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GENERALIZING THE SINDy APPROACH WITH NESTED NEURAL
NETWORKS
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Reyhaneh Hashemi5, Victor Michel-Dansac2 and Wassim Tenachi6

Abstract. Symbolic Regression (SR) is a widely studied field of research that aims to infer symbolic
expressions from data. A popular approach for SR is the Sparse Identification of Nonlinear Dynamical
Systems (SINDy) framework, which uses sparse regression to identify governing equations from data.
This study introduces an enhanced method, Nested SINDy, that aims to increase the expressivity of
the SINDy approach thanks to a nested structure. Indeed, traditional symbolic regression and system
identification methods often fail with complex systems that cannot be easily described analytically.
Nested SINDy builds on the SINDy framework by introducing additional layers before and after the
core SINDy layer. This allows the method to identify symbolic representations for a wider range of
systems, including those with compositions and products of functions. We demonstrate the ability of
the Nested SINDy approach to accurately find symbolic expressions for simple systems, such as basic
trigonometric functions, and sparse (false but accurate) analytical representations for more complex
systems. Our results highlight Nested SINDy’s potential as a tool for symbolic regression, surpassing
the traditional SINDy approach in terms of expressivity. However, we also note the challenges in the
optimization process for Nested SINDy and suggest future research directions, including the designing
of a more robust methodology for the optimization process. This study proves that Nested SINDy can
effectively discover symbolic representations of dynamical systems from data, offering new opportunities
for understanding complex systems through data-driven methods.
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Résumé. La régression symbolique est un domaine de recherche bien établi qui cherche à déduire des
expressions symboliques directement à partir de données. L’une des approches les plus reconnues dans
ce domaine est celle de l’Identification Parcimonieuse de Systèmes Dynamiques non Linéaires (Sparse
Identification of Nonlinear Dynamical Systems, SINDy), qui recourt à la régression parcimonieuse pour
extraire les expressions des équations sous-tendant les données observées. Dans cette étude, nous pro-
posons une méthode avancée, dénommée “Nested SINDy”, qui vise à améliorer l’expressivité de la
méthode SINDy grâce à une structure multi-couches. En effet, les limites des méthodes traditionnelles
de régression symbolique et d’identification de systèmes concernent principalement les sytèmes com-
plexes, dont la description analytique n’est pas aisée. En s’appuyant sur la méthode SINDy, Nested
SINDy introduit des couches supplémentaires avant et après la couche principale de SINDy. Ceci lui
permet d’inférer des représentations symboliques pour une plus grande gamme de systèmes, incluant
ceux décrits par des équations formées de compositions et de produits de fonctions. Nous démontrons
la capacité de Nested SINDy à identifier avec précision des expressions symboliques pour des équations
simples, tels que des fonctions trigonométriques basiques, et à fournir des représentations analytiques
creuses (fausses, mais précises) pour des systèmes plus complexes. Nos résultats mettent en lumière le
potentiel de Nested SINDy comme outil puissant pour la régression symbolique, surpassant les capacités
expressives de la méthode SINDy traditionnelle. Toutefois, nous soulignons également les défis ren-
contrés dans le processus d’optimisation de Nested SINDy et proposons des pistes pour des recherches
futures, notamment en vue de développer une méthodologie d’optimisation plus robuste. Cette étude
établit que Nested SINDy est capable de découvrir efficacement des représentations symboliques des
systèmes dynamiques à partir de données, ouvrant ainsi de nouvelles voies pour la compréhension des
systèmes complexes via des méthodes basées sur les données.

1. Introduction
Symbolic regression (SR) consists in the inference of a free-form symbolic analytical function f : Rn1 −→ Rn2

that fits y = f(x) given data (x,y). It is distinct from regular numerical optimization procedures in that it
consists in a search in the space of functional forms themselves by optimizing the arrangement of mathematical
symbols (e.g., +, −, ×, /, sin, cos, exp, log, …).

The rationale for employing SR can be broadly categorized into the following three core objectives.
(1) SR can be used to produce models in the form of compact analytical expressions that are interpretable

and intelligible. This objective is particularly vital in natural sciences, such as physics [61], where the
capacity to explain phenomena is equally valuable as predictive prowess. This is typically probed by
assessing the capability of a system to recover the exact symbolic functional form from its associated
data. However, one should note that many SR approaches excelling in this metric are often bested in fit
accuracy when exact symbolic recovery is unsuccessful [21]. In other contexts where the compactness
and inherent intelligibility of expressions may not be as critical, significantly longer but more robustly
accurate expressions (> 103 mathematical symbols) are desirable as SR still offers key advantages in
such scenarios.

(2) SR demonstrates the advantage of producing models that frequently exhibit superior generalization
properties when compared to neural networks. [16, 17,42,55,60]

(3) Another noteworthy advantage is the ability to create models that demand significantly fewer com-
putational resources than extensive numerical models like neural networks. This efficiency becomes
especially relevant in multi-query scenarios such as control loops [17, 55], optimization or uncertainty
quantification, where models must be executed frequently, and thus computational efficiency is crucial.

SR has traditionally been approached through genetic programming, where a population of candidate mathe-
matical expressions undergoes iterative refinement using operations inspired by natural evolution, such as natural
selection, crossover, and mutation. This approach includes well-known tools like Eureqa software [43, 44], as
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well as more recent developments [20, 46, 58, 59]. Additionally, SR has been explored using a diverse array of
probabilistic methods [3, 7, 15,29,52]. For recent SR reviews, refer to [1, 21,30].

The rise of neural networks and auto-differentiation1 has spurred significant efforts to incorporate these
techniques into SR, challenging the dominance of Eureqa-like approaches [21, 31, 33]. Numerous methods for
integrating neural networks into SR have been developed, ranging from advanced problem simplification schemes
[53, 54] to end-to-end supervised symbolic regression approaches in which neural networks are trained in a
supervised manner to map datasets to their corresponding symbolic functions [4,5,9,10,14,16,22,27,28,34,57].
Unsupervised approaches also exist, where recurrent neural networks are trained through trial-and-error using
reinforcement learning to generate analytical expressions that fit a given dataset [11, 13, 23, 24, 26, 36, 39, 50,
62]. Furthermore, it should be noted that it has been a major focus of the SR community to facilitate the
incorporation of prior knowledge to constrain the search for functional forms by leveraging domain-specific
knowledge [2,6,12,18,35,40,47–49] and that SINDy-like frameworks as the one proposed here can accommodate
such prior knowledge, as demonstrated in works like [41].

Supervised approaches offer rapid inference but lack a self-correction mechanism. If the generated expres-
sion is suboptimal, there are little means of correction. In contrast, unsupervised approaches enable iterative
correction based on fit quality. However, they often rely on reinforcement learning frameworks to approximate
gradients because direct optimization using auto-differentiation is infeasible due to the discrete nature of the
problem, which involves discrete symbolic choices.

However, other unsupervised methods include neuro-symbolic approaches, wherein mathematical symbols
are integrated into neural network frameworks. The goal being to sparsely fit the neural network to enable
interpretability, generalization or even recover a compact mathematical expression. Prominent examples include
SINDy [8], which is central to this study, and others such as [19,32,37,38,42,45,56].

SINDy-like approaches are the only type of unsupervised techniques capable of directly utilizing gradients
from data to iteratively refine function expressions as they effectively render the discrete symbolic optimization
problem continuous. Moreover, SINDy-like frameworks possess the advantage of being well-suited for exact
symbolic recovery by enabling the creation of concise, intelligible analytical expressions through the promotion
of sparse symbolic representations while yielding highly accurate and general expressions when exact symbolic
recovery is unsuccessful or impossible. However, a limitation of the current SINDy framework is its inability to
handle nested symbolic functions, which often results in suboptimal performances, especially in more complex
problems as evidenced by comparative benchmarks (see e.g., [47]). This is the primary motivation for our study,
where we introduce a Nested SINDy approach.

The paper is organized as follows. First, we introduce the traditional SINDy approach in Section 2. Then, we
present our Nested SINDy approach in Section 3, with two distinct architectures: the PR model in Section 3.1
and the PRP model in Section 3.2, the latter being more expressive, but also more challenging to train, than
the former. The training procedure is explained in detail in Section 4, and two main applications are tackled
in Section 5: function identification in Section 5.1 and ODE discovery in Section 5.2. Finally, we conclude in
Section 6.

2. The SINDy paradigm
In this section, we present the traditional SINDy approach, as introduced in [8]. The principle of the method

is detailed in Section 2.1, while the mathematical framework and notation are set in Section 2.2.

2.1. Principle of the SINDy method
The Sparse Identification of Nonlinear Dynamical Systems (SINDy) approach extends previous work in SR,

introducing innovations in sparse regression. The SINDy approach seeks to deduce the governing equations of a
nonlinear dynamical system directly from observational data, doing so in a concise and sparse way. It is based

1Leveraging the capabilities of deep learning libraries to meticulously track gradients associated with a set of parameters in
relation to a numerical process, regardless of its intricacy.
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on the essential assumption that these governing equations can be succinctly expressed by only a few significant
terms, resulting in a sparse representation within the space of potential functions [8].

More specifically, the SINDy approach involves approximating a target function through a linear combination
of (potentially nonlinear) basis functions, contained in a so-called library or dictionary F . For instance, F might
include constant, polynomial, or trigonometric functions:

F =

{
x 7→ 1, x 7→ x, x 7→ x2, x 7→ x4, . . .

x 7→ sin(x), x 7→ cos(x), x 7→ sin(2x), x 7→ cos(πx), . . .

}
. (2.1)

In order to achieve expressiveness, it is necessary to chose a large number of basis functions. However, with
that many basis functions, there is a risk of losing interpretability. To address this issue, a sparsity constraint
is imposed on the coefficients of the linear combination.

The main advantages of the SINDy method are the following:
• The use of underlying convex optimization algorithms ensures the method’s applicability to large-scale

problems [8].
• The resulting nonlinear model identification inherently balances model complexity (i.e., sparsity of the

function to be learned) with accuracy, leading to strong generalization ability.
• SINDy automatically identifies the relevant terms in the dynamical system without making prior as-

sumptions about the system’s form, through the use of gradient descent.
The main limitations of the method include:

• The necessity to carefully select the appropriate library F based on the available data: for instance,
compositions or multiplications of simpler functions have to be included in the dictionary to correctly
represent more complex target functions.

• Training (to determine which functions to keep in the dictionary) is more sensitive to initialization than
with other approaches.

The goal of the following section is to set the mathematical framework and the main notation associated to
the SINDy method, to be used throughout this paper.

2.2. Mathematical framework and notation
For the sake of simplicity, we present the method in the case where the target function is from R to R, but

the approach can be extended to functions from Rn to Rm.
Given the data (xi, yi)i=1,...,N , we aim to find a function f such that f(xi) ≈ yi (which is nothing but a

regression problem) using the SINDy approach.
Let F = {f1, . . . , fl} be the aforementioned dictionary of basis functions. For instance, it could be the one

given by (2.1). We denote by L(F) = Span(F) the set of linear combinations of these basis functions, defined
by

f ∈ L(F) ⇐⇒ ∃θ ∈ Rl such that f =

l∑
i=1

θifi. (2.2)

The regression problem can then be formulated as the following least squares problem:

min
f∈L(F)

‖Y − f(X)‖22,

where X = (x1, . . . , xN )T and Y = (y1, . . . , yN )T . This problem can itself be reformulated in matrix form, using
the definition of the vector space L(F):

min
θ∈Rl
‖Y − F(X)θ‖22 (2.3)

where [F(X)]i,j = (fj(xi)) ∈MN,l(R).
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Numerous algorithms exist to solve this problem while promoting sparsity. Without being exhaustive, no-
table methods include the standard STLSQ (sequentially thresholded least squares) and the LARS (least-angle
regression) methods. Another approach involves adding a regularization term on the coefficients of the linear
combination to favor sparsity. The most popular is Lasso regularization, but others exist (SR3, SCAD, MCP, …).
In this work, we focus on the Lasso approach. Introducing a Lasso regularization term to promote sparsity, the
optimization problem for the SINDy approach becomes, instead of (2.3):

min
θ∈Rl
‖Y − F(X)θ‖22 + λ‖θ‖1, (2.4)

where λ > 0 is a hyperparameter, to be manually set when using the method. The values of λ will be
reported when using the method in the following sections. Specialized optimization algorithms, such as ADMM
(alternating direction method of multipliers), are effective in solving regression problems with regularization.

3. The Nested SINDy approach
As mentioned in Section 2.1, one of the main limitations of the SINDy approach is the choice of the nonlinear

basis functions populating the dictionary F . For instance, if the unknown function happens to be a composition
or a multiplication of simple functions, we cannot find the correct expression unless this specific composition
or multiplication is in F . In this paper, we aim at relaxing this constraint by introducing a way of composing
simple functions, without having to manually add these compositions to the dictionary.

In the same spirit as the approach investigated in [32, 42], we will enlarge the set L(F). We will proceed by
analogy with a standard approach in machine learning, which involves considering models with multi-layer neural
networks rather than a single broad layer. Here, instead of considering a single layer of nonlinear functions, we
explore an augmented architecture, consisting of several such layers. We will refer to this approach as Nested
SINDy.

The cost to bear is the heightened complexity of the optimization landscape. Indeed, the optimization
problem, used to be the linear least squares problem given by (2.4). Now, it becomes a nonlinear problem, since
the matrix F(X) is replaced with a composition of nonlinear functions. The new optimization problem (still
with Lasso regularization) is formulated as follows:

min
θ

1

2
‖y −N (x, θ)‖22 + λ‖θ‖1,

where N denotes our nested model, parameterized by θ. Consequently, the resolution of this nonlinear opti-
mization problem may be significantly more challenging and algorithms that work well in the linear case are
not necessarily convergent in the nonlinear case.

The method then primarily depends on the choice of the architecture N . The goal is to introduce new layers
that achieve favorable trade-offs between expressivity and optimization complexity. In this work, we propose
two architectures, which are described in the following sections: the PR model (in Section 3.1) and the PRP
model (in Section 3.2). From now on, we call the basic SINDy layer, given by a projection onto L(F) (2.2), the
radial layer.

3.1. The PR Model
The PR (Polynomial-Radial) model augments the basic SINDy framework by introducing a polynomial layer

that operates before the usual SINDy radial layer. This layer constructs a variety of monomials from the input
variable x, represented as follows:

fpoly(x) =

d∑
i=0

ωix
i,
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where d represents the maximum allowed polynomial degree and ωi are the weights. Note that ω0 is the constant
part of the layer, which corresponds to the bias in traditional neural networks. For inputs with multiple variables,
the layer extends to a multivariate polynomial, facilitating complex combinations of the variables. For example,
with two variables x and y, we obtain

fpoly(x, y) =

d∑
i=0

d∑
j=0

ωi,jx
iyj ,

with ω0,0 acting as the constant term of the polynomial, effectively substituting the bias. Another choice is to
limit the sum over i + j to a maximum value d to reduce the number of terms in the polynomial, and thus
obtain bivariate polynomials up to degree d.

As an example, for one input variable, if F = {sin, cos} and d = 2, then the PR model can learn all functions
with expression

λ cos(a1 + b1x+ c1x
2) + µ sin(a2 + b2x+ c2x

2).

This is way more expressive than standard SINDy, where functions such as x 7→ cos(2x) or x 7→ sin(1 + x2)
would have to be manually added to the dictionary.

This PR layer can also be seen as a pure polynomial layer combined with a linear layer. We, hence, consider
the PR model to have four layers: a polynomial layer, a linear layer, a radial layer, and a final linear layer. The
last two layers are identical to the standard SINDy model, while the first two layers are new additions. Figure 1
illustrates this structure.

x

y

x

xy

xy2

...

y2

output

Input Polynomial Linear Radial Output

Figure 1. Structure of the PR model for d = 2 and 2 input variables.

The full expression of the model is:

fθ,PR(x) =
l∑

j=1

cjfj

(
d∑

i=0

ωi,jx
i

)
+B, (3.1)

where θ includes all the trainable parameters of the model. The functions fj are derived from the specified
function set F , while ωi,j are the weights of the polynomial layer, and cj and B are the weights and bias of the
final linear layer, respectively. The parameters ωi,j now depend on j since they are in the j-th radial layer. It
is important to note that the radial and polynomial layers are not associated with any adjustable parameters.

The main advantage of the PR model is its enhanced expressivity, which facilitates the creation of linear
combinations both before and after the radial layer. The polynomial layer allows the model to identify more
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complex functions and to integrate various inputs effectively in the case of multivariate data. Compared with
the traditional SINDy approach, the model benefits from a reduced need for an extensive dictionary because
it is capable of discovering linear combinations of the functions contained within the dictionary. Observations
from our experiments suggest that the training process of the model is capable of converging to correct solutions
even for non-trivial problems. This will be highlighted in Section 5.

3.2. The PRP Model
The PRP (Polynomial-Radial-Polynomial) model enhances the PR model by introducing an additional

polynomial layer following the radial layer. This structure significantly improves the ability of the model
to represent complex interactions within datasets. For example, the PRP model can express the function
f(x) = arctan(x) sin(x), (assuming arctangent and sine are in the dictionary), while the PR model cannot, as
it is not a linear combination of the functions contained within the dictionary. In the PRP model, the outputs
of the radial layer are first processed through a linear layer. This linear layer, typically fixed in size (set to 2 in
our experiments), serves as an intermediate stage, transforming the outputs of the radial layer into a new set
of variables. These variables are then fed into a subsequent polynomial layer, which allows for the formation of
various monomial combinations of the outputs of the linear layers, such as squaring or multiplying them.

The mathematical expression of the PRP model is given as:

fθ,PRP(x) =
∑

1≤|i|≤d

ωPR
i1,i2,...,il

fθ1,PR(x)
i1fθ2,PR(x)

i2 . . . fθl,PR(x)
il +B′, (3.2)

where |i| = i1+ i2+ . . .+ il is the length of the multi-index (i1, . . . , il), θ includes all the trainable parameters of
the model, ωPR

i1,i2,...,il
are the weights of the final linear layer, B′ is the bias of the final linear layer, l is the size

of the output chosen for the intermediate linear layer (set to 2 in our experiments), and fθ1,PR(x), fθ2,PR(x),
…, fθl,PR(x) correspond to the output of the PR model given in (3.1). The coefficients θ1, θ2, . . . , θl correspond
to the parameters of the PR models, which are the same as θ, except for the weights of the final linear layer (cj
and B in (3.1)). Figure 2 shows a graphical representation of this model.

x

y

x

xy

xy2

...

y2

x1

x2

x1

x1x2

x1x
2
2

...

x2

output

Input Polynomial Linear Radial Linear Polynomial Output

Figure 2. Structure of the PRP model for l = 2, d = 2, and 2 input dimensions.

The addition of a second polynomial layer in the PRP model markedly increases the expressivity of the
model. It enables the model to capture more intricate relationships in the data, particularly beneficial for
complex datasets where simpler models may fall short. Therefore, the PRP model is especially good at handling
datasets with intricate variable interactions.
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In summary, the PRP model, with its dual polynomial layers, offers a sophisticated extension of the SINDy
approach. It provides a powerful framework for modeling complex systems, capable of capturing higher-order
interactions and nonlinear relationships inherent in the data.

3.3. Downsides of the Nested SINDy approach
The Nested SINDy approach complexifies the optimization landscape, which destabilizes the training process.

We can reasonably assume that the addition of linear layers creates local minima because of their composition
with the nonlinear layers. Moreover, it adds a substantial amount of trainable parameters. This is because the
number of parameters in the linear layers is quadratic, whereas those in the SINDy approach grow linearly with
the number of functions in the dictionary. This deviates from the original SINDy approach, which is oriented
towards function discovery, and assumes that the dictionary can become arbitrarily large. In the Nested SINDy
approach, the number of functions in the dictionary should remain relatively small to avoid an explosion in the
learning time. The next section addresses some training-related issues.

4. Training the nested SINDy model
We experimented and combined various strategies to best overcome challenges associated with nonlinear

optimization. These strategies are given below, where we mention how we actually used them for training.
Values of the hyperparameters introduced in this section will be given in Section 5.

4.1. Adding a regularization term to enforce sparsity
In our framework, the Lasso regularization term is added to the loss function to enforce sparsity in the model.

We have tested different strategies to adapt the Lasso coefficient during training:
• A constant Lasso parameter throughout the training, which is the standard approach.
• A varying Lasso coefficient, initially set to zero for the early epochs, and then taken oscillating around

some constant value, depending on the epoch. The intuition of this idea is that “shaking” the learning
landscape helps to get out of local minima, in a direction that is still relevant to one of the two objectives
(sparsity versus mean squared error).

• We also tried selecting neuron-dependent Lasso coefficients to promote specific functions or layers over
others in the radial layer.

The approach that gave the most consistent results across the tested cases was to change the weight of the
Lasso coefficient throughout the learning process. In the experiments, the Lasso coefficient is given by

λ(epoch) = λ0(1 + 0.4 sin(epoch/10)),

where λ0 is the initial Lasso coefficient, and where the sine function is used to make the coefficient oscillate
between 0.6λ0 and 1.4λ0.

4.2. Pruning to enforce sparsity
To enhance model sparsity, a complementary approach to Lasso regularization is to prune the neural network

during training, reducing the number of parameters. In order to prune the neural network, we remove a
parameter θi from the set of parameters (θi)i if the following two conditions are met:

• The mean squared error (MSE) is below a predefined threshold value MSEprune, and
• |θ| is below a threshold value εprune for a given number of epochs nprune.
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4.3. Choosing the optimization algorithm
We tested training our network with fairly standard optimization algorithms implemented in PyTorch but

not specifically tailored to our problem: Adam, stochastic gradient descent, Limited-memory Broyden-Fletcher-
Goldfarb-Shanno (LBFGS) algorithm. For instance, LBFGS [63] is uncommon in neural network training, as
it was designed for optimizing constants in equations. However, it works well in our case, possibly because our
optimization problem is close to a classical regression problem. Moreover, it would be interesting to implement
a more specific optimization algorithm that takes into account the form of our objective function (mean squared
error plus regularization term), such as an ADMM algorithm coupled with a standard PyTorch optimizer.
Another promising avenue for SINDy-like approaches is the basin-hopping algorithm which combines LBFGS
with global search techniques in order to avoid local minima as proposed in [45].

4.4. Adding noise to the gradient of the loss function
During a training step, we can add random noise to the gradient just before updating weights. This can be

done at each training step, or only when the loss function does not vary sufficiently, e.g. when stuck in a local
minimum.

The noise amplitude has to be well-tuned. It depends on the learning rate lr of the optimizer, the values of
the parameters θ, and on the actual mean squared error LMSE:

∇θL← ∇θL+ ε(lr, LMSE, θ).

By making the learning process less deterministic, we hope to more easily escape local minima. In the same
spirit, we could also directly add noise to the parameters when the loss function is stuck in a local minimum.

4.5. Initializing the network parameters
The training process is very sensitive to the weight initialization, given the presence of multiple local minima

in the objective function. Furthermore, concerning the exploration of Ordinary Differential Equations (ODEs),
for certain parameter values, the solution to the ODE may be ill-defined (or only locally defined), emphasizing
the importance of careful weight initialization for our model. This is indeed one of the main limitations of the
model and, consequently, an area for possible improvement.

5. Applications
In this work, we consider two main applications: function discovery in Section 5.1, and Ordinary Differential

Equation (ODE) discovery in Section 5.2. Function discovery consists in recovering the expression of a function
from a dataset, while ODE discovery aims at finding the differential equation that governs the evolution of a
system from a dataset. Therefore, function discovery can be seen as a stepping stone towards ODE discovery.

5.1. Function discovery
We first tackle function discovery. To that end, we present four test cases, of increasing complexity.

5.1.1. Case 1: trigonometric function involving composition using the PR block
In Section 2.1, we recalled that the standard SINDy method encounters difficulties when the target is a

function defined as the composition of several simpler functions, unless that specific composite function is
included in the dictionary. We wish to demonstrate, in such cases, the capability of the proposed PR nested
SINDy method (3.1) described in Section 3.1. To that end, the function f : x 7→ cos(x2) is considered over the
interval [0, 3]. With a dataset comprising 104 data points and utilizing a single input dimension, the PR-nested
SINDy model attempts to replicate this function.

The architecture of the model is as follows. The first layer is polynomial (P), involving monomials up to the
third degree (i.e. x, x2, and x3). This is followed by a linear layer, which transforms the three features into
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seven, with a bias term included. Subsequently, the radial layer (R) applies a series of predefined functions on
a node-wise basis, belonging to the following dictionary:

F =

{
x 7→ x, x 7→ x2, arctan, sin, cos, exp, x 7→ log(|x|+ 10−5), x 7→ 1

1 + x2

}
.

The last linear layer maps these seven transformed features down to a single output.
The Adam optimization algorithm is used, with a learning rate of 10−3. Lasso regularization is applied at

a rate of 10−3. A batch size of 1 000, dictating 10 iterations per epoch, is used. Over the course of 1 000
epochs, the model weights undergo pruning every 30 epochs with a threshold set to 0.05. All computations are
performed on a CPU. The function uses a patience counter to keep track of how many consecutive epochs
have passed without significant improvement in the loss function. This is calculated by comparing the relative
difference in loss between the current and previous epochs to a predefined threshold (here, 10−2). If the relative
difference is lower than this threshold for 50 consecutive epochs (patience = 50), the training stops. In this
case, the training stopped after 300 epochs.

The learning process of the PR model with the specified parameters successfully converged, yielding a model
that approximates the target function with the expression x 7→ − sin(x2 − 1.57) that captures the underlying
dynamics of the target function within the considered domain, see Figure 3. The sparsity of the solution is
significant, with only 3 nonzero coefficients out of the original 29 parameters, underscoring the effectiveness of
the model in identifying the essential structure of the function within the given domain.

5.1.2. Case 2: trigonometric function involving composition using the PRP block
To further illustrate the capabilities of the introduced PRP-Nested SINDy method (3.2) described in Sec-

tion 3.2, we examine the same function as in case 1, namely f : x 7→ cos(x2), considered over the interval [0, 3].
This time, employing a dataset comprising 1 000 data points, the PRP-Nested SINDy model is tasked with
replicating this function.

The model’s architecture begins with a polynomial (P) layer that computes monomials up to the second
degree. A subsequent linear layer then transforms these two polynomial features into nine outputs, incorporating
a bias term in the process. The radial (R) layer follows, applying a suite of predefined functions to each node,
belonging to the following dictionary:

F =
{
x 7→ x, x 7→ x2, arctan, sin, cos, exp, x 7→

√
x, x 7→ e−x2

, x 7→ log(1 + ex)
}
.

The architecture then introduces a second polynomial (P) layer, and a final linear layer maps these five processed
features to a single output, thus completing the structure of the model.

Training parameters are configured as follows: the Adam optimization algorithm is employed with a learning
rate of 10−4. Lasso regularization is set at a rate of 10−3. The batch size is 1 000. Across 1 000 epochs, model
weights are pruned every 30 epochs using a threshold of 0.05. We note that the loss function stagnates after
around 300 epochs. All computations are carried out on a CPU.

The PRP model’s learning process successfully converged to the expression x 7→ sin(x2+1.57). This expression
effectively captures the underlying dynamics within the specified domain (Figure 4). The resulting model
exhibits notable sparsity, with only 3 nonzero coefficients from the initial 31 parameters.

5.1.3. Case 3: Trigonometric Function Multiplication using the PRP Block
The next test case consists in learning the two-dimensional function (x, y) 7→ 2 sin(x) cos(y) over the space

domain [−2, 2]2, using PRP blocks. This example is particularly interesting as it highlights the model’s ability
to learn complex functions involving the multiplication of simple functions, whose product is not included in
the dictionary. This is a clear advantage over the naive SINDy approach. Indeed, when two-dimensional input
variables are considered, the SINDy function dictionary needs to be much larger (e.g. including all possible
products of the functions in the dictionary).
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(a) Epoch 10: early model predictions vs. target function,
illustrating the initial learning phase.
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(b) Epoch 70: model predictions show improved alignment
with the target function as learning progresses.
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(c) Epoch 120: further refined predictions, with the model
beginning to capture the function’s periodicity.
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(d) Epoch 180: the model has converged to a prediction
matching the target function.

Figure 3. Case 1: evolution of the learned function x 7→ cos(x2) over successive training
epochs. Each subfigure represents the PR model’s predictions (in blue) against the target
function (in orange) at epochs 10, 70, 120, and 180, showcasing the model’s progressive learning
and convergence towards the target function. We observe that the first epochs learn on the
interval [0, 3], while subsequent epochs are able to generalize.

Initially, a Polynomial (P) layer processes the input, generating monomials up to the second degree (i.e. x, y,
xy, x2, y2). Following this, the first linear layer transforms these polynomial features from 5 inputs to 9 outputs,
including a bias term. Next comes the Radial (R) layer, which applies a variety of nonlinear transformations to
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Figure 4. Case 2: comparison of the results from the PRP-Nested SINDy, which yielded the
function x 7→ sin(x2 + 1.57), with the target function x 7→ cos(x2), over the interval [0, 3].

each node, belonging to the following dictionary:

F =


x 7→

√
|x|+ 10−5, x 7→ x, sin, cos, tanh,

exp, x 7→ 1

1 + x2
, x 7→ log(|x|+ 10−5), x 7→ exp

(
1

1 + x2

)
, x 7→ log(1 + ex)

 .

After the R layer, a second P layer is applied, also containing monomials up to degree 2. This additional
polynomial processing adds depth to the feature extraction. The architecture then continues with another
linear layer, which consolidates the outputs of the preceding layers. This final layer maps the 5-dimensional
output from the second P layer to a single output dimension, providing the final model prediction.

The training parameters for learning the function (x, y) 7→ 2 sin(x) cos(y) are specifically configured as follows:
the Lasso regularization rate is set to 0.1. In the uniform weight initialization for the linear layers, the standard
deviation is set to 1.5, and the mean is maintained at 0. The Adam optimization algorithm is employed with a
base learning rate of 10−4, and the model is trained for 1 000 epochs. Pruning of model weights occurs every 50
epochs with an initial pruning at 10 epochs, using a pruning threshold of 0.01. All computations are conducted
on a CPU.

Utilizing these parameters, the PRP blocks successfully learn the following function:

(x, y) 7→ − 0.77
(
1− 0.612 sin

(
0.032x2 − 0.162xy + 0.998x+ 0.035y2 − y − 0.14

))2
+ 2.01 (cos (0.039xy − 0.499x− 0.497y + 0.809))

2
(5.1)

with sparsity accounted for by 14 nonzero coefficients out of the original 32 parameters. A comparison of
this function with the target function is illustrated in Figure 5. The MSE between the target function and its
approximation is 5.69×10−2. Interestingly, the three terms with small coefficients in (5.1) (e.g. 0.039xy) should
not be manually removed from the formula after learning. Indeed, removing them leads to an almost fourfold
increase in MSE, which gets bumped to 2.11× 10−1.
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(a) True model (2 sin(x) cos(y)) (b) Predicted model

Figure 5. Case 3: comparison of the true and predicted models. A visual representation of
the target function (x, y) 7→ 2 sin(x) cos(y) and its learned approximation by the PRP model,
given by (5.1), over the specified domain.

5.1.4. Case 4: Perimeter of an ellipse
Calculating the perimeter of an ellipse is a well-studied topic for which the solution cannot be expressed in

terms of elementary functions. Let us first define an ellipse as the set of points (x, y) such that:

x2

a2
+

y2

b2
= 1,

which can be described by the parametric equations:{
x = a cos(α),

y = b sin(α),

with α ∈ [0, 2π). The perimeter of an ellipse can then be expressed as:

P (a, b) = 4

∫ π
2

0

√
a2 cos2(α) + b2 sin2(α) dα,

because the differential arc length of our parametric equation is ds = −
√

((−a sin(α))2 + (b cos(α))2)dα and
the four quadrants have the same length. Several approximations are known to approach the perimeter of an
ellipse, such as the one proposed by Ramanujan:

P (a, b) ≈ π(3(a+ b)−
√

(3a+ b)(a+ 3b)). (5.2)

Since any rescaled ellipse remains an ellipse, we assume without loss of generality that b = 1 for the rest
of this experiment. To assess the relevance of our Nested SINDy technique, we will compare its performance
against the two reference solutions: Ramanujan’s approximation, and a linear interpolation between the two
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endpoints of the interval [1, 30]. Indeed, using a linear interpolation makes sense for large values of a, since P
is equivalent to 4a when a→∞, as can be seen by inspecting (5.1.4).

To find formulas that approximate the perimeter of an ellipse, we train two PRP models. The first one is
trained on the interval [1, 5] and the second one on the interval [1, 25]. We run 50 learning sessions for each
model and keep the model with the shortest associated formula. In its best run, the first model converged to a
basic quadratic polynomial:

Pquadratic(a) = 0.061(a+ 0.544)2 + 3.28a+ 2.72. (5.3)

However, other relatively sparse solutions were found, such as a model with 9 nonzero parameters

P1(a) = 1.65a+ 0.553(0.485a+ 0.135 log(0.817|a2|) + 1)2 + 0.459 log(0.817|a2|) + 3.4,

or one with 15 nonzero parameters

P2(a) = 0.535a+ 0.966(0.394a+ 0.721 arctan(0.278a2 + 0.393) + 1

+ 0.111 exp(−0.063a4))2 + 0.978 arctan(0.278a2 + 0.393) + 1.36 + 0.15 exp(−0.063a4),

thus demonstrating the ability of the model to find a variety of approximations. The MSE obtained at the end
of the training are 2.26× 10−3, 2.69× 10−3, and 3.30× 10−3 for the quadratic, P1, and P2 models, respectively.

The second model converged to a more complex expression which is too long to be displayed here. In this
second model, 25 out of the 64 parameters are nonzero, corresponding to approximately 40% sparsity. The MSE
obtained at the end of the training is 1.97. This metric, as the previous ones, is biased because the training
is stopped at an arbitrary step and there is no final tuning step. Hence, we perform a final tuning step, by
writing the final expression of the model and performing a gradient descent to only minimize the MSE. The later
mentioned results include this final tuning step and show that the effective MSE can be significantly reduced.

Table 1. Case 4: mean squared error of the different approximation of the ellipse perimeter
on the intervals [1, 5], [1, 25] and [1, 30]. The closest approximations are denoted in bold.

[1, 5] [1, 25] [1, 30]

Model 1 7.24× 10−4 1.05× 102 2.61× 102

Model 2 7.43× 10−3 3.66× 10−3 2.73× 10−1

Ramanujan 2.78× 10−6 9.84× 10−3 1.82× 10−2

Interpolation 4.70× 10−2 4.75× 10−1 5.46× 10−1

We display the relative error of each approximation on different intervals in Figure 6. Table 1 reports the
MSE of each approximation on the intervals [1, 5], [1, 25] and [1, 30]. Model 1 and model 2 correspond to our
two models (with model 1 corresponding to (5.3)), Ramanujan corresponds to the approximation proposed by
Ramanujan and Interpolation corresponds to the linear interpolation between the two endpoints of the interval
[1, 30]. The two models perform well on the interval they were trained on. The first model performs better than
the linear interpolation on [1, 5], but worse than the Ramanujan approximation. The second model outperforms
both the linear interpolation and the Ramanujan approximation on [1, 25], but starts diverging on [1, 30].

Overall, this experiment provides an insight into the ability of the Nested SINDy approach to discover an
approximation on a classical problem without knowledge other than the data points. It demonstrates that this
method can be used to discover an approximation of a complex function with little effort. The main downside
of this approach is the lack of guarantee regarding the convergence towards a sparse solution. The initial choice
of the model’s coefficients appears to have a significant impact on the final solution.
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Figure 6. Case 4: relative error of the different approximations of the ellipse perimenter on
the intervals [1, 5], [1, 25] and [1, 30].

5.2. ODE discovery
In this section, we extend the proposed approach to try to discover an unknown autonomous ODE

x′(t) = f(x(t)), (5.4)

based on time data associated to K discrete trajectories in time. The full dataset (see Figure 7a) is given by

X =

K⋃
i=1

X k,

where we have defined the kth trajectory as follows:

X k =
{
x
(k)
1 , . . . , x

(k)
N

}
,

and the subscripts indicate the time steps. The goal is to provide an approximation fθ of f in (5.4).
To approximate the dynamical system, we will adapt the method developed by the authors of [25]. They

suggest a coupling between SINDy and Neural ODE approaches. Among other things, this method appears to
be robust even when the dataset is collected at large or irregular time steps, or contains additive noise.

The idea is, first, to minimize

L(θ) =
1

K

K∑
k=1

N∑
i=1

∥∥∥x(k)
θ,i − x

(k)
i

∥∥∥
2
+ λ ‖θ‖1



16 ESAIM: PROCEEDINGS AND SURVEYS

where (x
(k)
θ,i )i≥0 is the solution of the following Cauchy problem:{

x′(t) = fθ(x(t)),

x(0) = x
(k)
0 ,

(5.5)

where fθ is given by the Nested SINDy network. In practice, the ODE (5.5) is solved numerically using an
ODE solver (a fifth-order Runge-Kutta method in our application). Hence, (x(k)

θ,i )i≥0 is an approximate solution
of (5.5). To train the model, the strategies described in Section 4 are used. One must be careful about how
the dataset is used to train the model. To train efficiently the Nested SINDy network, we divide the dataset in
batches at each training step. To do that, we randomly sample nbatch trajectories from the dataset X . Then,
we randomly sample initial points from the selected nbatch trajectories, in such a way that the reduced dataset
consists of nbatch trajectories of fixed lengths lbatch, as shown in Figure 7b. The model parameters are then
updated by minimizing the following reduced loss function:

Lred(θ) =
1

nbatch

nbatch∑
k=1

i
(σ(k))
0 +lbatch−1∑

i=i
(σ(k))
0

∥∥∥x(σ(k))
θ,i − x

(σ(k))
i

∥∥∥
2
+ λ ‖θ‖1

where X σ(1), . . . ,X σ(k), . . . ,X σ(nbatch) are the sampled trajectories, with the associated sampled initial points
i
(σ(1))
0 , . . . , i

(σ(k))
0 , . . . , i

(σ(nbatch))
0 .
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(a) Illustration of the full data set for ODE discovery.

Time

Solution space
Rn

x
(K)
1

x
(2)
1

x
(2)
2

x
(2)
3

x
(2)
N

x
(1)
2

x
(1)
1

x
(1)
3

x
(1)
N

x
(K)
2 x

(K)
3

x
(K)
N

(b) Reduced dataset for one training step, with nbatch = 2
and lbatch = 4 (batches are highlighted in blue).

Figure 7. Illustration of data set and batches for the training of the Neural Nested SINDy
model for ODE discovery.

Through the applications, we will attempt to demonstrate the added value of the Nested SINDy algorithm
compared to the classical one, considering cases where the function f is a composition or product of elementary
functions. It should be noted that we will only consider scalar ODEs, but it is entirely possible to explore
systems of ODEs with the same method.
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5.2.1. Case 1: A trigonometric function involving composition using the PR block
Firstly, we try to recover the following ODE:

x′(t) = sin(x2) (5.6)

The function f : x 7→ sin(x2) is a composite function, that could be learned by a PR block. The dataset consists
of K = 100 trajectories with N = 500 constant time steps for each trajectory on the time interval [0, 1]. The
initial condition of each trajectory is uniformly sampled between −3 and 3.

Our network consists of a single PR block, where the polynomial layer contains monomials up to degree 2,
and where the radial layer contains the following functions:

F = { x 7→ x, x 7→ x2, x 7→ x3, sin, x 7→ log(|x|), x 7→
√
|x| }.

The hyperparameters and training settings are as follows:
• Optimizer: we use the Adam optimizer, with learning rate set to 0.01 and multiplied by 0.999 every 10

epochs. We add noise to the gradient when the loss is stuck. We train the model for 100 epochs.
• Weight initialization: all the weights are initialized to 0.2.
• Batch: we set nbatch = 30 and lbatch = 5.
• Sparsity: the Lasso parameter is oscillating around 10−4, and pruning parameters are set to MSEprune =
0.01, εprune = 0.01, and nprune = 2.

The results for 10 and 20 epochs are displayed in Figure 8, where we observe that the model has not yet
converged towards a satisfactory approximation. The model converges to the right formula after 100 epochs, as
depicted on Figure 9.

This example showcases the PR model’s ability to accurately learn the velocity of an ODE from trajectories.
The next step is to conduct tests by increasing the dictionary size and using reduced data (fewer trajectories),
sparser data (lower sampling frequency in the data), and noisy data.

5.2.2. Case 2: The Gompertz model
The Gompertz model was initially designed to describe human mortality, but is now applied in various fields,

especially in biology, see for instance the review paper [51]. We introduce this model in the context of tumor
growth. The evolution of the tumor volume x(t) is governed by the following ODE:

x′(t) = rx(t) log

(
k

x(t)

)
= rx(t) log(k)− rx(t) log(x(t)), (5.7)

where k is the maximum size that can be reached by the tumor, and r is a constant linked to the cells’
proliferative capacity. In the following, we will set k = 1 and r = 2. By setting k = 1, we slightly simplify the
formula of the growth speed, which becomes:

f(x) = −2x log(x) (5.8)

The exact formula of the growth speed function f can only be recovered with a PRP block, to reconstruct the
multiplication between the two basis functions x 7→ x and log.

To begin, we attempt to learn the function using the smallest possible PRP block that can still recover the
exact formula (see Figure 10). Nevertheless, this block can generate a large number of functions.

As for the previous application case, the dataset consists of K = 100 trajectories with N = 500 constant
time steps for each trajectory. Trajectories are observed over the time interval [0, 2]. The initial conditions of
each trajectory are uniformly sampled between 0 and 3. For the training, we use the same hyperparameters
as in the previous case. The only difference concerns weight initialization, where all the weights randomly
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(a) After 10 epochs: fθ(x) = 0.004x − 0.224 log(|0.197x2 + 0.209|) + 0.063 sin(0.404x2 + 0.463x + 0.599) +

0.044
√

|0.053x+ 0.207|+ 0.113.

(b) After 20 epochs: fθ(x) = −0.238 log(|0.186x2+0.381|)+0.454 sin(0.782x2+0.392x+0.174)+0.016
√

|0.018x− 0.167|+
0.087.

Figure 8. Case 1: training of Nested SINDy to recover equation (5.6). In the left figures,
we compare f (blue curve) and fθ (orange curve), while in the right figures, we compare the
trajectories of dynamic systems (5.5) (red curves) and (5.6) (blue curves) for three different
initial conditions. After 20 epochs, the model still has not converged towards a satisfactory
approximation.

initialized according to a normal distribution centered at 0.15 with a standard deviation of 0.05. This introduces
randomness when running multiple optimizations.

We train the model for 2000 epochs. Results are summarized in Figure 11 and Table 2. After 1900 epochs, the
model converges to the right formula. During the training, the MSE between f and fθ is not always decreasing,
but parameters are (slowly) pruned, and finally the model converges.

As expected (see Section 5.1.3), PRP models take more effort to converge towards the expected function. In
this case we succeed to recover the true formula of growth speed, but we considered a compact architecture with
few dictionary functions, and 20 times more epochs were required to converge than in the case of the PR model
used in the previous case. As a consequence, a major way of improving the PRP models lies in improving the
optimization process to make the convergence of such models easier.
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(a) After 50 epochs: fθ(x) = −0.038 log(|0.14x2 + 0.494|) + 0.991 sin(x2 − 0.017).

(b) After 100 epochs: fθ(x) = 1.0004 sin(1.0022x2).

Figure 9. Case 1: training of Neural Nested SINDy to recover equation (5.6). In the left
figures, we compare f (blue curve) and fθ (orange curve), while in the right figures, we compare
the trajectories of dynamic systems (5.5) (red curves) and (5.6) (blue curves) for three different
initial conditions. We observe that the model converges to the right formula after 100 epochs.

Table 2. Case 2: evolution of the training of Neural Nested SINDy to recover equation (5.7).
The table contains the formulas of fθ for epochs greater than 1 000, the mean squared error
between fθ and f , and the number of pruned parameters in the PRP block, at epochs 50, 150,
300, 1000, 1500, 1900.

Epoch fθ MSE on [0, 3] MSE on [0, 5]
pruned

parameters
50 expression too long to display 1.50× 10−1 3.83× 10−1 4
150 expression too long to display 5.18× 10−2 1.78× 10−1 5
300 expression too long to display 5.31× 10−2 1.22× 10−1 7
1000 1.19x2 − 2.03x(0.39x+ 1.24 log(1.16|x|)) 9.17× 10−2 1.97× 10−1 9
1500 −0.94x(0.46x+ 1.55 log(0.77|x|)) 2.17× 10−1 3.83× 10−1 10
1900 −1.98x log(|x|)) 1× 10−2 1× 10−2 11
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Figure 10. Structure of the PRP model used to learn the Gompertz model equation, in case
2.

6. Conclusion
In this study, we explored the capabilities and limitations of the Nested SINDy approach in discovering

symbolic representations of dynamical systems from data. Our investigation covered a spectrum of cases,
including the identification of “simple” functions, as well as the discovery of ordinary differential equations
(ODEs) from trajectory data. The versatility of the Nested SINDy framework was demonstrated through
various examples, showcasing its ability to approximate complex functions and discover ODEs underlying data-
generating processes.

The Nested SINDy approach extends the original SINDy methodology by incorporating nested structures
and neural network architectures, allowing for the identification of complex symbolic expressions that are not
directly accessible to traditional methods. This capability is necessary in cases involving compositions and
multiplications of functions, where the Nested SINDy method accurately identifies symbolic representations in
simple cases, or finds sparse symbolic representations in more complex cases.

Our results confirm that Nested SINDy can recover accurate symbolic expressions for a range of problems,
from simple trigonometric functions to the more complex Gompertz model of tumor growth. However, the
complexity of the optimization landscape associated with the Nested SINDy approach highlights the need for
careful selection of hyperparameters and initialization strategies to ensure convergence to meaningful solutions.

Future work could focus on several areas to enhance the Nested SINDy framework. First, exploring alternative
optimization algorithms specifically designed for the unique challenges of nested symbolic regression could
improve the efficiency and reliability of the method. Additionally, incorporating mechanisms for automatic
selection of the dictionary of basis functions based on preliminary data analysis might streamline the model
development process and improve the model’s adaptability to different types of dynamical systems. Furthermore,
one could envision integrating a supervised learning component, as in [45], in which a model is pre-trained to
map the relationship between datasets and SINDy-like sparse patterns encoding analytical expressions. This
effectively enables the automatic formulation of high quality initial solutions that can then be refined on a case-
by-case basis. Finally, extending the Nested SINDy approach to handle partial differential equations (PDEs)
could open new avenues for discovering the underlying physics of spatially extended systems from data.

In summary, this study underscores the potential of the Nested SINDy approach as a powerful tool for
symbolic regression and dynamical system discovery, while also pointing out avenues for further refinement and
expansion of the methodology.
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converges after 1900 epochs.
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