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Abstract. Ultra-large scales close to the cosmological horizon will be probed by the upcoming
observational campaigns. They hold the promise to constrain single-field inflation as well as
general relativity, but in order to include them in the forthcoming analyses, their modelling
has to be robust. In particular, general relativistic effects may be mistaken for primordial
signals, and no consensus has emerged either from analytical modelling nor from the numerical
route, obstructed by the large dynamical range to be simulated. In this work, we present a
numerical technique to overcome the latter limitation: we compute the general relativistic
displacement field with the N-body relativistic code gevolution and combine it with the
accurate Newtonian simulation Gadget-4. This combination leads to an effective simulation
reproducing the desired behaviour at the level of the matter power spectrum and bispectrum.
We then measure, for the first time in a simulation, the relativistic scale-dependent bias in
Poisson gauge; at redshift z = 0, we find bGR

1 = −8.1± 2.8. Our results at the field level are
only valid in the Poisson gauge and need to be complemented with a relativistic ray tracing
algorithm to compute the number count observable.

ar
X

iv
:2

40
4.

02
78

3v
3 

 [
as

tr
o-

ph
.C

O
] 

 1
0 

O
ct

 2
02

4

mailto:thomas.montandon@umontpellier.fr
mailto:oliver.hahn@univie.ac.at
mailto:clement.stahl@astro.unistra.fr


Contents

1 Introduction 1

2 Method 3

3 Simulation setup 4

4 Matter density statistics 5
4.1 Matter power spectrum 5
4.2 Matter bispectrum 7

5 Halo mass function and halo bias 8
5.1 Halo Mass Function 9
5.2 Linear halo bias 10
5.3 Nonlinear halo bias 12

6 Conclusion 13

1 Introduction

The most fundamental theory of gravity known and well tested today is General Relativity
(GR). This theory is one of the main ingredient of the standard model of cosmology: the
ΛCDM (Λ Cold Dark Matter) model. Nowadays, one of the major issue in cosmology is the
modelling of the Large-Scale Structure (LSS). Indeed, many experiments, currently operat-
ing or planned, such as DESI [1], Euclid [2], the Vera Rubin Observatory [3] or SPHEREx
[4], will provide captivating fresh panoramas of LSS. These data will contain precious in-
formation on inflation, the evolution and content of the Universe and the theory of gravity.
Extracting the maximum of information from these data requires however involved tools as
LSS is fundamentally a nonlinear process which – at least currently – cannot entirely be
described by analytical perturbative approaches. On large scales, in the CDM paradigm, all
non-gravitational interactions can be neglected, and matter can be assumed to be perfectly
cold. Moreover, the scales probed by the galaxy surveys have until now been small compared
to the cosmological horizon. For all these reasons, there was no need to include horizon-scale
relativistic effects in simulations. Hence, the state-of-the-art numerical simulations use the
Newtonian gravity eg. Gadget-4 [5], PKDGRAV [6], and Ramses [7], see Ref. [8] for a review.

As the volume probed by galaxy surveys increases, one approaches the cosmological
horizon, and will even overpass it with future intensity mapping surveys at much higher
redshifts [9]. Hence, a relativistic framework is needed to describe the dynamics at these
scales. For example, we would need such a framework to describe photons and neutrinos in
our Universe eg. [10], as well as the propagation of light in a perturbed spacetime eg. [11–13].
Another gain is that various extension of ΛCDM and extensions of GR are typically laid down
in a covariant relativistic context, and their impact on LSS is then only probed in its linear
(Newtonian) limit. While GR has 6 degrees of freedom, this restriction to the Newtonian
scalar potential could ignore important constraining power hidden in the extra 5 coupled
degree of freedom see Refs. [14, 15] for a recent example.
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But it is important to stress that in the ΛCDM model, the description of the dynamics
at these scales has not yet converged to a consensus despite the large literature on this topic,
eg. [16–31]. In particular, the complete theoretical modelling of the intrinsic relativistic
bispectrum, i.e. the three point correlation in Fourier space, including radiation, is still
missing. This is due to the highly complex and long equations that were derived and that
should include many different effects such as the dynamical relativistic effects which is the
subject of this paper, but also the so-called projection effects like redshift space distortions,
Doppler and gravitational effects and lensing.

A good model is however crucial as it can be used to test the theory of GR and the
ΛCDM model, and to constrain primordial non-Gaussianity (PNG) since relativistic effects
and PNG can be degenerate [32]. The amount of the so-called “local” PNG, which is one of
the most considered in the literature, is often described by the parameter fNL quantifying the
quadratic correction to a Gaussian potential. Measurements of PNG at the level of fNL ∼ 1 are
potentially within reach with the forthcoming LSS observational campaigns triggering many
activities on the analysis of observational data [33–38] and on designing large simulations to
prepare and validate the data analysis pipeline [39–44]. However, these constraints on fNL will
rely on an accurate modelling of the large-scale galaxy power spectrum, where it is affected
by PNG via the scale dependent bias, and the so-called squeezed limit of the bispectrum,
limit where one mode is much smaller than the two others. The squeezed limit is particularly
hard to model since it involves both large scales, where relativistic effects are important, and
small scales where nonlinearities and radiation are important.

In the past years, we have proposed an alternative numerical route to try to settle this
question: we resort to N-body codes taking into account radiation and relativistic effects
in the initial conditions up to second order and in the dynamics [45, 46]. These analysis
have led to the conclusion that at redshift 2, GR effects can reach an amplitude 1 − 10%
in the matter power spectrum and bispectrum. However, one fundamental ingredient is still
missing, the second-order bias model. Indeed, we have used the state-of-the-art relativistic
cosmological code gevolution [47] which solves the 6 Einstein equations on a fixed grid in the
weak field regime, while being fully nonlinear for the stress energy tensor. While gevolution
is extremely efficient, its main limitation is its lack of (adaptive) dynamic range making it
impossible to resolve at the same time both the inner structure of halos along with the rele-
vant large scales. To go beyond this limitation, many works have focused on including some
relativistic effects in existing Newtonian codes. Most of these works have used the so-called
N-body gauge developed in Ref. [48], in which one can consistently describe the leading or-
der general relativistic effects coupled to a Newtonian-like non-relativistic matter field. This
way, linear radiation was included in the dynamics of Gadget-3 in the code called COSIRA
[49], and massive neutrinos were then included in CONCEPT [50] and gevolution, see [10] for
a review. In Ref. [51], the N-body gauge was extended beyond the scalar sector and im-
plemented in gevolution. These linear methods were used to perform the Euclid flagship
simulations. Focusing on the scalar sector, Ref. [52] has developed a method allowing the in-
terpretation of bias measured in Newtonian simulations in a GR context. Finally, the merging
of gevolution and its Newtonian counterpart Gadget-4 [5] was undertaken in GrGadget [53]
while the extension of RAMSES to general relativity was performed in GRAMSES [54].

In this article, we propose to combine the simulation outputs of gevolution and Gadget-4
to go beyond the limiting grid size of gevolution and to perform for the first time simulations
that can resolve both halos and scales close to the cosmological horizon. This combination is
possible thanks to the developments of Refs. [48, 51], which allow gevolution to perform a
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Newtonian simulation. The advantage of our method is its simplicity, as it does not require
any modification of the codes and can be applied a posteriori as post-processing. It is also
nonlinear and goes beyond the scalar sector. In this paper, we will focus on the general
relativistic dynamics, but the same method can be extended to eg. radiation and massive
neutrinos. In section 2, we introduce briefly the results of Refs. [48, 51] and our method to
combine snapshots of gevolution and Gadget-4. In section 3, we introduce the simulation
setup used. In section 4, we compare the summary statistics of the matter field in the different
simulations and in section 5, we study the properties of halos and measure for the first time
in a simulation the scale dependence of the bias due to general relativistic effects. We also
show some measurements of the halo bispectrum. In section 6, we conclude.

2 Method

In this article, we propose a simple method to correct the small-scale gravity of gevolution
with that from a purely Newtonian simulation. Specifically, we perform two simulations with
the same initial random perturbation phases: one fully relativistic and one in the Newtonian
mode of gevolution [45, 48, 51]. The relativistic simulation is performed in the Poisson
gauge. The Newtonian simulation however is performed in the so-called N-body gauge [48].
This gauge was found to be the correct coordinate system to interpret Newtonian simulations
in a relativistic context and at the linear level. Indeed, in the limit of late time, where
radiation is negligible, the time perturbation of this gauge is vanishing. Moreover, the volume
perturbation is set to zero, which means that the density perturbation of non-relativistic
particles is equal to the density computed in a Newtonian N-body simulation. Finally, it can
be shown that the linear equations of motion of non-relativistic particles in the absence of
radiation, as well as the Poisson equation, are identical. For these reasons, the Newtonian
gevolution simulation can directly be compared to the Gadget-4 simulation as they are in
the same coordinate system and share the same density perturbation and potential.

If now we subtract the particle positions of the gevolution simulations

ξGR = xGR
gev − xNewton

gev , (2.1)

we obtain a displacement field that contains two types of information. First, xGR
gev and xNewton

gev

are not in the same coordinate system. Hence, ξGR can be interpreted as the spatial generator
associated to the gauge transformation: Poisson→N-body. Second, the relativistic simulation
performed in the Poisson gauge also contains all the general relativistic effects, i.e. the
cosmological horizon effects as well as the nonlinear coupling between the 6 degree of freedom.
Remember that the Newtonian simulation has only one degree of freedom. This subtraction
cancels the “Newtonian contribution” which is contained in both positions xGR

gev and xNewton
gev

and it remains in ξGR the pure relativistic contribution to the position of the particles. Note
that, since gevolution is a particle mesh code, the field ξGR is limited by the Nyquist
frequency of the (uniform) simulation grid.

Then, we perform a third simulation with Gadget-4 again with the same initial random
phases. We can now add ξGR to the Gadget-4 particle positions, such that

x = xNewton
Gad + ξGR . (2.2)

This combination allows us to perform a gauge transformation to the Poisson gauge, but
also preserves the purely relativistic contribution and the small-scale Newtonian perturbation
which are well resolved in the Gadget-4 simulation thanks to the tree algorithm.
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Note that we apply this transformation in a single post-processing step to a simulation
(cf. also Ref. [55]). In principle, one could also envision a scheme, where the Newtonian small-
scale correction is applied in every time step of a gevolution simulation. Since the corrections
are mostly affecting large scales, it is however justified to neglect the back-reaction from the
small-scale correction onto the large-scale evolution. Note however that this is not the case for
all general cosmological models. Here we are focusing on the stardard ΛCDM model to show
that the method works in the simplest case. Indeed As we will see in the following, working
with integrated quantities already shows accurate enough results for the power spectrum and
bispectrum, even correcting numerical uncertainties due to the discrete gradient computation
of gevolution. Note also that Eqs. (2.1) and (2.2) are in configuration space. Working in
configuration space allows us to keep all the mode correlations which would not have been
possible if we had combined the fields in Fourier space. Finally, note that gevolution is
much more efficient (but less accurate), which means that the computational cost is largely
dominated by the run in Gadget-4.

To make a fair comparison of the simulations combination, we propose in addition two al-
ternative ways to compute the general relativistic displacement field ξGR. We use Lagrangian
Perturbation Theory (LPT) following Ref. [45], where it was developed iteratively (nLPT) in
the discrete general relativistic case. For this paper, we will focus on the first (n = 1) and
second (n = 2) order. We run the initial conditions generator [46] directly at the redshift
of a given Gadget-4 snapshot to obtain the particle positions using only 1LPT or 2LPT for
the Newtonian (xNewton

nLPT ) and the relativistic simulations (xGR
nLPT). The “Lagrangian general

relativistic displacement field” ξGR
nLPT

can then be obtained by subtracting

ξGR
nLPT

= xGR
nLPT − xNewton

nLPT . (2.3)

Adding this displacement field to the particle positions of the corresponding Gadget-4 snap-
shot should correspond to a nth-order gauge transformation. However, radiation and the
discreetness of the method employed makes the interpretation of the errors subtle, as we will
see in the following. The combination of Gadget-4 with 1LPT (2LPT) is simply labelled
“Combined 1LPT” (“Combined 2LPT”).

3 Simulation setup

We use a fiducial cosmology where the matter energy densities today are Ωc = 0.263771
and Ωb = 0.0482754, the Hubble parameter today is H0 = 67.556 and the primordial power
spectrum amplitude and tilt are As = 2.215 × 10−9 and ns = 0.9619. Note that we are
currently setting the radiation component in the N-body simulation to 0 in the background by
imposing ΩΛ = 1−Ωc−Ωb as well as at the level of the perturbations. The fundamental mode
of the comoving box is kf = 8×10−4 h/Mpc. It corresponds to a box of ∼ 11.6Gpc quite close
to the cosmological horizon today ∼ 12.7Gpc. The initial conditions are computed following
Ref. [46] with a custom branch of MonofonIC1. We use a grid of 1024 points thus the Nyquist
frequency limiting the resolution of gevolution is 0.41h/Mpc. Each particle have a mass of
5.15 × 1012M⊙/h. The bottleneck to the formation of dark matter halos in this numerical
setup is the grid resolution that would need to be an order of magnitude larger. Having such
a large grid is very computationally challenging and moreover workarounds already exist on
the market in the form of tree algorithms [5] or of multi-grid approaches [7].

1The main branch is available on https://bitbucket.org/ohahn/monofonic/src/master/ and the modified
branch on https://bitbucket.org/tomamtd/monofonic/src/relic/.
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The displacement field, and therefore the initial conditions, is computed with gevolution
at redshift 50 by using the second-order discrete Lagrangian method developed in Ref. [45]2.
The general relativistic initial conditions encompass all the terms up to second order in per-
turbation theory in Poisson gauge including radiation, while the Newtonian initial conditions
are computed in the N-body gauge [48], see Ref. [45] for more details.

In order to populate all the modes of the Fourier grid in the gevolution simulations,
we use 20483 particles. The exact same Newtonian initial conditions are used for the New-
tonian simulations performed with gevolution and Gadget-4. For the simulation performed
with Gadget-4, we use a softening length of 250 kpc/h. As we are simulating relativistic
effects along with halo formation, our Gadget-4 simulation spans four orders of magnitudes
in scales and is the computational bottleneck of this whole simulation pipeline. Indeed, one
gevolution simulation takes ∼ 1000 CPUh while the corresponding Gadget-4 simulation
costs 0.5 MCPUh.

4 Matter density statistics

In this section, we compare the matter density power spectrum and bispectrum of the differ-
ent simulations: Gadget-4, gevolution in Newtonian mode labelled “gevolution Newton”,
gevolution in GR mode labelled “gevolution GR” and the combination of the different sim-
ulations according to (2.2). The matter density contrast is defined as δm(x) = ρm(x)/ρ̄ − 1
where ρm is the matter density and ρ̄ is the mean density of the Universe. To evaluate the
density, we use the counting density as computed by the code Pylians3 [56]. For the Newto-
nian simulations Gadget and “gevolution Newton”, this corresponds to the physical density.
For “gevolution GR”, the counting density cannot be directly interpreted as the physical
density because of the volume perturbation of the Poisson gauge. However, the combined
simulations are also in Poisson gauge such that they can be compared at large scales with
“gevolution GR”.

4.1 Matter power spectrum

We start by comparing the matter power spectrum and bispectrum of the different simulations.
The power spectrum of two isotropic and homogeneous fields δi and δj reads

⟨δi(k1)δj(k2)⟩ = (2π)3δD(k1 + k2)Pij(k1) , (4.1)

where δD is the Dirac distribution and ⟨. . . ⟩ is the average over the modes.
In the first column of Fig. 1, we show the matter density contrast power spectrum Pmm

for 4 redshifts z ∈ [5, 2, 1, 0]. The second and third columns show the relative difference with
the Gadget-4 and the relativistic gevolution simulations respectively. The colours indicate
the different simulations and combinations, see caption of Fig. 1.

Small-scale behaviour. As expected, the power spectra of the gevolution simulations
(relativistic and Newtonian) are equal at small scales. Indeed, deep inside the horizon, rel-
ativistic effects are negligible. However, we can see that the small-scales nonlinearities are
underestimated in both simulations performed with gevolution compared to the Gadget-4
simulations. This is due to the particle mesh nature of the code that becomes less accurate
close from the Nyquist frequency. Conversely, the tree algorithm of Gadget-4 allows to resolve
Newtonian interactions down to the force softening scale.

2The branch of gevolution containing the second-order initial conditions can be found on
https://github.com/TomaMTD/gevolution-1.2.
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Figure 1: Power spectra for 4 redshifts. Blue: GR simulation (gevolution GR), orange:
Newtonian one (gevolution Newton), green: Gadget-4 one, black: combination of simula-
tions with Eq. (2.2), red and violet: combination of Gadget-4 with 1LPT and 2LPT, cyan:
linear power spectrum in the synchronous gauge from CLASS. The second (third) column
shows the relative difference with the reference Gadget-4 (gevolution GR) simulation. The
combined simulation is able to retrieve the relativistic effects at large scales as well as the
nonlinear behaviour at small scales.

Large-scale behaviour. At large scales, we observe the standard behaviour due the gauge
dependent relation between gravitational potential and density. The relativistic simulation
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has an increasing power due to the Poisson gauge. In the linear theory without radiation, this
is a pure fictitious gauge effect that cannot be observed. The Newtonian simulations have
the same expected trend, but gevolution still underestimates the large scales perturbation
power, as one can see in dashed orange curve in the middle panel. This difference increases as
the redshift decreases. In Ref. [53], this behaviour is observed and attributed to the first-order
gradient computation implemented in gevolution. A second-order gradient computation is
implemented and can reduce this large-scale offset. This would however even more degrade
the small-scale power. The same loss of power should affect in the same way the large scales
of the relativistic simulation gevolution GR.

Combined simulations. With the black dashed line, we show the power spectrum of the
dark matter density perturbations computed after combining the three simulations according
to Eq. (2.2). The small-scale Newtonian perturbations are recovered with a relative difference
of ∼ 0.1% for z < 2 and ∼ 0.5% for z ≥ 2. At large scales, the relative difference to the
gevolution simulation is less than ∼ 2%, reaching 0.5% for z = 5. The numerical inaccuracy
due to the first-order gradient computation discussed in the previous paragraph partially
cancels in the subtraction of Eq. (2.1). Indeed, we can see that “gevolution GR” in the
third column underestimates in a very similar manner the power at large scales compared to
the “combined” simulation. The power is however underestimated with respect to LPT and
this discrepancy amplifies as the redshift decreases. That shows that the cancellation is not
perfect. This non-perfect cancellation might be due to the fact that the error introduced by
neglecting linear radiation is gauge dependent, see Fig. 1 of Ref. [51].

Comparison to the combination with LPT The LPT results are of the order of 1% to
10% compared to the Gadget-4 simulation at small scales. Since the gauge transformation
should not affect the small scales, this indicates theoretical or numerical errors in the evalu-
ation of the fields. Surprisingly, while for redshift z = 5, 2LPT becomes better than 1LPT,
for z < 5, 1LPT shows a better agreement than 2LPT. This may indicate that perturbation
theory has broken down. Indeed, the method employed and described in Ref. [45] is pertur-
bative and may therefore not be accurate enough at low redshift/small scales. Moreover, on
the theoretical side, we neglect linear radiation in the dynamics of our simulations while it is
included in the LPT computation. This theoretical error changes the size of the cosmological
horizon, and hence the scale of the large-scale turn over in the Poisson gauge. Therefore, as
already observed in Ref. [55], this would cause a large error at large scales because the power
spectrum diverges in this gauge for modes smaller than the horizon. This would explain
the large-scale discrepancy between the “combined” simulation and LPT visible in the third
column.

4.2 Matter bispectrum

The bispectrum of the matter density field δm is defined as

⟨δm(k1)δm(k2)δm(k3)⟩ = (2π)3δD(k1 + k2 + k3)Bmmm(k1, k2, k3) . (4.2)

In Fig. 2, we show in the first row the bispectrum for two different triangle configurations
at redshift 0.1. In the left panel, the equilateral configuration and on the right squeezed
triangle with the two modes k1 = k2 varying and the third mode k3 fixed to four times the
fundamental frequency of the box. The colours used are the same as in Fig. 1. To significantly
improve the bispectrum measurements which would be otherwise highly noisy, we have used
the pairing method [57].
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Many of the results that we have found for the power spectrum in subsection 4.1 also
hold for the bispectrum. At small scales, both gevolution simulations underestimate the
bispectrum because of the particle mesh nature of the code. At large scales, the Newto-
nian simulation performed with gevolution underestimates the bispectrum because of the
first-order gradient computation. The combination of the three different simulations, called
“combined” in the legend, has the advantage of the Gadget-4 simulation at small scales, with
the same 0.1% relative difference as in the power spectrum, with the trend of the relativistic
simulations at large scales with slightly more amplitudes which comes from the cancellation
of the gradient numerical errors in the GR displacement field computation in Eq. (2.1). This
is particularly visible when looking at the squeezed limit configuration. The combination of
Gadget-4 with LPT shows a loss of power at the level of 10 to 20% with respect to Gadget-4,
similar to the one observed in the power spectrum. At large scales, the amplitude of the
relativistic trend is again larger than the one of the “combined” simulation, which shows that
the cancellation of the numerical error is partial. Since one mode is fixed to a large scale
k3 = 4 × kf , we observe a constant offset (except for the largest scales) between the New-
tonian and the relativistic simulations performed by gevolution. When we combined the
simulations’ positions, we recover a similar constant offset, but now compared to Gadget-4.
As expected, this offset is even larger for LPT at large scales, which then loses power at small
scales.

In this section, we have shown that the combination of the particle positions defined in
Eq. (2.2) produces dark matter power spectrum and bispectrum that have the advantages
of the Gadget-4 and of the relativistic gevolution simulations. At small scales, the pertur-
bations are not limited by the Nyquist frequency and the power spectrum and bispectrum
of the combined simulations have a relative difference with the Gadget-4 simulation of 0.1%
for z < 2. At large scales, the combined simulation has the same relativistic behaviour as
the relativistic simulation, with an offset similar to the one observed also at large scales be-
tween the Newtonian simulations. The comparison with the large scales results obtained with
LPT show that the errors introduced by the first-order gradient computation of gevolution
partially cancel.

The combination of simulations shows overall a good agreement with LPT at high red-
shift (z = 5). However, the combination of Gadget-4 and LPT degrades the power at small
scales for the lower redshifts. This might be due to the iterative method used in this article
to generate the displacement fields which is a perturbative numerical method and therefore
might break down at low redshift and small scales. Finally, note that, as demonstrated by
Ref. [53], improving the density field accuracy also leads to a better precision of all metric
potentials ϕ, χ, Bi and hij . We now move to the study of the statistics of the halo formed in
our simulations. Given the fact that the combination of Gadget-4 with LPT is inaccurate at
small scales, we will now only focus on the comparison of the combination of the simulations
with Gadget-4.

5 Halo mass function and halo bias

Dark matter halos are a biased tracer of the underlying dark matter distribution, see Ref. [60]
for a review on the galaxy bias. The scale dependence of the bias in general relativity was
studied in Refs. [20, 61–66]. The derivation of the galaxy density up to second order in
any gauges was in particular performed in Ref. [65]. Recent numerical studies have been
conducted on halo bias in a relativistic context [13, 67]. The authors used gevolution to
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Figure 2: Matter bispectrum at redshift 0.1 for two different triangle configurations: equi-
lateral in the left panel and squeezed (one modes fixed to four times the fundamental mode
of the box, i.e. 3.2 × 10−3 h/Mpc) in the right panel. The colours are the same as used in
Fig. 1. The theory, in cyan, shows the Newtonian tree-level bispectrum, see Refs. [58, 59].
The second row shows the relative difference with the reference Gadget-4 simulation.

simulate 57603 N-body particles in a volume of (4032 Mpc/h)3. Their resolution in mass
was 3 × 1010 M⊙/h but their halo formation is limited by the particle mesh to 700 kpc/h.
The method presented in our article can be used to bypass this bottleneck to form halos.
We are indeed numerically following a box almost two times larger than in Ref. [67] with a
spatial resolution of 250 kpc/h, our simulations are only limited by the number of particles
forming halos. Moreover, the box size used in Ref. [13] is small enough to neglect effects due
to the horizon. In this section, we study the halo field and in particular the impact of horizon
scales on them. Note that our result are only valid in the Poisson gauge. Heading toward a
gauge invariant prediction requires to combine our results with a ray tracing algorithm as in
Ref. [46].

5.1 Halo Mass Function

In Fig. 3, we display the Halo Mass Function (HMF) for 4 redshifts. From the bottom to the
top, we have z = 1 in blue, z = 0.5 in orange, z = 0.1 in green, and z = 0 in red. The range
of mass between 2× 1014 M⊙/h to 9.0× 1015 M⊙/h gives halos with a least 30 particles. In
dashed lines, we add the model of Ref. [68] plotted with Colossus [69]. We stress that all
HMF models calibrated with N-body simulations have to be extrapolated to meet the very
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Figure 3: Halo mass function of the Gadget-4 simulation for 4 different redshifts. Dashed
lines indicate the models of Refs [68] computed with Colossus. For low masses, the halos are
poorly resolved and the HMF is underestimated compared to the theoretical prediction.

massive halos that we are simulating. These halos are well converged for masses larger than
∼ 2×1015 M⊙/h. Hence, the HMF is underestimated for all masses at z = 1. The information
on the HMF is now useful to measure the halo bias. Those measures need a trade-off between
statistics (number of halos studied) and the convergence of our simulations. As we will see in
the next section, keeping all halos with more than 30 particles gives a reasonable measure of
the halo bias.

5.2 Linear halo bias

In Newtonian gravity, and in the absence of primordial non-Gaussianity, the linear halo density
contrast is proportional to the matter density contrast: δNh = bN1 δ

N
m. In GR, a gauge effect

leads to an additional relativistic term proportional to H2/k2:

δ
(1)
h (z,k) =

(
b1(z) + bGR

1 (z)
H2

k2

)
δ(1)m (z,k) . (5.1)

Recall that we measure the counting density. In the Newtonian simulation, it matches the
physical density δ̂. In Poisson gauge, its relation with the physical density reads at linear
order

δ
(1)
X,P = δ̂

(1)
X,P − 3ϕ(1) , (5.2)
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1 as a function of the redshift. The cyan curves show
the theoretical predictions of Ref. [65, 72]. For z = 0, z = 0.1, we have detected for the first
time a negative linear relativistic halo bias.

where X stands either for m (matter) or h (halos) and ϕ is the gravitational potential. Using
Eq. (53) of Ref. [65] at linear order along with Eqs. (5.18) and (6.8) of Ref. [59], the linear
halo bias in the Poisson gauge for the counting density reads:

bGR
1 (z) = 3

(
f(z) +

3

2
Ωm(z)

)
(1− b1(z)) , (5.3)

where f is the linear growth rate. In the Newtonian Gaussian case, we theoretically expect
bGR
1 = 0, but PNG induce a scale-dependent bias [70] that is now pretty standard to constrain

in the analysis of the current large observational surveys. Note also that the constant bias in
Newtonian simulation can be interpreted in a GR context [52].

In the left panel of Fig. 4, we show b1(z, k) as a function of k. The colours (from top
to bottom) blue, orange, green and red indicate the four different redshifts 1, 0.5, 0.1 and 0.
As expected, as we go to large scales, the ratio b1(z, k) tends to a constant. This constant
itself scales like the redshift. The black dashed lines almost superposed to the coloured curves
show the bias computed with the “combined” simulation. They follow exactly the Gadget-4
simulation at small scales, and seem to have a decreasing amplitude with respect to the
Gadget-4 simulation as we go to large scales. To estimate the deviation, we fit the largest
scales up to the cut-off indicated in black vertical lines (kcut = 0.08 h/Mpc). The small scales
nonlinearities induce an increase of Phm/Pmm that we take into account by adding a term
∝ k2 to our fitting procedure with Eq. (5.1). This allows us to fit b1 in a larger range of k
[71]. A more involved treatment would feature non-linear bias parameters [60].

The fitted linear bias b1 can be read in Table 1 and is shown as function of the redshift
in the middle panel of Figure 4. Since the halo mass function is underestimated, see Fig. 3,
the bias will also be underestimated. To correct this effect, we use the method of “abundance
matching” [10]. The mismatch between HMF fits and our measurements in Fig. 3 due to
numerical resolution effects can be either interpreted as an underestimation of the abundance
at fixed mass, or an underestimation of the mass at fixed abundance. Interpreting it as the
latter allows us to recover the expected result by abundance matching, i.e. by reassigning
halo masses to recover the expected abundance given by the fit curve of Ref. [68]. The results
obtained in the Gadget-4 and the “combined” simulations are respectively shown in solid blue
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Simulations Gadget-4 Combined
Bias b1 b1 bGR

1

z = 1 9.047± 0.077 9.017± 0.057 38.848± 55.141

z = 0.5 5.667± 0.007 5.667± 0.007 −22.658± 6.165

z = 0.1 3.880± 0.005 3.879± 0.005 −6.693± 3.453

z = 0 3.566± 0.004 3.565± 0.004 −8.054± 2.840

Table 1: Halo bias obtained by fitting Eq. (5.1) to the large scales (k < kcut = 0.08h/Mpc)
of the first panel Fig. 4. We detect a non-zero GR halo bias at more than 3σ for all redshifts.

and orange lines. We do not observe significant impact of relativistic effects on the linear
Newtonian bias estimation. The dashed lines show the bias model of Ref. [72] obtained with
Colossus and integrated over the mass range of interest:

bmodel
1 (z) =

∫
dMb1(M, z) dn

d logM∫
dM dn

d logM

. (5.4)

Note that the bias model that we have chosen [72] has been calibrated on simulations and
has a range of mass validity up to 5× 1015 M⊙/h. Our mass functions goes slightly beyond
this limit but our estimated Newtonian linear bias is well compatible.

While, we expect a vanishing bGR
1 in the Gadget-4 simulation, the residual cosmic vari-

ance, noise and shot noise that underestimates the halo mass function, produce a significant
large systematic effect. To estimate these effects, we measure bGR

1 in the Newtonian simula-
tions and subtract it from the measure of bGR

1 in the “combined” simulation. Moreover, to test
the robustness of our measurements, we compare the measurements obtained by removing
the large scale points. We find that the measurements become stable and consistent with the
theory after removing the first two points. The result obtained is shown in the right panel of
Fig. 4 in orange line. The cyan line show the theoretical result of Eq. (5.3). Note that we use
the estimated linear bias, which means that the theoretical curve has small error bars almost
invisible on the plot. The three lowest redshifts, which have much more statistics and have a
larger converged range of mass for the halo mass function are well centred on the theoretical
prediction and exclude both 0 at more than 2σ to 3.6σ, see Table 1 for the exact values. For
redshift z > 0.5, the relativistic halo bias bGR

1 has larger error bars and include 0 at ∼ 1σ and
the theoretical prediction at ∼ 1.5σ.

We have here measured for the first time the linear halo bias in a general relativistic
context and isolated the GR bias contribution that is degenerate with PNG. In the next
subsection, we propose some elements for the analysis of the halo bispectrum.

5.3 Nonlinear halo bias

At second order, the equation for the halo density in Poisson gauge is more involved and
requires two additional bias parameters: b2 and bs eg. [65]. Hence, the function Bhhh/Bmmm

is in principle a non-trivial function of the three bias parameters b1, b2 and bs, and of the three
different modes k1, k2 and k3. A full analysis of the second-order bias would require a fit of
the bispectrum including all the general relativistic terms, as well as all the second-order bias
parameters, see for example Ref. [13]. As a first step, we show in Fig. 5 the measurements
obtained by dividing the halo bispectrum by the matter bispectrum. Similarly to Fig. 4,
the solid coloured lines represent the measurements performed in the Gadget-4 simulation,
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and the dashed black lines almost superposed with the coloured lines are the corresponding
measurements performed in the “combined” simulation. In the left panel, we present the
equilateral configuration while in the right panel we have fixed one of the mode to k3 = 4×kf
and varied the two other modes such that large k’s correspond to squeezed configurations.
With the accuracy of our simulation, we do not observe any significant difference between
the relativistic and the Newtonian simulation. Thus, within our framework, we conclude that
most of the relativistic effects impacting a measurement of fNL would be present at the level
of the scale dependant bias and not the halo bispectrum.

6 Conclusion

In this paper, we have run and analysed the first simulation able to resolve both scales close to
the cosmological horizon and halos in a general relativistic framework. To do so, we combined
the desirable features of two N-body codes on the market: gevolution to compute the general
relativistic displacement field and Gadget-4 to resolve the halos thanks to its tree algorithm.
We have numerically followed a box of 11.6 Gpc with softening length ϵ = 250 kpc/h thus
simulating structure formation over four orders of magnitudes in length.

Comparing the matter power spectrum and bispectrum between the different simula-
tions, we demonstrated that the “combined” simulation obtained converges at small scales to
the Gadget-4 simulation, with a relative difference of ∼ 0.5% for all redshifts. The combina-
tion of Gadget-4 with a general relativistic displacement field evaluated with 1- and 2LPT
shows a large loss of power at small scales due to the perturbative method employed to eval-
uate the displacement fields. At large scales, the “combined” simulation contains the same
relativistic trend as gevolution, with an additional offset which comes from a cancellation of
the errors generated by the first-order gradient computation in gevolution. The combination
of Gadget-4 with LPT shows a slightly larger offset, demonstrating that the cancellation is
partial.
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Finally, we performed an analysis of the halos generated in our simulations by comparing
the “combined” simulation with its Gadget-4 counterpart. We studied the halo mass function
for 4 redshifts between z = 1 and z = 0 to show that our simulations are only well converged
for halo masses ≳ 2 × 1015 M⊙/h. Using all halos with more than 30 particles and the
“abundance matching” method, we have measured for the first time in a relativistic simulation
the linear halo bias and found agreement with the theoretical prediction in the Poisson gauge
[65]. We estimated the general relativistic scale dependence of the bias for the three lowest
redshifts studied z = 0, z = 0.1 and z = 0.5. Finally, we show the measurements of the
halo bispectrum divided by the matter bispectrum, which naively corresponds to a second-
order bias estimation. While at the level of the power spectrum, we were able to isolate the
relativistic pollution to a measure of scale-dependent bias in b1 (see Table 1), we did not
observe any significant difference between the “combined” and the Gadget-4 simulation at
the level of the bispectrum.

The prescription discussed in this work offers a simple way to include GR effects in
Newtonian simulations. Our method is nonlinear, not restricted to the scalar sector and
can also be extended to other kind of effects such as radiation, neutrinos or modified grav-
ity. Forming halos in such general relativistic simulation complement the developments of
Refs. [30, 31, 46, 48, 52–54, 65, 73], aiming on the long term to run a large relativistic sim-
ulations following eg. [39, 41, 42, 44, 74]. Such large relativistic simulations will be out of
paramount importance to validate the analysis pipeline for the observational data and to
explore theoretical models and observational aspects in a controlled environment. For these
analysis however, it will be crucial to compute actual observables such that the final results
in the relativistic simulation becomes gauge invariant, as we have done for dark matter in
Ref. [46]. In particular, this method needs to be adapted to a light-cone analysis. This can in
principle be performed by using the same operation but with the four-dimensional positions
of particles. The new positions of the particles can then be used for the ray tracing. This
would allow us to reach high accuracy such as in Ref. [75], but in a gauge consistent and full
relativistic framework such as in Ref. [13]. Our method could also be combined with the code
LIGER [76] which is able to post-process Newtonian simulations to produce the distribution
of tracers on the light cone including linear relativistic effects. The accuracy of such methods
will be studied in future works. Toward obtaining gauge invariant observables, an intriguing
question is whether a halo finder designed for Newtonian purpose needs to be adapted to
the gauge adopted. These considerations will be essential not to discard the largest scales
currently observed and to gain unparalleled insight concerning our Universe.
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