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Abstract

We present an existence theorem for a large class of nonlinearly
elastic shells with low regularity in the framework of a two-dimensional
theory involving the mean and Gaussian curvatures. We restrict our
discussion to hyperelastic materials, that is to elastic materials pos-
sessing a stored energy function. Under some specific conditions of
polyconvexity, coerciveness and growth of the stored energy function,
we prove the existence of global minimizers. In addition, we define a
general class of polyconvex stored energy functions which satisfies a
coerciveness inequality.
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1 Introduction

A shell is a three-dimensional elastic body which occupies a volume contained
between two surfaces (in general parallel) close to each other. A natural way
to define a shell is to consider a surface S embedded in R3 and to thicken
it on each side. In response to given loads, the displacement and the stress
arising in an elastic shell, viewed as a three-dimensional body, are predicted
by the equations of nonlinear three-dimensional elasticity. To this day, there
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are two theories of existence of solutions for these equations: one based
on the implicit function theorem and the other, due to a seminal paper of
Ball [5], based on the minimization of functionals. This latter asserts that
if the constituting material is hyperelastic and the associated stored energy
function satisfies some specific conditions of convexity (called polyconvexity),
coerciveness and growth, the minimization problem has at least one solution.

As a shell is ”almost” a surface and may even be ultrathin such as polymer
films or biological membranes, shell modeling is part of a two-dimensional
theory involving only the deformation of the surface S. This approach yields
a variety of two-dimensional nonlinear shell models, which can be classified
into two categories.

A first category consists of two-dimensional nonlinear shell equations ob-
tained from the three-dimensional elasticity by means of an asymptotic anal-
ysis when the thickness goes to zero. The question of how to rigorously
identify and justify the nonlinear two-dimensional shell equations from the
three-dimensional elasticity was finally settled in two key contributions, one
by Le Dret & Raoult [15] and one by Friesecke, James, Mora & Müller [12],
who respectively justified the equations of a nonlinearly elastic membrane
shell and those of a nonlinearly elastic flexural shell through the use of Γ-
convergence theory. This theory automatically provides the existence of a
minimizer for the Γ-limit functional. Specifically for the nonlinearly elastic
flexural shell equations, Ciarlet & Coutand [8] have established the existence
of a minimizer by direct methods in calculus of variations.

A second category consists of two-dimensional nonlinear shell models ob-
tained from the three-dimensional elasticity by restricting the range of ad-
missible deformations and stresses by means of specific a priori assumptions
such as Cosserat assumptions (Simo & Fox [16]) or Kirchhoff-Love assump-
tions (Koiter [14]). The topic of existence of solutions for these models has
been treated for various types of shells and with different techniques in the
literature (Antman [3, 4], Ciarlet & Gratie [10], Ciarlet, Gogu & Mardare
[9], B̂ırsan & Neff [6], Bunoiu, Ciarlet & Mardare [7] and Ciarlet & Mardare
[11]).

In Sect. 3, we present a general theorem of existence of global minimizers
for nonlinear shells in the framework of a two-dimensional theory involving
the mean and Gaussian curvatures. Inspired by the approach of Ball [5],
we define a notion of a polyconvex and orientation-preserving stored energy
function for shells. As an example, the Helfrich [13] density energy function
used by the mechanical community for modeling biological membranes, is
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polyconvex but not orientation-preserving. In Sect. 4, we introduce a class of
polyconvex stored energy functions for G1 shells which satisfies a coerciveness
inequality.

2 Notations

In all that follows, Greek indices and exponents range in the set {1, 2} while
Latin indices and exponents range in the set {1, 2, 3} (except when they are
used for indexing sequences). We use the Einstein summation convention
with respect to repeated indices and exponents.

The three-dimensional Euclidean space is identified with R3 by choosing
an origin and a Euclidean basis. Vector and tensor fields are denoted by
boldface letters. The Euclidean norm, the inner product, the vector product
and the tensor product of two vectors u and v in R3 are respectively denoted
|u|, u · v, u ∧ v and u⊗ v. The sets of all m× n real matrices are denoted
Mm×n. For a real matrix A ∈Mm×n, the notation |A| := tr (ATA)1/2 stands
for the Frobenius norm.

A domain ω ⊂ R2 is a bounded, connected, open set with a Lipschitz-
continuous boundary γ := ∂ω, the set ω being locally on the same side of γ.
A generic point in the set ω is denoted by x = (xα) and partial derivatives,
in the classical or distributional sense, are denoted ∂α := ∂/∂xα.

The notation Lp(ω;R3) with 1 6 p < ∞ designates the space of vector
fields ξ = (ξi) : ω → R3 with components ξi in the usual Lebesgue space
Lp(ω). It is equipped with the norm

‖ξ‖p :=

(∫
ω

|ξ(x)|p dx

)1/p

for any ξ ∈ Lp(ω;R3).

The space W 1,p(ω;R3) denotes the space of vector fields ξ = (ξi) : ω → R3

with components ξi in the usual Sobolev space W 1,p(ω). It is equipped with
the norm

‖ξ‖1,p :=

(
‖ξ‖pp +

2∑
α=1

‖∂αξ‖pp

)1/p

for any ξ ∈ W 1,p(ω;R3).

The space W 1,∞(ω;R3) consists of vector fields ξ = (ξi) : ω → R3 with
components ξi in the usual Sobolev space W 1,∞(ω) of Lipschitz continuous
functions on ω.

Strong and weak convergences are respectively denoted → and ⇀.
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3 An existence theorem

First, let us briefly recall the framework considered in the context of three-
dimensional elasticity. Let Ω ⊂ R3 be a domain considered as the reference
configuration of an elastic body. The admissible deformations Θ : Ω → R3

satisfy
det∇Θ > 0.

Now we consider a shell C with thickness 2ε > 0 whose reference configuration
is the set

C = {Φ(x, z) = ϕ(x) + za3(x), (x, z) ∈ Ω := ω × (−ε, ε)}

where ω ⊂ R2 is a domain and

a3(x) :=
∂1ϕ(x) ∧ ∂2ϕ(x)

|∂1ϕ(x) ∧ ∂2ϕ(x)|

is the unit normal vector to the midsurface S := ϕ(ω). We make the realistic
assumption that the deformations Θ : C → R3 of the shell are of the form

Θ(Φ(x, z)) = ψ(x) + za3(ψ)(x), (x, z) ∈ Ω,

where

a3(ψ)(x) :=
∂1ψ(x) ∧ ∂2ψ(x)

|∂1ψ(x) ∧ ∂2ψ(x)|

is the unit normal vector to the deformed midsurface Ŝ := ψ(ω). By letting

Ψ(x, z) := Θ ◦Φ(x, z) = ψ(x) + za3(ψ)(x),

it follows that

det∇Ψ(x, z) = det∇Θ(Φ(x, z)) det∇Φ(x, z).

Hence, in order to satisfy the condition det∇Θ(Φ(x, z)) > 0, we require that

det∇Φ > 0 and det∇Ψ > 0.

Thus, since

det∇Ψ =

(
1− z

R1(ψ)

)(
1− z

R2(ψ)

)
|∂1ψ ∧ ∂2ψ|
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where 1/R1(ψ) and 1/R2(ψ) are the principal curvatures of the deformed
midsurface, we impose the following conditions

∂1ψ ∧ ∂2ψ 6= 0 and max
α∈{1,2}

∣∣∣∣ ε

Rα(ψ)

∣∣∣∣ < 1.

We denote by
a(ψ) := |∂1ψ ∧ ∂2ψ|2 = det(aαβ(ψ)),

where aαβ(ψ) := ∂αψ · ∂βψ, and if a(ψ) 6= 0, we denote by

H(ψ) :=
1

2

(
1

R1(ψ)
+

1

R2(ψ)

)
and K(ψ) :=

1

R1(ψ)R2(ψ)

the mean and Gaussian curvatures. The principal curvatures 1/R1(ψ) and
1/R2(ψ) are the two eigenvalues of the matrix (bβα(ψ)) defined as bβα(ψ) :=
bαρ(ψ)aρβ(ψ) with bαβ(ψ) := −∂αψ · ∂βa3(ψ) and (aαβ(ψ)) := (aαβ(ψ))−1.

Theorem 1. Let ω be a domain in R2 and let γ0 be a non-empty relatively
open subset of γ := ∂ω. For ε > 0, p > 2 and q > 1, we define the functional
I : Vε → R ∪ {+∞} by letting

Vε := {ψ ∈ W 1,p(ω;R3);
√
a(ψ) ∈ Lq(ω), a(ψ) 6= 0 a.e. in ω,

a3(ψ) ∈ W 1,p(ω;R3), max {|ε/R1(ψ)| , |ε/R2(ψ)|} < 1 a.e. in ω,

ψ = ϕ and a3(ψ) = a3 dγ-a.e. in γ0}

and for each ψ ∈ Vε,

I(ψ) :=

∫
ω

W (x,ψ) dx− L(ψ,a3(ψ)),

where L is a continuous linear form over the space W 1,p(ω;R3)×W 1,p(ω;R3)
and W : ω ×Vε → R is a function with the following properties:

(a) Polyconvexity: For almost all x ∈ ω, there exists a convex function
W(x, ·) : M→ R where

M := {(A,B, a, b, c) ∈ (M3×2)2 × R3; a− |b| > 0 and a− 2|b|+ c > 0}

such that for almost all x ∈ ω

W (x,ψ) = W
(
x,∇ψ(x),∇a3(ψ)(x),

(
1, εH(ψ(x)), ε2K(ψ(x))

)√
a(ψ(x))

)
.
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(b) Measurability: The function W(·,A,B, a, b, c) : ω → R is measurable
for all (A,B, a, b, c) ∈M.

(c) Coerciveness: There exist constants C1 > 0 and C2 such that

W (x,ψ) > C1{|∇ψ|p + |∇a3(ψ)|p + a(ψ)q/2}+ C2

for all ψ ∈ Vε and almost all x ∈ ω.
(d) Orientation-preserving condition:

W (x,ψ)→ +∞ as {1− 2εH(ψ(x)) + ε2K(ψ(x))}
√
a(ψ(x))→ 0+

and W (x,ψ)→ +∞ as {1 + 2εH(ψ(x)) + ε2K(ψ(x))}
√
a(ψ(x))→ 0+

for all ψ ∈ Vε and almost all x ∈ ω.
Assume that infψ∈Vε I(ψ) < +∞, then there exists at least one function

η ∈ Vε such that
I(η) = inf

ψ∈Vε
I(ψ).

Proof. (i) The integrals
∫
ω
W (x,ψ) dx are well defined for all ψ ∈ Vε. First,

we note that the set M is a convex open subset of (M3×2)2×R3. Furthermore,
each ψ ∈ Vε satisfies a(ψ(x)) > 0 and |ε/Rα(ψ(x))| < 1, then for almost all
x ∈ ω,(

∇ψ(x),∇a3(ψ)(x),
(
1, εH(ψ(x)), ε2K(ψ(x))

)√
a(ψ(x))

)
∈M.

In addition, for almost all x ∈ ω, the function W(x, ·) : M→ R is continuous
and for all (A,B, a, b, c) ∈ M, the function W(·,A,B, a, b, c) : ω → R is
measurable. Hence, W : ω ×M → R is a Carathéodory function, and thus
the function

x ∈ ω →W(x,∇ψ(x),∇a3(ψ)(x), α(x), β(x), γ(x)) ∈ R

with α(x) :=
√
a(ψ(x)), β(x) := εH(ψ(x))α(x) and γ(x) := ε2K(ψ(x))α(x)

is measurable for each ψ ∈ Vε. The function W being in addition bounded
from below (by the coerciveness inequality (c)), the integral∫

ω

W (x,ψ) dx =

∫
ω

W(x,∇ψ(x),∇a3(ψ)(x), α(x), β(x), γ(x)) dx

is therefore a well-defined extended real number in the interval [C2 area ω,+∞]
for each ψ ∈ Vε.
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(ii) We find a lower bound for I(ψ) when ψ ∈ Vε.
From the assumed coerciveness (c) of the function W and the assumed

continuity of the linear form L, we infer that there exists a constant C3 > 0
such that

I(ψ) > C1

∫
ω

{|∇ψ|p + |∇a3(ψ)|p + a(ψ)q/2} dx+ C2 area ω

− C3(‖ψ‖1,p + ‖a3(ψ)‖1,p) for all ψ ∈ Vε.

Combining the boundary conditions ψ = ϕ and a3(ψ) = a3 on γ0 with the
generalized Poincaré inequality, we thus conclude that there exist constants
C4 > 0 and C5 such that

I(ψ) > C4{‖ψ‖p1,p + ‖a3(ψ)‖p1,p + ‖
√
a(ψ)‖qq}+ C5 for all ψ ∈ Vε.

(iii) We show that if (ηk) is a sequence with ηk ∈ Vε for all k for which
there exist η ∈ W 1,p(ω;R3), κ ∈ W 1,p(ω;R3), (ξ1, ξ2, ξ3) ∈ (Lq(ω;R3))3 and
(α1, α2, α3) ∈ (Lq(ω))3 such that

ηk ⇀ η in W 1,p(ω;R3), a3(ηk) ⇀ κ in W 1,p(ω;R3),

∂1η
k ∧ ∂2η

k ⇀ ξ1 in Lq(ω;R3),
√
a(ηk) ⇀ α1 in Lq(ω),

H(ηk)∂1η
k ∧ ∂2η

k ⇀ ξ2 in Lq(ω;R3), H(ηk)
√
a(ηk) ⇀ α2 in Lq(ω),

K(ηk)∂1η
k ∧ ∂2η

k ⇀ ξ3 in Lq(ω;R3), K(ηk)
√
a(ηk) ⇀ α3 in Lq(ω),

then almost everywhere in ω

κ = a3(η), max{|ε/R1(η)| , |ε/R2(η)|} 6 1,

ξ1 = ∂1η ∧ ∂2η, ξ2 = H(η)∂1η ∧ ∂2η, ξ3 = K(η)∂1η ∧ ∂2η,

α1 =
√
a(η), α2 = H(η)

√
a(η) and α3 = K(η)

√
a(η).

To prove this assertion, we begin by showing that κ = a3(η). Using the
Rellich-Kondrašov compact imbedding theorem W 1,p(ω;R3) b Lr(ω;R3) for
all r with 1 6 r <∞, we infer that

a3(ηk)→ κ in Lp
′
(ω;R3),

1

p
+

1

p′
= 1, and a3(ηk)→ κ in L2(ω;R3).

Hence ∂αη
k ·a3(ηk) ⇀ ∂αη ·κ in L1(ω) and |a3(ηk)|2 → |κ|2 in L1(ω). Since

for all k, ∂αη
k · a3(ηk) = 0 and |a3(ηk)| = 1, it follows that ∂αη · κ = 0 and

|κ| = 1. In order to prove that κ = a3(η), it remains to show that

∂1η ∧ ∂2η · κ > 0 a.e. on ω.
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To this end, we define for all ϕ1 ∈ W 1,p(ω;R3) and all ϕ2 ∈ W 1,p(ω;R3)

[ϕ1,ϕ2] :=
1

2
(∂1ϕ1 ∧ ∂2ϕ2 + ∂1ϕ2 ∧ ∂2ϕ1)

=
1

4
{∂1(ϕ1 ∧ ∂2ϕ2 +ϕ2 ∧ ∂2ϕ1) + ∂2(∂1ϕ1 ∧ϕ2 + ∂1ϕ2 ∧ϕ1)} .

Hence, if (ϕk1,ϕ
k
2) is a sequence of W 1,p(ω;R3), p > 2, which converges weakly

to (l1, l2) ∈ W 1,p(ω;R3), then
[
ϕk1,ϕ

k
2

]
⇀ [l1, l2] in D′(ω;R3). By applying

this result to the sequence (ηk) which converges weakly to η in W 1,p(ω;R3),
it follows that

[ηk,ηk] = ∂1η
k ∧ ∂2η

k ⇀ [η,η] = ∂1η ∧ ∂2η in D′(ω;R3)

Hence ξ1 = ∂1η ∧ ∂2η and ∂1η
k ∧ ∂2η

k ⇀ ∂1η ∧ ∂2η in Lq(ω;R3). Then√
a(ηk) = ∂1η

k ∧ ∂2η
k · a3(ηk) ⇀ ∂1η ∧ ∂2η · κ in L1(ω).

Since for all k, ∂1η
k ∧ ∂2η

k · a3(ηk) > 0 then ∂1η ∧ ∂2η · κ > 0 a.e. in ω.
Combining the following three relations,

∂αη · κ = 0, |κ| = 1, and ∂1η ∧ ∂2η · κ > 0 a.e. in ω,

we infer that

κ =
∂1η ∧ ∂2η

|∂1η ∧ ∂2η|
= a3(η) and α1 = ∂1η ∧ ∂2η · κ =

√
a(η).

Similarly, since (ηk,a3(ηk)) ⇀ (η,a3(η)) in W 1,p(ω;R3), it follows that

[ηk,a3(ηk)] = −H(ηk)∂1η
k ∧ ∂2η

k ⇀ [η,a3(η)] = −H(η)∂1η ∧ ∂2η,

[a3(ηk),a3(ηk)] = K(ηk)∂1η
k ∧ ∂2η

k ⇀ [a3(η),a3(η)] = K(η)∂1η ∧ ∂2η

in D′(ω;R3). Hence ξ2 = H(η)∂1η ∧ ∂2η, ξ3 = K(η)∂1η ∧ ∂2η and

H(ηk)∂1η
k ∧ ∂2η

k · a3(ηk) ⇀ H(η)∂1η ∧ ∂2η · a3(η) = H(η)
√
a(η),

K(ηk)∂1η
k ∧ ∂2η

k · a3(ηk) ⇀ K(η)∂1η ∧ ∂2η · a3(η) = K(η)
√
a(η)

in L1(ω). Then α2 = H(η)
√
a(η) and α3 = K(η)

√
a(η).
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It remains to show that for all α ∈ {1, 2}, |ε/Rα(η)| 6 1 a.e. in ω. Com-
bining all the previous relations leads to the following weak convergence in
Lq(ω), for all d ∈ {−1, 1},

(1− dεH(ηk))
√
a(ηk) ⇀ (1− dεH(η))

√
a(η),

(1− 2dεH(ηk) + ε2K(ηk))
√
a(ηk) ⇀ (1− 2dεH(η) + ε2K(η))

√
a(η).

Since for all k and all α ∈ {1, 2},
√
a(ηk) > 0 and |ε/Rα(ηk)| < 1 a.e.

in ω, then for all k and all d ∈ {−1, 1}, (1 − dεH(ηk))
√
a(ηk) > 0 and

(1−2dεH(ηk)+ε2K(ηk))
√
a(ηk) > 0 a.e. in ω, then by passing to the weak

limit in Lq(ω), it follows that for all d ∈ {−1, 1}, (1 − dεH(η))
√
a(η) > 0

and (1 − 2dεH(η) + ε2K(η))
√
a(η) > 0 a.e. in ω. Hence for all α ∈ {1, 2}

|ε/Rα(η)| 6 1 a.e. in ω.
(iv) Let (ηk) be an infimizing sequence for the functional I, i.e., a sequence

that satisfies

ηk ∈ Vε for all k, and lim
k→∞

I(ηk) = inf
ψ∈Vε

I(ψ).

By assumption, infψ∈Vε I(ψ) < +∞, and thus, by part (ii), the sequence

(ηk,a3(ηk)) is bounded in (W 1,p(ω;R3))2 and the sequence
√
a(ηk) is bounded

in Lq(ω). Since√
a(ηk) = ∂1η

k ∧ ∂2η
k · a3(ηk) = |∂1η

k ∧ ∂2η
k|

we infer that the sequence (∂1η
k ∧ ∂2η

k) is bounded in Lq(ω;R3). As the
sequences (1/R1(ηk)) and (1/R2(ηk)) are bounded in L∞(ω), it follows that
the sequences (H(ηk)∂1η

k ∧ ∂2η
k) and (K(ηk)∂1η

k ∧ ∂2η
k) are bounded

in Lq(ω;R3) on the one hand and on the other hand that the sequences
H(ηk)

√
a(ηk)) and (K(ηk)

√
a(ηk)) are bounded in Lq(ω).

Hence, there exists a subsequence (η`,a3(η`)) that converges weakly to
an element (η,κ) in W 1,p(ω;R3). There exist also six other subsequences(

∂1η
` ∧ ∂2η

`
)
,
(
H(η`)∂1η

` ∧ ∂2η
`
)
,
(
K(η`)∂1η

` ∧ ∂2η
`
)

which converge weakly to ξ1, ξ2, ξ3 in Lq(ω;R3) respectively and

(
√
a(η`)), (H(η`)

√
a(η`)), (K(η`)

√
a(η`))

which converge weakly to α1, α2, α3 in Lq(ω) respectively. Then, by (iii), we
infer that for all α ∈ {1, 2}, |ε/Rα(η)| 6 1 a.e. in ω, a3(η) ∈ W 1,p(ω;R3)
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and
√
a(η) in Lq(ω). In order to prove that η ∈ Vε, it remains to show that

η|γ0 = ϕ, a3(η)|γ0 = a3, ∂1η ∧ ∂2η 6= 0 a.e. in ω and for all α ∈ {1, 2},
|ε/Rα(η)| 6= 1 a.e. in ω. Since the trace operator from W 1,p(ω) into Lp(γ0)
is continuous with respect to the strong topologies of both spaces, it remains
so with respect to the weak topologies of both spaces. Hence, we infer from
the weak convergence η` ⇀ η and a3(η`) ⇀ a3(η) in W 1,p(ω;R3) that
η`|γ0 → η|γ0 and a3(η`)|γ0 → a3(η)|γ0 in Lp(γ0;R3) and thus η|γ0 = ϕ and
a3(η)|γ0 = a3 since η`|γ0 = ϕ and a3(η`)|γ0 = a3 for all `.

In order to prove that ∂1η ∧ ∂2η 6= 0 a.e. in ω and for all α ∈ {1, 2},
|ε/Rα(η)| 6= 1 a.e. in ω, it suffices to show that for all d ∈ {−1, 1},

(1− 2dεH(η) + ε2K(η))
√
a(η) 6= 0 a.e. in ω.

Assume that (1 − 2εH(η) + ε2K(η))
√
a(η) = 0 on a subset A of ω with

dx-meas A > 0. Since (1− 2εH(η`) + ε2K(η`))
√
a(η`) > 0 a.e. on A and

(1− 2εH(η`) + ε2K(η`))
√
a(η`) ⇀ (1− 2εH(η) + ε2K(η))

√
a(η)

in Lq(ω), then∫
A

(1−2εH(η`) + ε2K(η`))
√
a(η`)dx→

∫
A

(1−2εH(η) + ε2K(η))
√
a(η) dx

by the definition of weak convergence (the characteristic function of the set
A belongs to the dual space of Lq(ω)), hence

(1− 2εH(η`) + ε2K(η`))
√
a(η`)→ 0 in L1(A).

Therefore there exists a subsequence (ηm) of (η`) such that

(1− 2εH(ηm(x)) + ε2K(ηm(x)))
√
a(ηm(x))→ 0 for almost all x ∈ A.

Consider next the sequence of measurable functions (fm) defined by

fm : x ∈ A→ fm(x) := W (x,ηm).

Since fm > C2 for all m, can apply Fatou’s lemma, which shows that∫
A

lim inf
m→∞

fm(x) dx 6 lim inf
m→∞

∫
A

fm(x) dx
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on the one hand. On the other hand, the behavior of the function W as

(1− 2εH(η(x)) + ε2K(η(x)))
√
a(η(x))→ 0+

(assumption (d)) implies that lim infm→∞ f
m(x) = limm→∞W (x,ηm) = +∞

for almost all x ∈ A and thus

lim
m→∞

∫
A

fm(x) dx = lim
m→∞

∫
A

W (x,ηm) dx = +∞.

But this last relation contradicts the relation

lim
m→∞

I(ηm) = inf
ψ∈Vε

I(ψ) < +∞

and the inequalities

I(ηm) >
∫
A

W (x,ηm) dx+ C2 area (ω − A)

− C3(‖ηm‖1,p + ‖a3(ηm)‖1,p)

(a weakly convergent sequence is bounded). Hence

(1− 2εH(η) + ε2K(η))
√
a(η) 6= 0 a.e. in ω,

thus ∂1η∧∂2η 6= 0 a.e. in ω and for all α ∈ {1, 2}, ε/Rα(η) 6= 1 a.e. in ω. We
proceed in the same manner to prove that (1 + 2εH(η) + ε2K(η))

√
a(η) 6= 0

a.e. in ω, thus we infer in addition that for all α ∈ {1, 2}, ε/Rα(η) 6= −1
a.e. in ω. To sum up, we have proved that η ∈ Vε.

(v) Finally, we show that∫
ω

W (x,η) dx 6 lim inf
`→∞

∫
ω

W (x,η`) dx.

By the definition of the limit inferior, we must show that, given any sub-
sequence (ηm) of (η`) such that the sequence (

∫
ω
W (x,ηm) dx) converges,

then ∫
ω

W (x,η) dx 6 lim
m→∞

∫
ω

W (x,ηm) dx.

So, let us consider such a subsequence. Using the results of parts (iii), (iv)
and the Banach-Saks-Mazur theorem, we infer that for each m, there exist
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integers j(m) > m and numbers µmt , m 6 t 6 j(m), such that

µmt > 0,

j(m)∑
t=m

µmt = 1,

Dm :=

j(m)∑
t=m

µmt

(
∇ηt,∇a3(ηt),

(
1, εH(ηt), ε2K(ηt)

)√
a(ηt)

)
−→
m→∞

(
∇η,∇a3(η),

(
1, εH(η), ε2K(η)

)√
a(η)

)
in (Lp(ω;M3×2))2×(Lq(ω))3. Hence there exists a subsequence (Dn) of (Dm)
such that, for almost all x ∈ ω,

j(n)∑
t=n

µnt

(
∇ηt(x),∇a3(ηt(x)),

(
1, εH(ηt(x)), ε2K(ηt(x))

)√
a(ηt(x))

)
−→
n→∞

(
∇η(x),∇a3(η(x)),

(
1, εH(η(x)), ε2K(η(x))

)√
a(η(x))

)
.

Since the function W(x, ·) is continuous on the set

M := {(A,B, a, b, c) ∈ (M3×2)2 × R3, a− |b| > 0 and a− 2|b|+ c > 0}

for almost all x ∈ ω and since η ∈ Vε by part (iv), it follows that for almost
all x ∈ ω(

∇η(x),∇a3(η(x)),
(
1, εH(η(x)), ε2K(η(x))

)√
a(η(x))

)
∈M

and

W (x,η) = W
(
x,∇η(x),∇a3(η(x)),

(
1, εH(η(x)), ε2K(η(x))

)√
a(η(x))

)
= lim

n→∞
W

x, j(n)∑
t=n

µnt
(
∇ηt(x),∇a3(ηt(x)),v(ηt(x))

)
where v(ηt(x)) := (1, εH(ηt(x)), ε2K(ηt(x)))

√
a(ηt(x)). Using this relation,

Fatou’s lemma, and the assumed convexity of the function W(x, ·) for almost

12



all x ∈ ω, we next obtain, on the one hand,

∫
ω

W (x,η) dx 6 lim inf
n→∞

∫
ω

W

x, j(n)∑
t=n

µnt
(
∇ηt(x),∇a3(ηt(x)),v(ηt(x))

) dx

6 lim inf
n→∞

j(n)∑
t=n

µnt

∫
ω

W (x,ηt) dx = lim
n→∞

∫
ω

W (x,ηn) dx

= lim
m→∞

∫
ω

W (x,ηm) dx.

Since, on the other hand, L(η,a3(η)) = lim`→∞ L(η`,a3(η`)) by definition
of weak convergence, we have thus proved that I(η) 6 lim inf`→∞ I(η`).

(vi) The function η is thus a solution of the minimization problem, since
η ∈ Vε by parts (iii) and (iv), and since

I(η) 6 lim inf
`→∞

I(η`) = inf
ψ∈Vε

I(ψ) implies I(η) = inf
ψ∈Vε

I(ψ).

As an example of polyconvex stored energy function , there is the Helfrich
energy (see Helfrich [13]) given by

W (ψ) =

(
kc
2

(2H(ψ) + c0)2 + kK(ψ) + λ

)√
a(ψ)

used for modeling biomembranes, where kc > 0 and k ∈ R denote bending
rigidities, c0 ∈ R stands for the spontaneous curvature and λ ∈ R is the
surface tension.

4 Stored energy functions for G1 shells

Let us first define a G1 shell with thickness 2ε > 0. This regularity has
been first introduced in Anicic [1, 2]. The term G1 stands for First-Order
Geometric Continuity.

The midsurface of the reference configuration of a shell is denoted by
S := ϕ(ω) where

ϕ ∈ W 1,∞(ω;R3). (1)
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The two vectors aα := ∂αϕ ∈ L∞(ω;R3) span the tangent plane to the
surface S. We suppose that ϕ satisfies the additional assumption

ess inf
ω
|a1 ∧ a2| > 0 and a3 :=

a1 ∧ a2

|a1 ∧ a2|
∈ W 1,∞(ω;R3), (2)

where a3 is the unit normal vector to the surface S.
The covariant components aαβ ∈ L∞(ω), bαβ ∈ L∞(ω) and cαβ ∈ L∞(ω)

of the first, second and third fundamental forms of S are respectively defined
by aαβ := aα · aβ, bαβ := −aα · ∂βa3 = −aβ · ∂αa3 and cαβ := ∂αa3 · ∂βa3.
The area element along S is

√
a dx, whith

a := det(aαβ) = |a1 ∧ a2|2.

Since a is uniformly bounded from below on ω, the inverse of the matrix
(aαβ), which we denote (aαβ), belongs to L∞(ω). The contravariant basis
aα ∈ L∞(ω;R3) is then defined by letting aα = aαβaβ and then satisfy
aα · aβ = δαβ , where δαβ is the Kronecker symbol. The mixed components

bβα ∈ L∞(ω) of the second fundamental form are defined by bβα := bαρa
ρβ.

The mean curvature H ∈ L∞(ω) and the Gaussian curvature K ∈ L∞(ω)
are respectively defined by

H :=
1

2
(b1

1 + b2
2) =

1

2

(
1

R1

+
1

R2

)
and K := b1

1b
2
2 − b2

1b
1
2 =

1

R1R2

,

where the invariants 1/Rα are the principal curvatures of S.
The reference configuration of a shell with thickness 2ε > 0 is the set

{Φ(x, z) := ϕ(x) + za3(x); (x, z) ∈ Ω := ω × (−ε, ε)}.

The tangent vectors are respectively defined by

gα(x, z) := ∂αΦ(x, z) = aα(x) + z∂αa3(x).

Then

det∇Φ(x, z) =

(
1− z

R1(x)

)(
1− z

R2(x)

)√
a(x).

In addition to the hypotheses (1)-(2), we also impose that ϕ and ε satisfy
the following assumption:

ess inf
Ω

det∇Φ > 0. (3)
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The contravariant basis gα ∈ L∞(Ω;R3) is defined by gα · gβ = δαβ .
To sum up, equivalently to the hypotheses (1)-(2)-(3), we define a G1 shell

with thickness 2ε > 0 a shell whose midsurface S := ϕ(ω) satisfies ϕ ∈ G1

where

G1 := {ϕ ∈ W 1,∞(ω;R3); (a1 ∧ a2)/|a1 ∧ a2| ∈ W 1,∞(ω;R3),

ess inf
ω
|a1 ∧ a2| > 0, max

α∈{1,2}
|ε/Rα|∞,ω < 1}.

This regularity allows us to take into account curvature discontinuities as well
as tangent plane continuity, even if the tangent vectors are not continuous.
Hence, if we consider a surface which is defined via smooth patches, we are
only led to match the unit normal vectors on the interfaces and not the
tangent vectors. This makes for great versatility in practice. Moreover, this
regularity does not involve any Christoffel symbols.

Let us now define a class of polyconvex stored energy functions for G1

shells which satisfies a coerciveness inequality.

Theorem 2. Let

N := {(a, b, c) ∈ R3, a− |b| > 0 and a− 2|b|+ c > 0}

and Γ : ω ×N → R be a function such that Γ(x, ·) : N → R is convex for
almost all x ∈ ω. Let W : ω ×Vε → R be a stored energy function defined
by

W (x,ψ) =
R∑
i=1

{
ai tr

(
G(x,ψ, ui, vi)

γi/2
)

+ bi tr
(
G(x,ψ,−ui, wi)γi/2

)}
+ Γ(x,

√
a(ψ), εH(ψ)

√
a(ψ), ε2K(ψ)

√
a(ψ))

where

G(x,ψ, u, v) := {aαβ(ψ)− 2ubαβ(ψ) + u2cαβ(ψ)} gα(x, v)⊗ gβ(x, v)

and ai > 0, bi > 0, γi > 2, ui ∈ R, (vi, wi) ∈ [−ε, ε]2, 1 6 i 6 R.
Then the function W is polyconvex and satisfies a coerciveness inequality

of the form

W (x,ψ) > C{|∇ψ|γi0 + |ui0|γi0 |∇a3(ψ)|γi0}
+ Γ(x,

√
a(ψ), εH(ψ)

√
a(ψ), ε2K(ψ)

√
a(ψ))

with a constant C > 0 and γi0 = maxi γi.
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Proof. LetD(x, v) := eα⊗gα(x, v) where (e1, e2) denotes the canonical basis
of R2 and |v| 6 ε. Then

G(x,ψ, u, v) = D(x, v)T(∇ψ + u∇a3(ψ))T(∇ψ + u∇a3(ψ))D(x, v).

As a composition of a linear function and a convex function, the function
F(x, u, v, ·) : (M3×2)2 → R defined by

F(x, u, v,A,B) := tr
({
D(x, v)T(A+ uB)T(A+ uB)D(x, v)

}γ/2)
is convex for all γ > 2. By noting that

tr
(
G(x,ψ, u, v)γ/2

)
= F(x, u, v,∇ψ,∇a3(ψ)),

we infer that W is polyconvex.
It remains to prove the coerciveness inequality. By the equivalence of

norms on a finite-dimensional space, it follows that for each γ > 1 there
exists a constant Cγ > 0 such that

tr
(
G(x,ψ, u, v)γ/2

)
> Cγ (trG(x,ψ, u, v))γ/2 .

Since trG(x,ψ, u, v) = |(∇ψ + u∇a3(ψ))D(x, v)|2 and

∇ψ + u∇a3(ψ) = (∇ψ + u∇a3(ψ))D(x, v)(∇ϕ+ v∇a3),

we infer that

|∇ψ + u∇a3(ψ)| 6 |(∇ψ + u∇a3(ψ))D(x, v)|(‖∇ϕ‖∞,ω + ε‖∇a3‖∞,ω)

and that there exists a constant C > 0 such that for all u ∈ R and all
(v, w) ∈ [−ε, ε]2,

tr
(
G(x,ψ, u, v)γ/2

)
+ tr

(
G(x,ψ,−u,w)γ/2

)
> C{|∇ψ + u∇a3(ψ)|2 + |∇ψ − u∇a3(ψ)|2}γ/2.

The coerciveness inequality follows by noting that

|∇ψ + u∇a3(ψ)|2 + |∇ψ − u∇a3(ψ)|2 = 2|∇ψ|2 + 2u2|∇a3(ψ)|2.
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ized Marguerre-von Kármán equations. Math. Mech. Solids 11(1), 83–100
(2006)

11. Ciarlet, P.G., Mardare, C.: A mathematical model of Koiter’s type for a
nonlinearly elastic “almost spherical” shell. C. R. Math. Acad. Sci. Paris
354(12), 1241–1247 (2016)

17



12. Friesecke, G., James, R.D., Mora, M.G., Müller, S.: Derivation of nonlin-
ear bending theory for shells from three-dimensional nonlinear elasticity
by Gamma-convergence. C. R. Math. Acad. Sci. Paris 336(8), 697–702
(2003)

13. Helfrich, W.: Elastic properties of lipid bilayers: theory and possible
experiments. Zeitschrift für Naturforschung C 28(11-12), 693–703 (1973)

14. Koiter, W.T.: On the nonlinear theory of thin elastic shells. I, II, III.
Nederl. Akad. Wetensch. Proc. Ser. B 69, 1–17, 18–32, 33–54 (1966)

15. Le Dret, H., Raoult, A.: The nonlinear membrane model as variational
limit of nonlinear three-dimensional elasticity. J. Math. Pures Appl. (9)
74(6), 549–578 (1995)

16. Simo, J.C., Fox, D.D.: On a stress resultant geometrically exact shell
model. I. Formulation and optimal parametrization. Comput. Methods
Appl. Mech. Engrg. 72(3), 267–304 (1989)

18


