, and that the smooth (in the standard sense) maps between two such manifolds are
precisely the smooth maps in the Frölicher sense. Another interesting class of examples
is provided by Fréchet spaces (see [19]). A general construction of Frölicher structures is
the following:
Any family of maps Fg from X to R generates a Frölicher structure (X,F , C) by setting

- C = {c : R → X such that Fg ◦ c ⊂ C∞(R,R)};
- F = { f : X → R such that f ◦ C ⊂ C∞(R,R)}.

A Frölicher space (X,F , C) carries a natural topology, namely, the pull-back topol-
ogy of R via F . It is known (see [22]) that in the finite-dimensional manifold exam-
ple just discussed, the underlying topology of the Frölicher structure is the same as the
manifold topology.

The category of Frölicher spaces, along with smooth maps between them, exhibits
closure under various crucial set-theoretical operations. Notably, these operations include
products, quotients, inverse/direct limits, and subsets, as detailed in [16]. Furthermore, it
is worth noting that the category of smooth manifolds and smooth maps constitutes a full
subcategory of the category of Frölicher spaces. In turn, Frölicher spaces themselves are a
subcategory of the category of diffeological spaces.

Let us discuss a little more the relation between Frölicher spaces and diffeologies. If
(X,F , C) is a Frölicher space, we define a natural diffeology on X following [18,20]; we
consider the family of maps

P∞(F ) = ⨿
p∈N

{ f : D( f ) ⊂ Rp → X; D( f ) open and F ◦ f ∈ C∞(D( f ),R)} , (6)

in which C∞(D( f ),R) indicates the set of functions from D( f ) to R that are smooth in the
usual sense. If X is a differentiable manifold, this diffeology is Souriau’s nebula diffeology
(see [23]).

The following important proposition, taken from [21,23], shows one way in which the
category of diffeological spaces is more “convenient” that the category of finite-dimensional
smooth manifolds.

Proposition 1. Let (X,P) and (X′,P ′) be two diffeological spaces. There exists a diffeology
P × P ′ on X × X′ made of plots g : O → X × X′ that decompose as g = f × f ′, where
f : O → X ∈ P and f ′ : O → X′ ∈ P ′. We call it the product diffeology. This construction
extends to infinite (maybe not countable) products.
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This proposition applied to Frölicher spaces yields the following result (compare
with [22]):

Proposition 2. Let (X,F , C) and (X′,F ′, C ′) be two Frölicher spaces equipped with their natural
diffeologies P and P ′. There is a natural Frölicher space structure on X × X′ whose contours
C × C ′ are precisely the 1-plots of P ×P ′.

We can also state the above result for infinite products; we simply take Cartesian
products of the plots, or of the contours.

Now, we let (X,P) be a diffeological space, X′ be a set, and f : X → X′ be a map.
The push-forward diffeology f∗(P), is the coarsest diffeology (i.e., minimal for inclusion)
among all the diffeologies on X′ which contains f ◦ P , that is, for which f is smooth. A
smooth map f : (X,P) → (X′,P ′) between two diffeological spaces is called a subduction
if it is surjective and f∗(P) = P ′. Conversely, if (X′,P ′) is a diffeological space, X is a set,
and f : X → X′, the pull-back diffeology f ∗(P ′) is the diffeology on X which is maximal
for inclusion, for which f is smooth. These definitions allow us to consider quotients
following [23] and [21] [p. 27].

Proposition 3. Let (X,P) be a diffeological space and R an equivalence relation on X. There is a
natural diffeology on X/R, denoted by P/R, defined as the push-forward diffeology on X/R that
is induced by the quotient projection X → X/R.

Given a subset X0 ⊂ X, where X is a Frölicher space or a diffeological space, we can
equip X0 with structures induced by X:

1. If X is equipped with a diffeology P , we define a diffeology P0 on X0 (the subset or
trace diffeology; see [21,23]) by setting

P0 = {p ∈ P : The image of p is a subset of X0} .

2. If (X,F , C) is a Frölicher space, we take as a generating set of maps Fg on X0 the
restrictions of the maps f ∈ F . In this case, the contours (respectively, the induced
diffeology) on X0 are the contours (respectively, the plots) on X whose images are
subsets of X0.

Our last general construction is the functional diffeology. Its existence implies the
crucial fact that the category of diffeological spaces is Cartesian closed. Our discussion
follows [21].

Let (X,P) and (X′,P ′) be diffeological spaces and let S ⊂ C∞(X, X′) be a set of
smooth maps. The functional diffeology on S is the diffeology PS made of plots

ρ : D(ρ) ⊂ Rk → S

such that, for each p ∈ P , the maps Φρ,p : (x, y) ∈ D(p)× D(ρ) 7→ ρ(y)(x) ∈ X′ are plots
of P ′. We have (see [21] [Chapter 1]):

Proposition 4.

1. Let X, Y, Z be diffeological spaces. Then,

C∞(X × Y, Z) = C∞(X, C∞(Y, Z)) = C∞(Y, C∞(X, Z))

as diffeological spaces equipped with functional diffeologies.
2. The composition of smooth maps is smooth for functional diffeologies, and the functional

diffeology on C∞(X, Y) is the largest diffeology for which the evaluation map

ev : X × C∞(X, Y) → Y



Symmetry 2024, 16, 192 7 of 14

is smooth.

Now, we discuss “fiber bundles” within the broader context of diffeologies. To begin,
we note that, for a given algebraic structure, we can define a corresponding compatible
diffeological (or Frölicher) structure. For instance, as outlined in [21] [pp. 66–68], if R is
equipped with its canonical diffeology (or Frölicher structure), a diffeological (respectively,
Frölicher) R-vector space is an R-vector space for which addition and scalar multiplication
are smooth. This observation is further discussed in [19].

In the realm of finite-dimensional smooth manifolds, classical fiber bundles are defined
by the following elements:

• a smooth manifold E called total space.
• a smooth manifold X called base space.
• a smooth submersion π : E → X called the fiber bundle projection.
• a smooth manifold F called the typical fiber. F satisfies the condition: ∀x ∈ X, π−1(x)

is a smooth submanifold of E diffeomorphic to F.
• a smooth atlas on X with domains U ⊂ X, such that π−1(U) is an open submanifold of

E diffeomorphic to U × F. These domains U constitute a system of local trivializations
for the fiber bundle.

Consequently, a smooth fiber bundle is determined by the quadruple (E, X, F, π); the
definitions of π and X allow us to identify systems of local trivializations. For brevity, a
fiber bundle is often denoted by the projection map π : E → X.

Now, there exist diffeological spaces which carry no atlas, so if we wish to generalize
the notion of a fiber bundle, the condition of having an atlas, as in the last item above, is
not a priori necessary. We mention two structures that have appeared in the literature: the
notion of a quantum structure (a generalization of a principal fiber bundle) (see [23]), and
the notion of a vector pseudo-bundle (see [30]). The common trend (see [23,30–32]) is to
describe fibered objects by means of a total diffeological space E, a diffeological space X,
and a canonical smooth projection π : E → X such that π−1(x), x ∈ X, is endowed with a
(smooth) algebraic structure, without assuming the existence of local trivializations.

Definition 4. Let E and X be two diffeological spaces and let π : E → X be a smooth surjective
map. Then, (E, π, X) is a diffeological fiber pseudo-bundle if and only if π is a subduction.

We do not assume that there exists a typical fiber, in agreement with Pervova’s diffeo-
logical vector pseudo-bundles.

Definition 5. Let π : E → X be a diffeological fiber pseudo-bundle and let K be a diffeological
field. We set

E(2) = ⨿
x∈X

{(u, v) ∈ E2 | (u, v) ∈ π−1(x)} ,

and we equip it with the pull-back diffeology of the canonical map E(2) → E2. Then, π : E → X is
a diffeological K-vector pseudo-bundle if there exist the following :

• a smooth fiberwise map · : K× E → E;
• a smooth fiberwise map + : E(2) → E;

such that ∀x ∈ X, (π−1(x),+, ·) is a diffeological K-vector space.

Now we state a new property which will be of importance in the sequel. We need
to recall the notion of weak topology on the space Γ∞(X, E) of smooth sections of a vector
bundle E over a finite-dimensional manifold X. We assume that E is locally trivializable
with a typical fiber being a Fréchet space, and that X is equipped with a Riemannian metric.
The weak topology is defined via a countable covering of X by a family (Ki) of compact
subsets of X, which are assumed to be contained in the domains of local trivializations of
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E. It depends neither on the choice of family (Ki) nor on the underlying trivialization. We
define seminorms

p(s) = sup
x∈K

sup
(vα)∈Bα(TxX)

p′(Dαs(x)(vα)) ,

where p′ is a continuous semi-norm on Ex, α is a multi-index, vα ∈ (TxX)|α|, and
Bα(TxX) =

{
vα ∈ (TxX)|α| : ||vα|| ≤ 1

}
. Hereafter, when we mention “differentiability

with respect to the weak topology”, we mean Fréchet differentiability measured with the
help of these semi-norms p. This Fréchet topology is, roughly speaking, the topology of
uniform convergence on compact subsets K of X of derivatives at any order.

Theorem 1. Let E be a vector bundle over a finite-dimensional (maybe non-compact) manifold X.
Assume that E is locally trivializable and with a typical fiber being a Fréchet vector space V. Let
Γ∞(X, E) ⊂ C∞(X, E) be the set of smooth sections of E. Then, the nebulae diffeology on Γ∞(X, E)
coincides with the functional diffeology.

The functional diffeology on Γ∞(X, E) is precisely the subset diffeology on Γ∞(X, E)
induced by pull-back through the set-theoretic inclusion Γ∞(X, E) ⊂ C∞(X, E) of the
functional diffeology of C∞(X, E) (see [24]); the nebulae diffeology that we consider here is
P∞(Γ∞(X, E)), in which Γ∞(X, E) is considered as a Fréchet diffeological space (in fact, a
Fréchet manifold).

Proof. Let us fix n = dimX. For the sake of clarity, let us note by PF the functional diffeology
on Γ∞(X, E) and by PW the nebulae diffeology P∞(Γ∞(X, E)) on Γ∞(X, E). PW makes the
evaluation map

ev : X × Γ∞(X, E) → E

smooth and, therefore,we have that PW ⊂ PF. Let us prove that PF ⊂ PW . For this,
according to the remarks on smoothness for one-dimensional and nebulae diffeologies, in,
e.g., [19,33], it is sufficient to prove that any smooth path γ from R to (Γ∞(X, E),PF) is
also smooth for the weak topology on Γ∞(X, E). Let K be a compact subset of X that we
assume in the domain of a local trivialization of X without loss of generality, and let p be a
semi-norm on V. Let α be a multi-index. d2

dt2 Dαγ ∈ C∞(R× K, V); hence, there exists m > 0
such that

sup
(t,x∈[−1;1]×K)

p
(

d2

dt2 Dαγ

)
≤ m

which implies that

sup
x∈K

p
(

d
dt

Dαγ(t, x)− d
dt

Dαγ(0, x)
)
≤ mt

and, therefore, there exists m′ > 0 such that

sup
(x∈K

p
(

Dαγ(t, x)− Dαγ(0, x)
t

− d
dt

Dαγ(0, x)
)
≤ m′t.

These estimates are valid for any compact subspace K of X, for any multi-index α, and
for any semi-norm p on V. Therefore, γ is differentiable at t = 0 for the weak topology.
The same holds for any parameter t. Therefore, any smooth path with respect to pF is
smooth for PW . Let p : D(p) → Γ∞(X, E) be a plot in PF. Then, it is smooth on each affine
segment of D(p) and, evaluating smoothness on any straight segment on D(p), we get that
p is also Gâteaux smooth and, hence, smooth for the weak topology, which proves that
PF ⊂ PW .

We finish this section with a short discussion on differential forms.
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Definition 6 ([23]). Let (X,P) be a diffeological space and let V be a vector space equipped with a
differentiable structure. A V-valued n-differential form α on X (noted α ∈ Ωn(X, V)) is a map

α : {p : Op → X} ∈ P 7→ αp ∈ Ωn(Op ; V)

such that the following conditions are true:

• Let x ∈ X. ∀p, p′ ∈ P such that x ∈ Im(p) ∩ Im(p′); the forms αp and αp′ are of the same
order n.

• Moreover, let y ∈ Op and y′ ∈ Op′ . If (X1, . . . , Xn) are n germs of paths in Im(p) ∩ Im(p′),
and if there exist two systems of n-vectors (Y1, . . . , Yn) ∈ (TyOp)n and (Y′

1, . . . , Y′
n) ∈

(Ty′Op′)
n, if p∗(Y1, . . . , Yn) = p′∗(Y′

1, . . . , Y′
n) = (X1, . . . , Xn),

αp(Y1, . . . , Yn) = αp′(Y
′
1, . . . , Y′

n).

We note by
Ω(X; V) = ⊕n∈NΩn(X, V)

the set of V-valued differential forms.

We note that if there do not exist n linearly independent vectors (Y1, . . . , Yn) as in the
last point of the definition, then αp = 0 at y. Furthermore, if (α, p, p′) ∈ Ω(X, V)×P2 and
there exists g ∈ C∞(D(p), D(p′)) (in the usual sense) such that p′ ◦ g = p, then αp = g∗αp′ .

Proposition 5. The set P(Ωn(X, V)) made of maps q : x 7→ α(x) from an open subset Oq of a
finite-dimensional vector space to Ωn(X, V) such that, for each p ∈ P ,

{x 7→ αp(x)} ∈ C∞(Oq, Ωn(Op, V))

is a diffeology on Ωn(X, V).

We can define the wedge product and the exterior differential of differential forms
working on plots of a diffeology. These operations have the same properties as the wedge
product and the differential of standard differential forms.

4. Jets, Equation Manifolds, Diffeologies, and Frölicher Spaces

In this section, we specify some structures existing on mapping spaces and jet spaces.
First, let us propose an example that shows that the point of view considered in most of the
literature, of restricting to a smooth locus of a given equation manifold, has some limitations.

Example 1. If
∆(x, y, y′) = x cos(y) sin(4y′) ,

the equation manifold is the subset EM = {∆ = 0} in J1(R2). It has infinite singular points.
Let us assume that we restrict EM to a neighbourhood U of a regular point. The solutions
x 7→ (x, y(x)) we would find are simply constant solutions or affine solutions, and we may lose
information depending on our choice of U. Now, these solutions extend to piecewise affine (and
hence only piecewise smooth) solutions on EM. If, instead of looking for a manifold structure,
we consider an adapted diffeology, and we consider only stationary parametrizations at singular
points, these piecewise affine solutions would be smooth, in a diffeological sense. Thus, globally
speaking, talking about EM as a “subset equipped with an adapted diffeology", is less ambiguous
than thinking of it as a “submanifold”, and it relies only on the chosen parametrizations.

First, let us go back to jet spaces. The bundle J∞(E) is a vector bundle over E where
the typical fiber is constituted by the formal series

+∞

∑
i=1

Li(Rm,Rn)
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and projection map π∞
E : J∞(E) → E, and it is also a vector bundle over Jk(E) with fiber

+∞

∑
i=k+1

Li(Rm,Rn)

and projection map π∞
k : J∞(E) → Jk(E).

The inverse limit J∞(E) is a topological space: a basis for the topology on J∞(E) is
the collection of all sets of the form (π∞

k )−1(W), in which W is a relatively compact open
subset of Jk(E), k ≥ 0. Moreover, it is easy to prove that the typical fiber ∑+∞

i=1 Li(Rm,Rn)
of J∞(E) is a Fréchet space equipped with the semi-norms

||.||i = ||.||Li(Rm ,Rn) ◦ πi

where πi : ∑+∞
i=1 Li(Rm,Rn) → Li(Rm,Rn) is the canonical projection, and that J∞(E) is a

Fréchet manifold modeled over Rm+n ⊕ ∑+∞
i=1 Li(Rm,Rn).

The space J∞(E) is also a Frölicher space, equipped with a Frölicher structure derived
from the inverse limit of the Frölicher structures(

Jk(E), C∞(Jk(E),R), C∞(R, Jk(E))
)

,

k ≥ 0, and differential geometric arguments can be carried out on J∞(E) without explicitly
relying on its (local) Fréchet manifold characterization. Instead, we can utilize its Frölicher
and diffeology structures. In fact, we have found that this is precisely the approach taken
in works such as [1,5,6].

If P is some finite-dimensional manifold, the class of smooth functions f : J∞(E) → P
used in [1,6] is determined by the following condition: there exist k ≥ 0 and a smooth
function fk : Jk(E) → P for some k ≥ 0, such that f = fk ◦ π∞

k (in Section 2, we used
the P = R case of this definition), and a function f : P → J∞(E) is smooth if, for any
finite-dimensional manifold Q and any smooth map g : J∞(E) → Q, the composition g ◦ f
is smooth.

This concept of smoothness is included within the broader notion of smoothness for Frölicher
spaces. The “smooth functions” defined in the previous paragraph form a space F0 that
generates a Frölicher structure, and the corresponding diffeology is the set of maps P
from any open subset O ⊂ Rk, k ≥ 1 to J∞(E), such that F0 ◦ P ⊂ ⋃

O C∞(O,R), where
C∞(O,R) is the usual set of smooth functions from O to R.

We also note that, when considering sections in Γ∞(X, J∞(E)) ⊂ C∞(X, J∞(E)), we
can describe a Fréchet structure if X is compact, and we can produce a nice topological
vector space structure using, e.g., the Whitney topology; if X is not compact, see [22];
however, functional diffeology seems to be necessary in applications. This is the one that
is used in [8]. Because of Theorem 1, this choice is the same as choosing the diffeological
structure (that is, the nebulae diffeology) induced by the weak topology of Γ∞(X, J∞(E)),
defined by the uniform convergence of derivatives of any order on any compact subset
of X.

In order to define vector fields and the tangent bundle TJ∞(E), we use inverse limits
again: TJ∞(E) is the inverse limit of the sequence

. . . → TJk(E) → TJk−1(E) → . . . → TE ,

and, therefore, it is also equipped with a natural Frölicher structure. Vector fields are smooth
functions V : J∞(E) → TJ∞(E) satisfying Tπ ◦ V = idJ∞(E), in which Tπ : TJ∞(E) →
J∞(E) is the canonical projection; locally, they correspond precisely to formal series deriva-
tions (see, for example, [11]). This is interesting, because on general Frölicher spaces,
derivations may not coincide with vector fields, as explained in [22] (see also [19] and
references therein). This definition of TJ∞(E) coincides with the standard definition of the tangent
bundle of J∞(E) (see, for instance, [13] [Section 7.2]).
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Now, we consider a fixed partial differential equation (or system) of order k de-
noted as ∆ = 0; we assume that ∆ ∈ C∞(Jk(E),Rm) for some m ≥ 1. Let us consider
EM(k) = ∆−1(0). Example 1 suggests that it might be overly optimistic to expect EM(k) to
possess the structure of a smooth manifold. As noted in Section 2, researchers traditionally
address this challenge by restricting EM(k) to a smooth locus within Jk(E). In explicit
examples, this restriction can be defined by a unique embedding of an open subset of
Euclidean space into Jk(E). Then, subject to some technical assumptions (see [14]), the
equation manifold EM(∞) is constructed via prolongations. This approach allows us to
apply standard geometrical arguments, but it comes at the cost of losing global information,
leading to the somewhat unsettling notion that we are engaging in “formal geometry”.

Diffeologies and Frölicher spaces offer a solution. Let us define EM(∞) as the subset of
J∞(E) formed by all points in J∞(E) that satisfy ∆ = 0 and all its differential consequences.
Given that J∞(E) is a Frölicher space with the nebulae diffeology P∞, we can introduce the
subset diffeology on EM(∞) ⊂ J∞(E). This is achieved by considering the maps p ∈ P∞

whose range lies within EM(∞). Thus, we obtain EM(∞) as a diffeological (and Frölicher)
space, bypassing the need for finite-dimensional prolongations and, thus, eliminating the
obstacles presented in [14] and the assumptions of Section 2.

In this context, we define tangent vectors and differential forms on EM(∞) in a natural
manner (it is worth noting that the definition of vectors in general diffeological spaces
involves some subtleties addressed in [24,34,35] and also discussed in [9,19]): T EM(∞)

is defined by pull-back of TJ∞(E) via the inclusion map, or equivalently, it consists of all
germs of paths in TJ∞(E) with values in EM(∞). Differential forms are constructed from
local forms that are “compatible on parametrizations”. As in the case of smooth functions,
the differential forms appearing in standard literature on infinite-dimensional geometry
of differential equations are included in the differential forms just defined in terms of
Frölicher/diffeological structures. In fact, when p ∈ P∞ is a particular smooth embedding
into Jk(E) ⊂ J∞(E), we recognize exactly the definition of differential forms as outlined
in [1,6,7] (see also [13]). We stress that an advantage of the approach via diffeologies is that
it also carries natural compatibility conditions for a global definition of differential forms
on EM(∞). Exterior differential calculus and the de Rham differential can also be defined
globally in this framework. We refer to [21] for details.

5. Global Cartan Distributions and Vinogradov Spectral Sequence

There exist some problems in the definition of the tangent space of a diffeological
space, as anticipated in the last paragraph of the previous section. Let us be more precise.
The equivalent definitions of tangent space of a finite-dimensional manifold extend to
definitions of tangent space of a Frölicher or diffeological space, but in non-equivalent
ways; we refer to [24] for details. In particular, the tangent space defined by germs of smooth
paths, the tangent space defined by infinitesimal action of smooth diffeomorphisms, and the
tangent space defined by local derivations, give three different spaces on finite-dimensional
examples with singularities (see [36] or [24]). Therefore, defining in addition a bracket
of vector fields is a hard task (see [9]) and a definition via the Lie algebra of the group
of diffeomorphisms along the lines of [10] is only partially satisfying, since it assumes
additional properties of the group of diffeomorphisms that may appear artificial, or at least,
may not be automatically fulfilled [9].

Therefore, we have to specify our definition of a tangent space before giving a global
definition of the Cartan distribution along the lines of (3) and of the fundamental property
(5). As we mentioned in Section 2, the Cartan distribution is defined on a smooth locus
L ⊂ EM, and it determines a space of derivations on the space of smooth functions from L
to R. Thus, it seems natural to use the internal–external tangent cone, noted by CieTEM(∞),
along the lines of [24]. For simplicity, we also consider the corresponding internal tangent
space, but we omit it in the notations since it carries no ambiguity in our constructions.
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Definition 7. We note by C(L) the Cartan distribution associated with a smooth locus L ⊂ EM.
The global Cartan distribution on EM is the set C defined by

C =
⋃

L smooth locus in EM

C(L) ⊂ CieTEM(∞).

This definition is consistent because the Cartan distribution is unique for each fixed
smooth locus L. Therefore, C is only a fiber (pseudo-)bundle whose fibers are cones, and,
therefore, the bracket of vector fields (and hence involutivity) on the Cartan distribution
may be difficult to define without the help of an additional structure. We propose a new
definition of involution the following way:

Definition 8. Let DIS ⊂ CieTEM(∞) be a sub pseudo-bundle of CieTEM(∞). Let

Ω∗
DIS = {α ∈ Ω∗(EM) | α|DIS=0}.

Then, DIS is involutive if
d(Ω∗

DIS ) ⊂ Ω∗
DIS ,

where d is the de Rham differential on differential forms.

Remark 1. This definition remains valid when replacing EM(∞) by any diffeological space X,
and it coincides with the classical notion of involutive distribution for a (classical) distribution
DIS ⊂ TX over a finite-dimensional manifold X.

Now we can build the Vinogradov spectral sequence along the lines of [2–4]: the
algebra of differential forms

Ω∗(EM) = ∑
k∈N

Ω∗(EM)

is a graded differential algebra for the de Rham differential operator. Let us define

CΩk(EM) =
{

α ∈ Ωk | α|C = 0
}

,

CΩ(EM) = ∑
k∈N

CΩk(EM) = Ω∗
DIS with DIS = C

and
C lΩ(EM) = CΩ(EM)∧l .

Since C is involutive, C is a differential ideal, and so is C lΩ(EM) for l ∈ N∗. Therefore,
we can define

Ep,q
0 =

C pΩp+q(EM)

C p+1Ωp+q(EM)
,

Ep,q
r+1 = H∗(Ep,q

r ) ,

and
CE(EM) =

{
Ep,q

r

}
,

equipped with the restriction/extension of the de Rham differential to the corresponding
spaces. This is our version of Vinogradov’s spectral sequence.

6. Conclusions and Outlook

We claim in this paper that the geometry of equation manifolds can be reinterpreted in
the very general and flexible framework of diffeologies without apparent restriction. In this
work, we have considered a diffeological version of one of the fundamental constructions
in the area, the Vinogradov spectral sequence.
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After dealing with the Vinogradov sequence, our aim is to propose a “diffeological
way” to understand the variational bicomplex. However, we believe that we have to
consider with caution some natural approaches that may be too straightforward in this
context, because most notions in diffeologies, even if safely generalized, can be extended in
non-equivalent ways. One striking example is, in our opinion, the five different tangent
bundles of diffeological spaces actually developed in the existing literature, each one of
them with its own motivations and applications (see, e.g., the review [24]).

We feel that the same difficulties may appear in the present context. Various construc-
tions of the variational bicomplex may lead to non-equivalent global generalizations.
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