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Many experimental studies show that metrics of visual
image quality can predict changes in visual acuity due to
optical aberrations. Here we use statistical decision
theory and Fourier optics formalism to demonstrate that
two metrics known in the field of vision sciences are
approximations of two different theoretical models of
linear observers. The theory defines metrics of visual
acuity to potentially predict changes in visual acuity due
to optical aberrations, without needing a posteriori scale
or offset. We illustrate our approach with experiments,
using combinations of defocus and spherical aberration,
and pure coma.

Introduction

Relating wavefront measurements to visual
performance is a basic question in the field of
spatial vision, with major implications for clinical
applications of aberrometry. Among all kinds of
proposed approaches, using a metric of visual image
quality (Cheng, Thibos, & Bradley, 2003; Chen, Singer,
Guirao, Porter, & Williams, 2005), that is, a single
number directly computed from the wavefront, has
emerged as the most practical approach to account
for experimental measurements of visual performance
(Marsack, Thibos, & Applegate, 2004; Cheng, Bradley,
& Thibos, 2004) and to estimate an objective refraction
based on aberration measurements (Guirao &Williams,
2003; Martin, Vasudevan, Himebaugh, Bradley, &
Thibos, 2011; Kilintari, Pallikaris, Tsiklis, & Ginis,
2010). Several metrics relate to the Strehl ratio, with
different approaches to take account of the neural

processing of retinal images (Thibos, Hong, Bradley,
& Applegate, 2004). The visual Strehl computed in the
spatial domain (VSX) quantifies the fraction of the eye’s
point spread function (PSF) that overlaps with a neural
weighting function. The VSX metric has been shown to
be reliable for objective refraction (Hastings, Marsack,
Nguyen, Cheng, & Applegate, 2017) and can quantify
optical quality after refraction (Hastings, Marsack,
Thibos, & Applegate, 2018). The visual Strehl based on
the optical transfer function (VSOTF) quantifies the
peak of PSF after taking account of the neural contrast
loss that is modeled by the neural transfer function
(NTF). The VSOTF metric accounts for measurements
of the eye’s depth of focus (Zheleznyak, Sabesan, Oh,
MacRae, & Yoon, 2013; Zheleznyak, Jung, & Yoon,
2014; Yi, Iskander, & Collins, 2011) and the effect of
optical aberrations on the accommodative response
(Buehren & Collins, 2006). The visual Strehl ratio
can also be computed from the modulation transfer
function (VSMTF metric). The VSMTF metric predicts
the accommodative response of the eye in the presence
of aberrations (Tarrant, Roorda, & Wildsoet, 2010;
López-Gil et al., 2013).

For experiments in which the subject serves as their
own control, metrics of visual Strehl (VSX, VSOTF,
and VSMTF) correlate remarkably well with changes
in visual acuity due to optical aberrations (Marsack
et al., 2004). These metrics are also robust to the
amplitude of aberration and pupil size (Ravikumar,
Sarver, & Applegate, 2012), and can predict the effect
of normal or keratoconic aberrations (Ravikumar,
Marsack, Bedell, Shi, & Applegate, 2013). The
correlation between metrics of visual image quality and
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absolute visual performance depends on experimental
conditions such as the overall visual performance of the
population (Villegas, Alcón, & Artal, 2008), light level,
and optotype contrast (Applegate, Marsack, & Thibos,
2006). Light scattering and subject-dependent neural
sensitivity are also fundamental aspects of the visual
system that may lower the predictive ability of metrics
of visual image quality in a clinical study (Bühren et
al., 2009). Monte Carlo simulations of the subject
performing the visual test have been used to model
visual performance, as they make it possible to analyze
the effect of the test protocol, the subject’s strategy
to identify optotypes, and the neural and optical
properties of their visual system (Nestares, Navarro,
& Antona, 2003; Dalimier, Pailos, Rivera, & Navarro,
2009; Watson & Ahumada, 2005; Watson & Ahumada,
2008).

In an attempt to bypass Monte Carlo simulations but
still model the measurement protocol with great detail,
Dalimier and Dainty (2008) used statistical decision
theory to predict ratios (with/without aberrations) of
contrast sensitivity measurements. They computed
ratios of data separability using simulated visual
images of the actual test optotypes. Similarly, Watson
and Ahumada (2008) introduced an acuity metric to
bypass Monte Carlo simulations. This acuity metric
slightly differs from the concept of metrics of visual
image quality, as commonly defined by the community,
because it is computed using the set of simulated visual
images and the corresponding templates that are used
by the observer for letter identification. The main
advantage is to predict ratios (with/without aberrations)
of visual performance measurements without needing
a posteriori scale or offset. In our previous work,
we reckoned that the Dalimier and Dainty model
could be further simplified using the “small letter
approximation” to define a model-based metric of
contrast sensitivity, M, which we computed directly
from optical aberrations without actually simulating
the visual images (Leroux, Fontvieille, Leahy, Marc,
& Bardin, 2022). We described this metric as model
based, as it inherited from the Dalimier and Dainty
model. In this work, we choose as a starting point to
adapt the Dalimier and Dainty model to visual acuity
and use the small letter approximation. The Dalimier
and Dainty model is based on a model of an ideal
observer, and we also introduce a more realistic model
of a “real observer” to define a second model-based
metric of visual acuity. The two model-based metrics
are compared to experimental measurements of letters
lost with combinations of defocus and spherical
aberrations, as well as coma. We demonstrate in this
work that metrics of visual image quality can be
defined from rigorous models and can be customized
to the experimental conditions to predict visual acuity
accurately.

Theory of model-based metrics of
visual acuity

The classification task of theoretical observers

In the framework of statistical decision theory, we
model measurements of visual acuity as a classification
task, for which the subject is asked to classify optotypes
in well-known K classes, for example, a known set of
Sloan letters. We model the observed data i(x, y) as
visual images Ik, a(x, y) (k = 1 to K indexes the letter
and a is the angular extent of the letter gap), with added
independent and identically distributed Gaussian noise
(n(x, y), of variance σ 2) of physiological (mostly neural)
origins.

i(x, y) = Ik,a(x, y) + n(x, y) (1)

An observer is a theoretical model of the subject’s
own “algorithm” that processes the observed data
and classifies it in one of the K classes. Among the
numerous observers, the ones that process data linearly
are interesting models for their mathematical simplicity.
To simplify a bit further the classification problem,
we first limit our analysis to the binary classification
problem (K = 2).

Performance analysis of two linear observers in
a binary classification problem

In a binary classification problem, a linear observer
computes a scalar tlin, known as the test statistic, as the
scalar product of the data and a model template known
as the discriminant T(x, y) (Barrett & Myers, 2003, p.
811):

tlin =
∫∫

i(x, y)T (x, y)dxdy (2)

The observer chooses between the two classes by
comparing tlin to a threshold.

Among all kinds of linear observers, the ideal linear
observer (known as the Hotelling observer) has full
knowledge of the expected visual images Ik, a(x, y) and
uses their difference as the discriminant. The ideal
observer computes the following test statistic:

t∗ =
∫∫

i(x, y)
(
I1,a(x, y) − I2,a(x, y)

)
dxdy (3)

t* is the test statistic of the ideal observer. It is given by
Equation 3 because of our hypothesis of independent
and identically distributed Gaussian noise (Barrett &
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Myers, 2003, p. 836). The ideal observer makes the best
use of the available information in the observed data to
perform the classification efficiently: The performance
of the ideal observer is only limited by noise. In the
presence of optical aberrations, the ideal observer uses
the aberrated visual images as templates to compute the
discriminant. What makes the observer ideal is its ability
to use templates that perfectly match the noise-free data
I1, a(x, y) and I2, a(x, y). The ideal observer was found
to predict the effect of optical aberrations on contrast
sensitivity measurement with relatively large optotypes:
Landolt C with a 3-arcminute gap (Dalimier, Dainty,
& Barbur, 2008; Dalimier & Dainty, 2008) and Sloan
letters with 2-arcminute gaps (Leroux et al., 2023). In
comparison to other theoretical observers, the ideal
observer will predict better visual acuity, especially
when visual images are strongly altered by optical
aberrations. In these conditions, which correspond to
combinations of small letter and high amplitude of
aberration, the ideal observer will also become less
realistic, as most subjects may not be able to use the
aberrated alphabet as image templates.

Watson and Ahumada (2008) considered the model
of an ideal observer too, but also considered models of
visual acuity for which aberration-free images are used
as templates by the observer. Similarly, we introduce
a second theoretical observer, which compares the
observed data i(x, y) to the unaberrated letters Ok(x, y)
by computing the following test statistic:

t =
∫∫

i(x, y)
(
O1,a(x, y) − O2,a(x, y)

)
dxdy (4)

t is the test statistic of this second observer. We will refer
to this theoretical observer as the real observer, which
uses as the discriminant T(x) = O1, a(x, y) − O2, a(x, y).
The real observer uses unmatched templates to choose
between the two classes. We will refer to this observer
as real, because using aberration-free images of letters
as templates is a plausible model when the experiment
is performed with a known alphabet. Unlike the ideal
observer, the real observer is not optimal because it
does not know the optical aberrations.

Equations 3 and 4 define the test statistics that
is computed by each theoretical model. To identify
a letter, each model compares its test statistics to a
threshold value that we need not to specify in this work,
as we seek to compute the theoretical performance
of each observer without implementing them with
Monte Carlo simulations. In statistical decision theory,
t and t* are random variables because of noise. The
theory quantifies the noise performance of a theoretical
observer as the fraction f of correct response when
the observer performs the binary classification task
with fixed model parameters (aberrations, noise level
σ , letter size, and contrast). For a binary classification

task, the signal to noise ratio (SNR) associated with a
test statistic is defined (Barrett & Myers, 2003, p. 819)
as the difference between the mean of the test statistic
under the hypothesis that the stimulus is of Class 1 or
Class 2, divided by the standard deviation of t (which is
approximately equal for each class). Statistical decision
theory relates the SNR to the theoretical fraction f of
correct classification achieved by the corresponding
observer: f = (1 + erf(SNR/2))/2 (Barrett & Myers,
2003, pp. 819–823). For a linear observer, the SNR is
computed with standard “error propagation,” noting
that i(x, y) is a Gaussian random variable of variance
σ 2 in Equation 1. The SNR of linear observers takes
the generic form (Barrett & Myers, 2003, p. 852):

SNRlin(a) =
∣∣∫∫ T (x, y)

(
I1,a(x, y) − I2,a(x, y)

)
dxdy

∣∣
σ

√∫∫
T 2(x, y)dxdy

(5)

We obtain, using T(x, y) = I1, a(x, y) − I2, a(x, y) in
Equation 5, for the ideal observer:

SNRt∗ (a) = 1
σ

√∫∫ (
I1,a(x, y) − I2,a(x, y)

)2dxdy (6)

and we obtain, using T(x) = O1, a(x, y) − O2, a(x, y) in
Equation 5, for the real observer :

SNRt (a) =

∣∣∫∫ (
I1,a(x, y) − I2,a(x, y)

)(
O1,a(x, y)

− O2,a(x, y)
)
dxdy

∣∣
σ

√∫∫ (
O1,a(x, y) − O2,a(x, y)

)2dxdy (7)

For the binary classification, Equation 6 (ideal
observer) or Equation 7 (real observer) directly gives
the fraction f of correct response and can be used to
compute the gap (or acuity) threshold if the noise
variance σ 2 is known. In practice, we do not know
σ 2 and only assume that it remains unchanged in
all our experiments (for a given subject). For the
binary classification problem, we could use Equation 6
or Equation 7 to model the acuity changes due to
aberrations of a given subject performing measurements
at a fixed fraction f of correct response at threshold. To
do so, we would compute the letter gap a that maintains
equal SNR when aberrations degrade the visual images
of the two classes (I1, a and I2, a).

Performance of the ideal observer in a K-class
problem

SNR∗
t and SNRt can be numerically computed for

pairs of letters. They both increase when letters are
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more different, and it is in principle important to take
account of all the letters of the alphabet that are used
for the visual test. To do so, statistical decision theory
introduces data separability (Barrett & Myers, 2003,
p. 852), which quantifies the optimal SNR achievable
by the ideal observer in a so-called K-class problem
(a visual acuity test with K letters). Dalimier and
Dainty (2008) built their model of contrast sensitivity
measurements using data separability. Data separability
S*(a) is a metric of performance for the ideal observer
and can be written as

S∗(a) = 2
σ
√
K

√√√√ K∑
k=1

∫∫ (
Ik,a(x, y) − Ia(x, y)

)2dxdy
(8)

where Ia(x, y) = ∑K
k=1 Ik,a(x, y). As Dalimier and

Dainty, we have scaled the definition of S* in order
to have SNRt∗ (a) = S∗(a) for K = 2. We note that S*
corresponds to the root mean square value of K values
of SNRt∗ , which correspond to K hypothetical binary
classification problems of choosing between Ik, a and
Ia. Data separability quantifies the overall difference
between the visual images of each letter used for the
test, as a single number that is normalized by the level
of noise σ .

Performance of the real observer in a K-class
problem

By analogy, we formulate the S(a) metric of
performance for the real observer in the K-class
problem. We compute the root mean square value of
K values of SNRt (Equation 7) that correspond to
hypothetical binary classification problems of choosing
between Ik, a and Ia:

S(a) = 2
σ
√
K

√√√√√√ K∑
k=1

( ∫∫ (
Ik,a(x, y) − Ia(x, y)

)
×(

Ok,a(x, y) − Oa(x, y)
)
dxdy

)2
∫∫ (

Ok,a(x, y) − Oa(x, y)
)2dxdy

(9)

We also have S(a) = SNRt(a) for K = 2, and we will
refer to S(a) as the data separability of the real observer.

As long as gap threshold corresponds to a fixed
percentage of correct response (Dalimier & Dainty,
2008), two measurements of visual acuity (with and
without aberrations, corresponding to the inverse
of letter gap threshold aB and a0, respectively) are
related by equal data separability (S∗

0 (a0) = S∗
B(aB)

or S0(a0) = SB(aB), depending on which model of
observer we rely on). The 0 index corresponds to the
reference (aberration-free) condition, and the B index

corresponds to the condition with aberration. Dalimier
and Dainty (2008) noted that data separability is
proportional to stimulus contrast and predicted the
ratio (with/without aberration) of contrast sensitivity
measurements as the ratio of data separability with
unitary stimulus contrast. Our goal is to use data
separability to predict the ratio of letter gap threshold,
which is the inverse of decimal visual acuity. Because S*
and S are not proportional to letter gap a, we introduce
below the numerical method that we implemented for
each of the two observers.

Model of visual images

In this work, we model visual images using standard
Fourier optics calculations. The visual images take
the form of two-dimensional functions of spatial
coordinates, and it is important to emphasize at this
point that other approaches exist. One can, for instance,
take account of the finite bandwidth of independent
visual channels (Sachs, Nachmias & Robson, 1971) that
are tuned to the spatial spectra of letters (Majaj, Pelli,
Kurshan, & Palomares, 2002), and with this approach,
model equations take a more algebraic form (Myers &
Barrett, 1987; Dalimier, 2007). Here, the visual image
that corresponds to the kth letter choice can be written
as

Ik,a(x, y)= F−1 {
NTF ( fx, fy)OTF ( fx, fy)

× F {
Ok,a(x, y)

}}
(10)

Ok, a(x, y) models the luminance distribution of
stimulus for the kth letter choice and the a letter
gap. OTF is the optical transfer function, which we
will define in Equation 10 as either OTF0 (condition
0, without aberration) or OTFB (condition B, with
aberration). NTF is the neural transfer function of
the eye, which we defined using a generic model
that combines different studies from the literature
(Hastings, Marsack, Thibos, & Applegate, 2020). F
denotes the Fourier transform operator. We considered
monochromatic (λ = 530 nm) and monocular vision in
this work.

Numerical method to predict letters lost for
theoretical observers

Following pioneering studies of the effect of
aberrations on visual acuity (Applegate, Marsack,
Ramos, & Sarver, 2003; Applegate, Ballentine, Gross,
Sarver, & Sarver, 2003), we aimed at predicting the
number of letters lost, due to aberration, on the
logMAR chart. As one line of the logMAR chart has
five letters and corresponds to a 0.1 variation of the
logarithm of letter gap, the number of letters lost equals
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−50 times the difference (with/without aberration) in
logMAR visual acuity. The model of an ideal observer
predicts a number L* of letters lost as

L∗ = −50 log10
(
a∗
B
a0

)
with S∗

B(a
∗
B) = S∗

0 (a0) (11)

and the model of a real observer predicts a number L
of letters lost as

L = −50 log10
(
aB
a0

)
with SB(aB) = S0(a0) (12)

We compute numerically data separability as a
function of letter gap a by combining Equations 8 and
10 for the ideal observer, as well as Equations 9 and
10 for the real observer. This calculation is performed
without aberration (functions S∗

0 (a) and S0(a) for
the ideal and real observers, respectively) and with
aberration (functions S∗

B(a) and SB(a) for the ideal and
real observers, respectively). Our numerical method
requires to first arbitrarily set the gap threshold, a0, in
the aberration-free condition. We set a0 = 1 arcminute
for both observers, and we numerically find the letter
gap a∗

B for which S∗
B(a∗

B) = S∗
0 (a0) (ideal observer) and

aB for which SB(aB) = S0(a0) (real observer). To solve
these two equations, we use linear fits of the S∗

B, S∗
0, SB,

and S0 functions on a logarithmic scale.
Figure 1 shows our numerical method in detail.

Condition B here corresponds to +0.55 diopters of
defocus for a 5-mm pupil diameter, and condition
0 corresponds to a diffraction-limited eye of pupil
diameter 5 mm. We set a0 = 1 arcminute, and compute
log10 S∗

0 (a0) = 1.24 using the linear fit of log10 S∗
0

(dashed black line). We use the linear fit of log10 S∗
B

(dashed green line) to solve log10 S∗
B(a∗

B) = 1.24 and
obtain a∗

B = 1.89 arcminutes, which corresponds to
L* = −50 × (log101.89) = −13.8 letters for the ideal
observer. We use the same method for the real observer
(linear fits on the logarithmic scale are the solid black
line (S0) and the solid green line (SB)), and obtain L
= −21.9 letters. For each observer, the linear fits are
approximately parallel on the logarithmic scale, so that
the predicted letters lost barely depends on the arbitrary
reference value of a0 = 1 arcminute.

Approximations of letters lost, using
model-based metrics

Computing data separability for different letter gaps
is relatively computationally expensive. It may not be
practical for clinical applications of aberrometry, as
it requires numerical computations of visual images
that are cumbersome. Here we find the metric of visual
image quality that approximates the letters lost for each
theoretical model of observer.

-0.4 -0.2 log10a0 log10a*B     log10aB

Log10 letter size a (arcminutes)

-2

-1

0

1

2

3

Lo
g 10

 s
ep

ar
ab

ilit
y 

(a
.u

.)

log10S*0

log10S*B

log10S0

log10SB

L*/50

L/50

Figure 1. Logarithm of data separability of the ideal observer as
a function of logarithm of letter gap a, with aberration (S∗

B,
open green circle) and without aberration (S∗

0, open black
circle). The linear fits of S∗

B and S
∗
0 (dashed green and dashed

black lines, respectively), on the logarithmic scale, allow us to
find a∗

B such that S
∗
B(a

∗
B) = S∗

0(a0). We arbitrarily set log10a0 = 0.
The same approach is implemented for the real observer (S0:
filled black circle and SB: filled green circle), in order to solve
SB(aB) = S0(a0). For the model of the ideal observer, letters lost
L* = −13.8 (= 50 × the amplitude of the dashed arrow). For
the model of the real observer, letters lost L = −21.9 (= 50 ×
the amplitude of the solid arrow).

Metric based on the model of an ideal observer
We first detail the computational aspect of S* using

Fourier optics formalism. We introduce �̃k,a( fx, fy),
which is the Fourier transform of the difference between
the stimulus letter Ok, a and the average (across letters)
Oa:

�̃k,a( fx, fy) = F
{
Ok,a(x, y) − Oa(x, y)

}
(13)

S* can be written as

S∗(a) = 2
σ
√
K

√√√√√√
K∑

k=1

∫∫ ∣∣F−1 {
NTF ( fx, fy)OTF

( fx, fy)�̃k,a( fx, fy)
} ∣∣2dxdy (14)

Using Parseval’s identity, we obtain the following
formulation of S*:

S∗(a) = 2
σ
√
K

√√√√√√
K∑

k=1

∫∫ ∣∣NTF ( fx, fy)OTF

( fx, fy)�̃k,a( fx, fy)
∣∣2dfxdfy

(15)
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The scaling property of Fourier transforms gives

�̃k,a( fx, fy) = a2�̃k,1(a fx, a fy) (16)

In the limit of small Sloan letters, the �̃k,1(a fx, a fy)
spectrum can be approximated by a constant function
�̃k that extends over the full domain of spatial
frequency (and therefore does not depend either on (fx,
fy) or on a). We had used this approximation to define
a model-based metric, M, which predicts contrast
sensitivity changes with optical aberrations (Leroux
et al., 2022). We obtain the approximated form of S*,
which is a quadratic function of letter gap a:

S∗(a) ≈ a2
2

σ
√
K

√√√√ K∑
k=1

∣∣�̃k
∣∣2

×
√∫∫ (

NTF ( fx, fy)MTF ( fx, fy)
)2 dfxdfy (17)

Using this approximation for S∗
0 (a0) and S∗

B(a∗
B), the

S∗
0 (a0) = S∗

B(a∗
B) equality of Equation 11 can be written

as

a20

√∫∫ (
NTF ( fx, fy)MTF0( fx, fy)

)2 dfxdfy
≈ a∗2

B

√∫∫ (
NTF ( fx, fy)MTFB( fx, fy)

)2 dfxdfy (18)

The letters lost L∗ = −50 log10(a∗
B/a0) (Equation 11)

can therefore be approximated as

L∗ ≈ 50
4

log10(∫∫ (
NTF ( fx, fy)MTFB( fx, fy)

)2 dfxdfy∫∫ (
NTF ( fx, fy)MTF0( fx, fy)

)2 dfxdfy
)

(19)

The argument of the logarithm in Equation 19 is the
square of the M metric, which we defined to predict
ratios (with/without aberration) of contrast sensitivity
measurements from the model of the ideal observer
(Leroux et al., 2022; Leroux et al., 2023):

M =
(∫∫ (

NTF ( fx, fy)MTFB( fx, fy)
)2 dfxdfy∫∫ (

NTF ( fx, fy)MTF0( fx, fy)
)2 dfxdfy

)1/2

(20)

Hence, we obtain the approximation of letters lost
for the ideal observer as a metric of visual image quality:

L∗ ≈ 25 log10(M ) (21)

M is comparable to the VSMTF metric (Thibos et al.,
2004), in the sense that it is computed as an integral
that combines the MTF and the NTF. However, the

power of 2 in Equation 20 is specific to M and does not
appear in the definition of VSMTF. The consequence
of this power is to give more weight to the spatial
frequencies for which the MTF is high (i.e., the lower
spatial frequencies).

Metric based on the model of the real observer
For the model of a real observer, we insert

�̃k,a( fx, fy) in Equation 9 to write data separability S as

S(a) = 2
σ
√
K

√√√√√√√√ K∑
k=1

( ∫∫ F−1 {
NTF ( fx, fy)OTF

( fx, fy)�̃k,a( fx, fy)
}

F−1 {
�̃k,a( fx, fy)

}
dxdy

)2
∫∫ (F−1

{
�̃k,a( fx, fy)

} )2dxdy (22)

We use Parseval’s theorem for both the numerator
and denominator in Equation 22. Noting that
F−1 {

�̃k,a( fx, fy)
} = Ok,a(x, y) − Oa(x, y) is

real-valued, we obtain

S(a) = 2
σ
√
K

√√√√√√ K∑
k=1

( ∫∫
NTF ( fx, fy)OTF ( fx, fy)∣∣�̃k,a( fx, fy)

∣∣2 dfxdfy)2∫∫ ∣∣�̃k,a( fx, fy)
∣∣2 dfxdfy (23)

For the numerator of Equation 23, we use the small
letter approximation that we used to approximate the
ideal observer with the 25log10(M) metric (Equations 15
to 17). We obtain

S(a) ≈ a4
2

σ
√
K

√√√√ K∑
k=1

|�̃k|4∫∫ ∣∣�̃k,a( fx, fy)
∣∣2 dfxdfy

×
∣∣∣∣
∫∫

NTF ( fx, fy)OTF ( fx, fy)dfxdfy
∣∣∣∣ (24)

The denominator in Equation 24 still depends on a, so
it needs to be rearranged. It is not well approximated by
the small letter approximation, which would here diverge
because there is no weighting function (other than∣∣�̃k,a( fx, fy)

∣∣2) in the integral (over R2). We make use
of Equation 16, and with a change of variable. we find∫∫ ∣∣�̃k,a( fx, fy)

∣∣2 dfxdfy = a2
∫∫ ∣∣�̃k,1( fx, fy)

∣∣2 dfxdfy.
We obtain the approximated form of S(a), which is a

cubic function of letter gap a:

S(a) ≈ a3
2

σ
√
K

√√√√ K∑
k=1

|�̃k|4∫∫ ∣∣�̃k,1( fx, fy)
∣∣2 dfxdfy

×
∣∣∣∣
∫∫

NTF ( fx, fy)OTF ( fx, fy)dfxdfy
∣∣∣∣ (25)

Using this approximation for S0(a0) and SB(aB), the
S0(a0) = SB(aB) equality (Equation 12) can be written
as:
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a30

∣∣∣∣
∫∫

NTF ( fx, fy)OTF0( fx, fy)dfxdfy
∣∣∣∣ ≈

a3B

∣∣∣∣
∫∫

NTF ( fx, fy)OTFB( fx, fy)dfxdfy
∣∣∣∣ (26)

The letters lost L = −50log10(aB/a0) (Equation 12)
can therefore be approximated as

L ≈ 50
3

log10

( ∣∣∫∫ NTF ( fx, fy)OTF0( fx, fy)dfxdfy
∣∣∣∣∫∫ NTF ( fx, fy)OTFB( fx, fy)dfxdfy
∣∣
)

(27)

The argument of the logarithm in Equation 27 is
the modulus of the visual Strehl computed with the
optical transfer function (VSOTF) metric, as primarily
introduced by Thibos et al. (2004):

VSOTF =
∫∫

NTF ( fx, fy)OTF0( fx, fy)dfxdfy∫∫
NTF ( fx, fy)OTFB( fx, fy)dfxdfy

(28)

Hence, we obtain the approximation of letters lost
for the real observer as a metric of visual image quality:

L ≈ 50
3

log10 |VSOTF | (29)
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Figure 2. Through-focus calculations of letters lost, for two fixed
amplitudes of spherical aberration. Black curves: z04 = 0.1 μm.
Green curves: z04 = 0.2μm. L* (open circles) and L (filled circles)
are the predictions of the complete model of the ideal and real
observers, respectively. The corresponding approximations, as
metrics of visual image quality, are 25log10(M) (dashed lines)
and 50/3log10|VSOTF| (solid lines), respectively.

Numerical examples
We show in Figure 2 the accuracy of the

approximating model of letters lost with a metric of
visual image quality, for the ideal observer (Equation 21:
open circle for L* and dashed line for 25log10(M))
and for the real observer (Equation 29: filled circle
for L and solid line for 50/3log10|VSOTF|). Black and
green curves correspond to through-focus calculations
with an additional fixed amount of Zernike spherical
aberration z04 = 0.1 μm and z04 = 0.2 μm, respectively.
We have used a 5-mm pupil size for the conditions with
aberration (index B in the model equations) and without
aberration (index 0 in the model equations). The overall
root mean square error between the complete model
and its metric is 0.52 letters for the ideal observer
(25log10(M) − L*) and 1.02 letters for the real observer
(50/3log10|VSOTF| − L).

Methods

Stimulus display

We have used the computational approach to
measure the effect of optical aberrations on visual
acuity (Burton & Haig, 1984; Applegate, Marsack
et al., 2003). The displayed letters were convolved
with a numerical point spread function, which we
defined with Zernike aberrations for a 5-mm pupil
diameter at the 530-nm wavelength. Four experiments
consisted of varying z02 Zernike defocus, with an
additional fixed amount of Zernike spherical aberration
(z04 = 0, 0.1, 0.2, 0.3 μm). A fifth experiment consisted
of varying z−1

3 Zernike coma alone. Each experiment
consisted of seven charts with varying amplitude of
defocus or coma, plus one control chart (without
aberration). The eight charts appeared in a randomized
order to limit the effect of blur adaptation on the
measurements (Artal et al., 2004; Sawides et al., 2010;
de Gracia, Dorronsoro, Marin, Hernandez, & Marcos,
2011; Ohlendorf, Tabernero, & Schaeffel, 2011; Sawides,
de Gracia, Dorronsoro, Webster, & Marcos, 2011).
Each subject only performed two experiments (2 × 8
charts) in order to limit learning and fatigue effects. We
have used a custom-made program using MATLAB
functions from the Psychophysics Toolbox (Brainard,
1997).

We have used the standard set of letters for testing
visual acuity in the United States (D, H, N, V, R, Z, S,
K, O, C) (Sloan, 1959; Pelli, Robson, & Wilkins, 1988;
Ricci, Cedrone, & Cerulli, 1998). We have used black
Sloan letters on a green background, with the maximum
contrast permitted by the 8-bit green channel. The
spectrum of the green channel was measured with a
spectrometer (HR2000+, Ocean Optics) as Gaussian

Downloaded from jov.arvojournals.org on 04/22/2024



Journal of Vision (2024) 24(4):14, 1–14 Leroux et al. 8

shaped (center at 530 nm, 43 nm full width at half
maximum) and was estimated to be sufficiently narrow
to neglect chromatic aberrations. Subjects performed
the experiments with ambient light, which we measured
with a calibrated luxmeter (RS Pro TES-1332- G,
RS components). This light corresponded to 337 Td
retinal illuminance, for the average 3.1-mm pupil of the
experiment. We also calculated the retinal illuminance
of the test chart alone, which was 706 Td for the average
3.1-mm pupil diameter.

Subjects

Twenty informed, yet untrained, subjects took part
in the study. Subjects wore their current refractive
correction and monocularly looked at the test screen
(Dell Ultrasharp U2720Q) with their dominant eye.
We used the Porta test of sighting dominance. We
measured the pupil diameter of each subject in the
condition of the test with a ruler. The average age was
28 years (± 7 years standard deviation), the average
pupil was 3.1 mm diameter (± 0.7 mm standard
deviation). The average spherical equivalent correction
was −0.14 diopters (± 1.1 diopters standard deviation),
and the average cylindrical correction was −0.11
diopters (± 0.25 diopters standard deviation). Prior
informed consent was obtained from the subjects. This
study was reviewed by an independent ethical review
board and conforms with the principles and applicable
guidelines for the protection of human subjects in
biomedical research. The experiment was performed
according to the Declaration of Helsinki on human
experimentation.

Measurements of letters lost

To measure letters lost, we used the same termination
rule as Applegate, Balentine et al. (2003): We counted
letters read on a logMAR chart until five errors
occurred cumulatively in the chart. Because of the size
of the screen, we only displayed the last nine lines of
the logMAR chart, which corresponded to visual acuity
ranging from 20/63 to 20/10.

Measurements of visual acuity in the control
condition

We measured visual acuity with the aberration-free
chart. We assigned a score of 0.02 logMAR for each
letter read until five errors occurred cumulatively in
the chart. Because our chart started at the 20/63 line
(0.5 logMAR), the visual acuity was estimated as 0.6 −

0.02 × n0 logMAR when n0 letters were read. For each
subject, we reported the average of two measurements.

Data analysis

For each aberration level of each experiment,
we averaged the number of letters lost across eight
different subjects. As mentioned above, each subject
completed only two experiments so we did not
have all 20 subjects per experiment. The predictive
performance of models and metrics was evaluated with
respect to the intersubject averaged measurements to
reduce the effect of measurement noise, which may
have been high because subjects were not trained to
the task of the experiment. Moreover, models and
metrics were not customized to the subject’s visual
system and did not aim at describing intersubject
differences. We quantified the performance of models
and metrics by computing the root mean square value
ε of the (average measurement model) difference
and we also computed the (α, β) parameters of the
(average measurement = α × model + β ) linear fit.

Model predictions

We computed the 25log10(M) and 50/3log10|VSOTF|
metrics using Equation 20 and Equation 28, respectively.
For both metrics, we defined OTFB as the product
of the transfer function that we used to numerically
blur the displayed Sloan letters for the experiment,
times another transfer function that modeled the
process of viewing the Sloan letter with a supposedly
diffraction-limited eye of pupil diameter 3.1 mm (the
mean pupil size). This latter transfer function alone
also defined OTF0 in the denominator of Equation 20
and Equation 28. The NTF was computed with the
code given by Hastings et al. (2020), for the mean age
of subjects (28 years) and the retinal illuminance of
our experiment (706 Td). In this study, the model does
not take account of the subject’s optical aberrations,
as the B condition only refers to the numerical blur.
This computation of the two metrics approximately
matches our experiment that combines numerical blur
(over a 5-mm pupil) and optical blur (over a 3.1-mm
pupil on average), assuming that the subject’s optics are
diffraction-limited for a 3.1-mm pupil with their current
refraction. While this assumption is certainly optimistic
(Hastings et al., 2018), we rely on the relative nature of
the letters lost measurements to reduce the impact of
the eye’s wavefront errors after correction (Applegate,
Marsack et al., 2003). The computation of the L*
(Equation 11 and Equation 15) and L (Equation 12
and Equation 23) models of letters lost were performed
using the same transfer functions.
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Results

In the control condition (aberration free), the visual
acuity was −0.21 ± 0.05 logMAR (mean ± standard
deviation). All subjects had better than 20/20 visual
acuity. The logMAR values were in the (− 0.27, −0.12)
range.

Figure 3 compares the two metrics (25log10(M): open
circle; 50/3log10|VSOTF|: filled circle) to experimental
measurements of letters lost. We show as error bars
in Figures 3A–E the average ± standard deviation
(across eight subjects) of the measured letters lost, as
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Figure 3. Comparison of the two model-based metrics with
experimental measurements of letters lost. Error bars show the
average ± standard deviation (across eight subjects) of the
measured letters lost as a function of varying defocus z02 and
fixed spherical aberration: z04 = 0 (A), z04 = 0.1˜μm (B),
z04 = 0.2˜μm (C), z04 = 0.3˜μm (D), and as a function of varying
coma z−1

3 alone (E). The two model-based metrics are shown
for each condition: 25log10(M) (open circle) and
50/3log10|VSOTF| (filled circle). (F) The corresponding scatter
graphs of all (average measurement, metric) pairs. Dashed and
solid lines show the corresponding linear fits for 25log10(M) and
50/3log10|VSOTF|, respectively. Fit parameters are given in
Table 1.

ε α β r2

L* 3.95 0.79 −2.46 0.69
L 2.26 0.94 0.24 0.91
25log10(M) 4.32 0.76 −2.69 0.64
50/3log10|VSOTF| 2.71 0.91 0.38 0.92

Table 1. Comparison of models to measurements. ε is the root
mean square value of the (average measurement model)
difference, for each model (L*, L, 25log10(M),
50/3log10|VSOTF|). We give the coefficients of the
(average measurement = α × model + β) linear fit. r2 is the
coefficient of determination of the fit, which is shown in
Figure 3F for the 25log10(M) metric and the 50/3log10|VSOTF|
metric.

a function of the varying amplitude of aberration.
Figures 3A–D corresponds to the experiments
with varying Zernike defocus z02 and fixed spherical
aberration: z04 = 0 (A), z04 = 0.1˜μm (B), z04 = 0.2˜μm
(C), and z04 = 0.3˜μm (D). Figure 3E corresponds to the
experiment with varying coma z−1

3 . The corresponding
scatter graphs of all (average measurement, metric)
pairs are shown in Figure 3F. The dashed and solid
lines show the corresponding linear fits for 25log10(M)
and 50/3log10|VSOTF|, respectively.

The parameters of the linear fit
(average measurement = α × model + β ) are
given in Table 1, for each model and metric. The
highest coefficient of determination is r2 = 0.92 for
the 50/3log10|VSOTF| metric. The second highest
coefficient of determination is r2 = 0.91 for the L
model. The best agreement of fit parameters with the y
= x perfect agreement line is for the L model (α = 0.94,
close to unity, and β = 0.24 letters read). The second
best agreement of fit parameters with the y = x perfect
agreement line is for the 50/3log10|VSOTF| metric (α =
0.91 and β = 0.38 letters read).

The overall root mean square value ε of the (average
measurement model) difference is given in Table 1 for
each model. The lowest value is ε = 2.26 letters for the L
model. The second lowest value is ε = 2.71 letters for the
corresponding model-based metric, 50/3log10|VSOTF|.

Discussion

The main contribution of this work is to relate
two existing metrics of visual image quality to the
underlying theoretical models of linear observers.
The two metrics predict the number of letters lost
(negative number) on the logMAR chart, due to optical
aberrations. The benefit of our theoretical approach
is twofold. First, we aim at predicting letters lost (or
acuity changes) without needing a posteriori scale or
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offset. Second, it gives the interpretation of each metric
as a subject’s strategy to identify optotypes.

Predicting letters lost (or acuity changes)
without needing a posteriori scale or offset

In agreement with studies that correlate the VSOTF
metric with visual acuity measurements (Marsack
et al., 2004; Cheng et al., 2004; Ravikumar et al., 2013),
we find that the 50/3log10|VSOTF| metric has a high
coefficient of determination (r2 = 0.92 in Table 1).
Our prediction of acuity changes makes it possible
to go beyond mere analysis of the r2 coefficient, by
comparing the parameters of the (measurement,
model) linear fit with the y = x perfect agreement
line. We find that the 50/3log10|VSOTF| metric has a
slope near unity (α = 0.91) and intercept near zero
(β = 0.38 letters; see Table 1). Metrics of letters
lost can be converted to predict acuity change after
multiplication by a factor of −1/50 (one lost line
is −5 letters lost, or +0.1 logMAR). Hence, we
predict logMAR acuity changes as −1/3log10|VSOTF|.
This prediction approximately agrees with the
(logMAR acuity changes, log10|VSOTF|) scatter graph
reported by (Ravikumar et al., 2013, Figure 5) for
a set of normal wavefront errors: Their linear fit is
logMAR = −0.190 log10 |VSOTF | + 0.0420. When
comparing this linear fit to our theoretical prediction
(−1/3log10|VSOTF|), the mean absolute value of the
difference in predicted visual acuity is 0.083 logMAR
for the aberrations studied in our work.

Interpretation of each metric as a subject’s
strategy to identify optotypes

In this work, the prediction with the 25log10(M)
metric is poorer than with the 50/3log10|VSOTF| metric,
both in terms of coefficient of determination (r2 =
0.64 vs r2 = 0.92) and parameters of the linear fit that
differ from the y = x perfect agreement (α = 0.76 and
β = −2.69 letters vs. α = 0.91 and β = 0.38 letters in
Table 1). We hypothesize that the better prediction
with the 50/3log10|VSOTF| metric originates from a
more suitable model of a theoretical observer. As also
shown in Table 1, the model of a real observer (L)
better agrees with measurements than the ideal observer
(L*). We recall that the real observer essentially projects
visual images on a set of unaberrated letters, while
the ideal observer uses aberrated letters as templates.
Using aberrated images is an optimal strategy because
they properly represent the observed visual images.
Indeed, the ideal observer sets the upper bound
of visual acuity for given experimental conditions
(aberration, noise level, letter contrast). The model of
the ideal observer predicts the optimal visual acuity,

both with and without aberrations. Counterintuitively,
this model can predict higher acuity loss with optical
aberrations than the real observer. It is so in 40%
of the aberration conditions analyzed in Figure 3.
Similarity, the −25log10(M) metric, which is based
on the model of an ideal observer, can predict more
letters lost than the −50/3log10|VSOTF| metric. Watson
and Ahumada (2008) used Monte Carlo simulations
of acuity testing to compare the data agreement of
two correlation-maximizing observers: the observer
that uses unaberrated letters as a set of templates (XL
observer in their Table 2) and the observer that uses
aberrated letters (XA in their Table 2). They obtained a
better prediction of absolute visual acuity (lower root
mean square error) with aberrated templates when the
noise level of the model maximized data agreement,
but their results also show that unaberrated templates
can give better prediction for other levels of noise
(see their Figure 6). In that situation, the Watson and
Ahumada model agrees with our results, as we obtain
better prediction with unaberrated templates (L and
50/3log10|VSOTF|) than with aberrated templates (L*
and 25log10(M)). The predicted acuity changes do not
depend on the noise level σ , which cancels out when
writing that data separability at threshold remains
unchanged when aberrations change (Equation 18 and
26 for the ideal and real observers, respectively). Like
Watson and Ahumada, we quantify the agreement
between a model and measurements with the root
mean square value of the (measurement model)
difference (ε, see Table 1). With ε = 2.71 letters for
the 50/3log10|VSOTF| metric, the root mean square
difference corresponds to around 0.05 logMAR acuity,
which is similar to the errors given by Watson and
Ahumada (2008) in their Figure 6.

Role of the phase transfer function

In this study, better prediction of acuity
measurements with the 50/3log10|VSOTF| metric than
with the 25log10(M) metric corroborates experimental
evidence that the phase transfer function of the eye
impacts visual acuity measurements (Piotrowski &
Campbell, 1982; Sarver & Applegate, 2004; Ravikumar,
Bradley, & Thibos, 2010), as VSOTF depends on the
OTF while M only depends on its modulus (theMTF).

Comparison with contrast sensitivity

In our previous study (Leroux et al., 2023), we
reported on the prediction of contrast sensitivity
measurements with similar metrics and found different
results: higher r2, and better agreement with the y =
x line, for M than for VSOTF. This result favored
the model of an ideal observer for contrast sensitivity
measurements, unlike the present study of visual acuity.
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We think that this difference can be explained by the
specific effect of aberrations during each visual test.
During a contrast sensitivity measurement, optical
blur remains the same for optotypes of fixed size and
varying contrast. Hence, the model of an ideal observer
only requires one set of aberrated letters to classify
letters that all have the same size. During a visual acuity
measurement, the model of an ideal observer requires
size-dependent sets of aberrated templates. Moreover,
the effect of optical blur is exacerbated for small letters.
Most subjects probably lose track during this “heavy
computational task,” and their visual performance is
not well modeled by an ideal observer. The discrepancy
of human subjects with the ideal observer is probably
specific to our study on the effect of aberrations on
visual acuity. The comparison of a subject’s visual
performance with the performance of the ideal observer
is usually represented as a ratio named efficiency
(Pelli, Burns, Farell, & Moore-Page, 2006; Watson &
Ahumada, 2012, Watson & Ahumada, 2015). In vision
science (Geisler, 2011) and for task-based assessment of
image quality (Barrett & Myers, 2003), the model of an
ideal observer is successfully used in many experimental
studies.

Experiments with/without the subject’s own
natural aberrations

To account for the effect of optical aberrations,
the model of an ideal observer is more realistic for
contrast sensitivity than for visual acuity. However, for
specific studies of visual acuity, it is conceivable that
subjects behave like an ideal observer. For example,
studies of the effect of the subject’s natural aberrations
on visual acuity with adaptive optics correction
(Marcos, Sawides, Gambra, & Dorronsoro, 2008;
Li et al., 2009; Legras & Rouger, 2008) may favor
the model of the ideal observer that uses aberrated
templates and the 25log10(M) metric of visual image
quality. In the present study, subjects were not familiar
with optical aberrations that were not their natural
aberrations. This experimental condition may favor the
model of the real observer and the 50/3log10|VSOTF|
metric.

Choice of aberrations

The approximation of theoretical observers with
metrics of visual acuity (Equations 21 and 29) is the
central result of our work. We have experimentally
illustrated our theory with a study of aberrations that
partly resembles the through-focus study of Cheng et al.
(2004), which later provided the experimental data to
the landmark paper of Watson and Ahumada (2008).
Future work includes the test of our metrics on a wider
range of aberrations.

Conclusions

In this work, we demonstrate that the VSOTF and
the M metrics relate to two models of theoretical
observers that classify letters of an acuity chart using,
as templates, their unaberrated and aberrated images,
respectively. Our approach scales the metrics to predict
changes in visual acuity due to optical aberrations,
without a posteriori scale or offset. We have illustrated
this theory with experiments, in which we numerically
introduced combinations of defocus and spherical
aberration, and pure coma. We obtained better
prediction of letters lost with the 50/3log10|VSOTF|
metric. Here we have used the numerical approach that
directly introduces optical aberrations by convolution
of the displayed images of optotypes, and the metrics
can be adapted with the appropriate optical transfer
functions that correspond to the actual experimental
conditions. We also expect that clinical studies can
benefit from using our metrics to relate aberration
measurements to visual acuity changes.

Keywords: Fourier optics, models of ideal observer,
monochromatic aberrations, metrics of visual image
quality
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