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Data bases with fuzzy information
and

approximate reasoning in expert systems

Henri PRADE
"Langages et Systé@mes Informatiques"
Université Paul Sabatier
118, route de Narbonne, 31062 Toulouse Cédex

France

This short paper deals successively with two important fields of applications
of fuzzy set and possibility theory

- data bases with fuzzy information and fuzzy queries

- approximate/plausible reasoning in expert systems.

The main ideas of a work in progress concerning a very general approach to the
management of relational databases with fuzzy attribute values are presented.
This approach makes an extensive use of the dual concepts of possibility and

necessity measures,

Besides the problem of the inference from uncertain/imprecise premises is

discussed ; the unification of old and new results leads to the emergence

of a coherent framework for dealing with this question ; the combination of

uncertain or imprecise informations issued from different sources, which is

another basic problem we have to deal with in production rule systems, is
not addressed here,

Proof are omitted for sake of brevity,

* Prepared for the Seminar on "Fuzzy Sets and Knowledge - Based Systems",

Queen Mary College, London, March 23, 1983,
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informatiog

In our approach (i3} , {14} , 115] to relational data bases with fuzzy
data we deal with ordinary relations on Cartesian product of sets of fuzzy sets

as Umano in [ﬁQ] rather than with fuzzy relations as in FRIL (see [2] ). For example :

Level
Studentc i Name @ Age  :  in Maths:  Sympathy: Name | iName 2 : Type
Tom : 20 ! Unknown : ¢ David Tom F
‘opavid ' [20,25] ' [10,12]  David  gohn ¢ §r,m
; Maria ;VERY—YOUNG; RATHER-GOOD; f John f Tom f Unknown
: : : : The domain of the Type attribute is here

VH:very hostile,H :hostile, I :Indifferent,
F : friendly, vF: very Friendy .
The use of labels of fuzzy sets or of intervals represented by possibility
dicrrisu:ions on the attribute domains enables to represent attribute values which
are oniy partially or imprecisely knewn. The null value "unknown" is represented
by a pousibility distribution equal to | for each value of the attribute domain
while the null value not applicable” corresponds to a possibiliiy distribution

equal to 0 everywhere,
Given a predicate A{vague or not) represented by a possibility dis-

tribution, we can define two fuzzy sets of items in the data base : the fuzzy set of

items which are possibly A defined by the membership function :

}*‘-POSA(X) =TIAIT(x)) = sup, min (F'A(d)’ﬁ[‘(x) (d))

and the fuzzy set of items which are necessarily A defined by the

membership function
Mress @ = NAITG)) = inf, max (g4 (), "r“T(x)(d))

wherePT(X) is the possibility distribution modelling the knowledge
available in the data base concerning x and where D is the domain on
which A and T(x) are defined. We have

NCAIT(x)) £ TIAIT(x)) ie.

Nes ACPos A, which is in conformity with the intuitionm.

When our knowledge is complete , T(x) reduces to 3 singleton of D
and we have N(A|T(x)) =T(AIT(x)) and NesA = PosA ; however when A is
vague and the knowledge is complete » the set of items which areAremains
fuzzy . When A is non-vague , whatever T(x) is , we have N(A]T(x)))-o
entails (A T(x)) = | » which means that the jtems which are necessa
rily & *o some degree are among the items whose possibility to be A is
equal Lo I ; the necessity measure enables to discriminate when the po
gsibility measure is equal to 1 . B



On each demain D which is a contimum, a tolerance Ry represented

by a fuzzy relation Pep may be introduced for modelling the fact that

two close values of D can be regarded as approximately equal (as inf43}),

This tolerance relation may be used for making more flexible the notion of
redundant tuples . Let (A .,..., A ) and (Apj,...,A, ) be two tuples of a
. kn” . n .
relation ; the two tuplee may be con51dered as redundant if
m1n (N{A oR N{A }) is greater than some threshold where
1s thé toieraﬁce relaEion 8 ggmaln '] and where f‘AoRD(d)
suﬂdr mln(}LA(dﬁ }LRD(d a") )>Uuh(d) ; AoR is larger than A due to the

tolerance

The usual operations of relational algebra ( projection , selection ,join ,
«+.) can be extended . Thus , queries such that "Find the students whose level
in maths is much greater than their level in physics'" or "Find the students
whose level in maths is at least good" can be easily dealt with . In the first

example
TKQ!T](X)XTZ(X)) = supy 4 min(}lTk&ﬁ) , }LT2£§') , )ﬁﬁd’d' )
and N(@}T;(x)xT?_(x)) = inf, o max(}dg(d,d'),' =Hr1 (x) (d),l-)um'(x) @an

estimates the possibility and the necessity respectively that the level in
maths of the student x ( the available knowledge concerning this level is re
w"esented by T,(x) ) is in relation @ ( here & is a uzzy relation which models
"much greater than'" ) with his level in physics ( the available knowledge
concerning the level in physics being represented by T,(x) ) . Again these
two evaluations induce the fuzzy set of items which possibly satisfy the query
and the fuzzy set of items which necessarily satisfy the query . The second
example is similarily dealt with by computing T(§' IT (x)xA) and N(G'IT{(x)xA)
where @' is a relation modeling "greater or equal" and where A is a fuzzy set
whose membership function (defined on a scale) represents "good"
N.B, This approach for the evaluation of queries involving comparisons such as
(approximate) equalities or inequalities , is quite similar to the approach
recently proposed for discussing the ranking of fuzzy numbers (see Dubois , D.
Prade , H. Ranking fuzzy numbers in the setting of possibility theory . Submitted
to Information Seciences ) , B

Moreover , we are able to evaluate more complex queries such as "Find the
students which are at least good in sciences" where the global 1level in sciences
is defined (possibly in a fuzzy way) in terms of the levels in maths and in
physics . This can be done either by a set of production rules "if level in
maths is A and level in physics is B, then level in sciences is C" or using an
analytical definition : for instance,the global level is equal to the arithmetic
meanof the levels in maths and in physics ( such an operation can be easily
performed wusing results on fuzzy numbers ) .

Since T (AJT(x)) and N(AIT(x)) respectively represents the possibility and the
necessity that the proposition 'x is A" is true taking into account the available
knowledge in the data base ( see Dubois Prade [[9]for a detailed discussion ) ,

" yes-or-no" queries can be considered . Such queries may involve universal or
fuzzy quantifiers , for instance we can estimate the possibility and the necessi_
ty that a proposition such as "Most of the x's which are A are also B" is true ,
See Prade {123, [14], [I5]for details

A general query language based on the extended relational algebra is going to
be designed . The fuzzy pattern matching system implemented in LISP (see LSJ, (6]
L73 , see also lJOT for a related application) can be regarded as qbrlmltlve
version of such a query language . This system retrieves , in a database with
fuzzy tuples , the items which possibly/necessarily satisfy a given requirement
(possibly vague) represented by a pattern .

The investigation of possible extensions of the concepts of functional or mul.
tivalued dependencies is in progress . The approach which is very briefly presen_
ted here (for more details the reader is roferred to[12], [13], [143,[1S]and to
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torchcoming papers) enables to deal in a very satisfying way with null values

{rv the sense of Codd , Extending the data base relational model to capture more
72aning . ACM Trans. Database Systems ,Vol. 4 , pp 397-434, 1979) , With partial
or incomplete information( in the sense of Lipski , W.,Jr.0On semantic issues con,
nected with incomplete information data bases 7 ACM Trans. Database Systems ,Vol
4, pPp. 262-296) and with uncertain information { as Wong ,E. A statistical app~
roach to incomplete information in database systems,Tech, Rep. n°CCA-80-08 ,

Computer Corporation of America , Ma. USA ,_1280)

Approximate reasoning for expert systems

The two basic patterns of reasoning, which are needed in production rule
systems when the knowledge is uncertain and/ or imprecise, are

i) the extension of the rules of detachment (modus ponens, modus tollens,...)
ii) the combination of more or less certain and more or less comsonant

informations given by different sources.

In the following we only deal with the first problem . For the se
cond one, the reader is referred to [12] , [i6] .

i classical logic, the two main rules of detachment are

the modus ponens P-=-+ Q which correspunds to the first line of the

L
Q
cruth-table
P->Q | 2 )| Q
1 1 1 modus ponens
I o ({0, 1} "denial of Q" (but the truth-value
Table i . 0 of Q remains indetermined)
0 @ no truth-value € {0,1} is possible
: P--3 () .
while the modus tollens 7 q corresponds to the second line of
TP
the truth-table
P-—>q | g P
1 1] {0,1} "confirmation of P" (but the truth-
value of P remains indetermined)
Table ? 1 0 0 modus tollens
1 @ no truth-value e{0,1}is possible
0] 1

N.B. In Table 2, knowing that P —-3 Q is true, the truth of Q makes "P true"
more credible (see Pdlya, @, (1954) Mathematics and plausible reasoning,
Vol. II : Patterns of plausible inference. Princeton University Press)
since it is a necessary condition for the truth P ; similarly knowing
that P ~-9% Q is true, the falsity of P makes "Q true" less plausible
since it is a necessary condition for the falsity of Q (oriwe prefer,
krowing that P —--3 Q is true, the truth of P is a sufficient condition
for the truch of Q). '

Now, let us consider the modus ponens and the modus tollens when certainty
degrees or degrees of truth are attached to the premiges,
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If an event A has the probability 1, it can be regarded as certain since
Prob(A) = | - Prob (A) = 0, Simitarly in possibility 'theory,-if an event A
has a necessity equal to 1, it can also be regarded as certain since

Pos(A) = 1 = Nec(A) = O where Pos is a possibility measure in the senge

of Zadeh and Nec is the dual measure of necessity (note that V A, V B, _
min(N¥ec(A), Nec(B))). Then, depending on the kind of certainty,

Nec (A nB) =
we have , with P=-3*Q =P v Q
Prob(P ——» Q) ,> a Prob(P ——> Q) 2 a
(0 Prob(P) 2 b Prob{Q) 4% b
Prob(Q) 12 max {0, a+b=1) Prob(P) < min(1, 1-a+b)
(1m) Prob(Q|P) > Prob(Q|P) > a
Prob(P) ) b Prob(Q) £ b
Prok{Q) ) a.b ' Prob(P) < min(l,%) a0
Nec(P ==>» Q) 2 a Nec(P -2 Q) 2 a
UTD ey > b Nec (Q) & b
Nec (Q) 2 minfa,b) ([427) Nec (P) < 1 if a £ b
= b if a > b
N.B_._IL It can also be shown that
() Nec(P == @) > a Pos(P --> Q) 2 a
Pos(P) _ 2 b Nec (P) >', b
Pos (Q) )Y 0 if a+b {1 Pos(Q) 2; { 0 if atb (1
1 bt atb>i a if a+b S

However, if we only know that Pos(P ~== Q) ,> a and Pos(P); b, nothing
can be said on Pos(Q).

N.B.2. Since we have max(0, p + q = 1)< Prob(P A Q)¢ min(p,q) where
Prob(P) = p and Prob(Q) = q, it can be easily checked with

P ~=2 Q=977 vQ and taking into account Prob{ =P) = 1-Prob(P),
that
i) max{l - p,q) < Prob(P --> ) émin(l, 1 —p + q)

Wy ii) max(o,B%q:i) < prob(afpy = ZIREA Qo

o o
S’

Prob(P)

1ii) max(l-p, p+q ~ 1) { max(Prob(P A Q),Prob( =Q)) & max(4-p,min(p,q)).

Bandler and Kchout [ 3 ] have interpreted the inequalities (V) in the
framework of a so-called "checklist paradigm" without explicit].] refering

to probability,

Hulti-valued logics offer another framework for extending the modus ponens

and the modus tollens to premises graded by degrees of truth ;

v(P} e [ 0,1] will denote the truth-value of a proposition P. A large
collection of implication operators have been considered in the fuzzy
r.asoning literature recently., However, most of them can be derived from

one of the two general formulae
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VD v® -3 @ =sup { &t e[ 0,11, vP) # ¢ <vQ) 3

where * denotes a triangular norm H

(Vil) V(P ==> Q) = n(v(P)) L v(Q)

. . 1 .
where n 1s a negation operator and ) a triangular co-norm, In the
following, we use n(x) = 1 - x ; however other choices are possible

(see for instance [12] ).

Implications defined by (VII) are such that v(P —-=» Q) = v( = Q ~-> 1P)
with v( =P) = n(v(P)) s many implications defined by (VI) does not
satisfy v(P -=»Q) = v( 1Q == 4P), then new implications can be
defined by min(v(P -- W, v( 9Q ——9P)) or by max(v(P --» Q),

v( 1Q -~ <9 P)). Definition VI has been motivated by the detachment
problem, while definition VII extends the usual definition of implication
in classical logic,

I~ A triangular norm = (see Schweitzer, B., Sklar, A, (1963) Associative
functions and abstract semigroups, Publ, Math, Debrecen, Vol., 10,
pp 69-81) is a two-place function from Lo0,1]1 x [ 0,11 to [ 0,1]
such that i) a «b =b 4 a, i1) ax( bke) = (a +b) % c, 1iii) if a ¢ b
and ¢< d, then a *c< b *d and iv) 1 ®%a = a, The greatest triangular
norm is min and the least one is defined by
aif b =1
{ bif a=1 ; thus we always have
0 otherwise
Tw(a,b) = a *b< min(a,b)., Other noticeable triangular norms are

il

a *b = Tw(a,b) =

a *b=4a,band ax b = max(0,a+b-1), moreover we have
Tw(a,b) <max{(0,a + b - 1) < a.b< min{a,b) .

By duality each triangular norms x is associated with a triangular co-norm L

defined by
alb=1=(=a)x (] -b)

Triangular norms are conjunction operators while co-norms are disjunction
operators (see [412] for instance).; the main co-norms are in increasing

order aif b=20
max(a,b) £ a+b-a,b < min(l, a+b) < {b if a = 0
| otherwise

There exist many paremetered families of triangular norms and co=norms

in the literature ; among them, the one studied and identified by Frank, M,J

(On the simultaneous associativity of F(x,y) and x + y = F(x,y). Aequat,
Math. Vol. 19, pp 194-226, 1979) is specially remarkable since a triangular
norm % of this family is such that .a + b = a*x b+ alt b wherel is
the associated co-norm ; the members of this family range from max{0,a+b-1)
to min(a,b)PHte the only eligible operators compatible with an expression
of Prob(P A Q) in terms of Prob(P) and Prob(Q) as

Prob(P p Q) = Prob{P) . Prob(Q) .
See N,B.2Z,

bube

A negation operator n is supposedYsuch that i) n(0Q) = I, ii) n(a(a)) = a,
iii) n is strictly decreasing ; iv) n is continuous ; See Alsina, C,,
Trillas, E., Valverde, L., (1980) On non-distributive logical ¢onnectives
tov fuzzy sets theory, BUSEFAL n° 3, pp 18-29,
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(VIII)

(1X)
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v(PAQ v(P —=% Q) i
=p % q i Formula VI Formula VIIL
Godel 7 Dienes
min(p,q) 5 lifp £ g "max(l-p,q)
qif p >q
Goguen probabilistic
PsQ ; l1.ifp=0 1 —p +p.gq
min(1,q/p)
ifp#0
Yukasiewicz
max(O,P+q I) min(-l‘l—p+q) min(l,]—p+q)

v(P) =p ; v(Q =¢q

Table 3 gives the implication operators defined from formulae VI

or VII for the main triangular norms ; note that the Lukasiewicz

implication can be ohtained by both approaches,

Depending on the kind of implication we use, we get as extensions
of the modus ponens and of the modus tollens :
. ilmplication type VI :

v(P ~-=> Q) S a v(P -=2> Q) 2 a

v(P) > b v{(Q) 4 b

v(Q) Haxb v(P) £ a%—>b

where a ¥-—2 b = sup § t,t ¢ [0, , t*®a ¢ bg

. implication type VII :

v(P ——> Q)
v(P)

2 a
> b

v(Q)

v(P —> Q) 2
<

a
b

v@ 1= [ b ¥ (1-a)]

v(P) £ (1-b) ¥%—> (1-a)

The following table gives the value of these different lower

and upper bhounds for the main triangular norms ¥,

ab I - [b¥*—>(1-a)}] a%—>b (1-b) *—s(1-a)
min(a,b) 0 if a+b €1 §I if adb 51 if a4b
{a 1f a+b > /b if a >b l-a if a > b
;oifb;bgI 'ilifa=o élifblil
a.b max (0,2 ) min(1,2) min(l,——=) if b#l
L= b ! a 1-b
: { iF a0
max{(0,a+b-1) max(0,a+b~1) f min(i,1-a+bh) | min(l, [-a+b)

Table 4
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What is very striking is that the patterns (VIII), based on the family of
implications defined by (VI), coincide with the patterns (I), (II) or (III)

for different implications of this family ; the lower bound obtained in

(IV) is a particular case of the lower bound given in (IX) where the implications
defined by (VII) are used. Thus from a practical point of view, the multi-valued~
logic~based approach and the (un)certainty measure ~ based appreach coincide :
moreover the differences which are introduced by the different implication
functions or by the different (un)certainty measures which are used, are only
nuances easy to compare, since the ordering of the main triangular norms induces
an ordering on the %> operations, The use of Fukasiewicz implication leads

to the least lower bound and to the greatest upper bound ; it is the safest
choice, particularly when we are not sure of the very nature of the "s¢{rength"

of the rule P --> Q (probability?, necessity?,....) or when viewing this
strength as a truth-value, we have no reason to prefer a particular implication
operation,

Mixing together the modus ponens and the modus tollens modes emables to

obtain a lower but also an upper bound for v{Q), we get from (VIII)

v(P-=> Q) » a
v(Q --> P} » a'
X) v(P) ¢ [Db,B]

v(Q) € [a¥b, a"pg—> B
and from (IX)

v(P -—-> Q) > a
{(XI) v(Q -=-> P) 2 a'

v(P) ¢ [b,8]

v € L1 - (b¥—> (1-a), (1-B) %—>(1-a")]

Naturally, we are not obliged to use the same model of implication for P ——3 (

and Q -~ P, Note that in (X), the calculated interval for v(Q) is never
empty ; in (XI), this interval may be empty, for example in case of Dienes'
implication it is impossible to have v(P --3 Q) =1, v(Q ==> P) = 1 and
v(P) = 0.5.

N,B.3. The pattern (X) is used with fukasiewicz implication and b = B = v(P)
in the system PROTIS [ 18] . In practice, we may take for b and B the
necessity and the possibility respectively that the proposition P is true
(see Dubois Prade [ 9] and Prade (1982) Degree of truth : Matching statement
against reality, BUSEFAL, n® 9, pp 88-92).
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N.B.4., Reapplying the pattern (X) to v(Q) gives for v(P) an interval
Ca¥a»¥b, a'—>»(a'®¥—>» B)] which clearly contains [b,B] ; our

knowledge concerning v(P) cannot be improved in that way, which is natural.

However, it is not always the case in (XI), for instance for Dienes implication,

a' = 1 and B = 0.5 we have not [1-(1-B) %—>(1-a")] #¥—> (1-a") > B |

This fact tends to disqualify implications given by formulae (VII),.

N.B.5., It is important to notice that the two statements
' viP ——2> Q) & {a,Al
v(P) & [b,B]
are not always consistent.Indeed, v(P --» Q) £ A entails
for Godel's implication if A <1, v(Q) € min(A,v(P)) and v(P) > viQ) » O

for Goguen's implication if A <1, v(Q) & A.v(P) and v(P) #0

for Tukasiewicz implication if A <1, v(Q) £ A + v(P) ~ !

for the probabilistic implication I-A ¢ v(P).(1-v(Q)) év(P) > 1-A
for Dienes’implication 1-4A g min(v(P), 1-v{(Q)) viQ) £ A

N.B.6. When v(P -—3 Q) or v(P) are fuzzily restricted by possibility
diztributions (e.g. fuzzy numbers) rather than by ¢risp intervals, the possibility

dist-ibution attached to v(Q) can be easily computed as (see [81 , Lol )

GIDVs €[0,1) , %, (o0 (8) = sup, Ty (1) % Ko o) ()
t = F’I(rps)

where ® is a triangular norm and M1 the implication function., Note that,
if ¥ro e § PRy P O0Y, Ve 6§, w00 (© >0l ,
E 8, ’LI(ro,S) = t°3 = @, then we get %V(Q)(s) =0, s, 1.e. v(Q) = 0,

which generalizes the N,B.5,

Let us suppose that P expresses a restriction on the possible values of a
variable X and Q a restriction on the possible values of a variable Y. A causal
link from X to Y can be represented by a conditional possibility (probability
resp,.) distribution ,rY/X (pY/X resp.) which restricts the possible values of ¥
for a given value of X, From a possibility distribution mrx representing the
proposition P, we compute the possibility distribution ?tY restricting Y,
(X11I1) J‘(Y(y) = sup, %Y/X(y,x) > xx(x)

where % is a triangular norm ; XIII is the analogous in possibility theory of
(KIV)  py() = 2 by (7R by ().

In this framework a rule such as "If X is A , then Y is B" is represented by
the inequalit.y

(xV) Yy, pg) 3 sup, Xy p (7,0) % gy (x)

where Fa and Wy are the possibility distributions attached to X-and Y
respeccively, ,:Y/K being unknown ; the inequality stems from the entailment
principle [2]1 + if Y is B, then Y is B' as soon as B' corresponds to a

larger possibility distribution. The greatest solution of (XV) for a continuous
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triangular norm is given by (see [z, [121 )
(Xv1) ‘)%X(y,x) = M&) H—> F ()
In case of several rules "if A is Ai, then Y is Bi", a possibility distribution /s
computed by aggregating (with min operator) the expressions (XVI) obtained for-
each rule, Under certain condition, it is possible to have also a lower bound
of er/X' ‘
Now we are in position of considering the "generalized modus ponens" introduced
by Zadeh [21]
(Xv1iD) If X is A, then Y is B

X is A'

then Y is B’
where }‘B' = J&Y is computed from {XI11) apd (XVI) as _
(XVIIT) Yy, Pt (0 = sup, ( /J-A(x)*—> /-I-B(y)) * /"Arfx)
For discussing (XVII) in terms ot truth-values, Baldwin L[i] » has introduced
the compatibilitie52 in the sense of Zadeh £211 , CcP(A/A') and CP(B/B")
wisizh are nothing but the possibility distributionsattached to the values of the
degrees of truth of P = X ig A and Q =Y is B knowing respectively that

"X is A' and that "y ig B'", Then (XVIII) becomes [11 , 21}
- Peepcarany @ = sup, a0

u = ;A-A(rlc)
0 if }L; (u) = ¢

i

(XiX) .
,LCP(B/B')(V) = sup fa (u,v) ¥ /‘CP(A/A')(U)
u & [o,1]
Mg () = Feporpry (g

where }LI is the implication function which is used. (XIX) is equivalent to (XVIIT).
More generally, if a fuzzy truth-value Z is attached to "if X is A, then Y is B",

it must be understood as

(%) T = CP(A%—>B/X-3»Y)

R L

Fas—ssp = Py My

Then, we have (see [21] )

(XXT) XK G Tx) = P CP A0 ¥ po (3))

Thus (XIII) is generalized by

(XX11) Mgt @) = sup o () ¥—>p () % Jepr ()

2. The possibility and the necessity that X is A is true knowing that X is A'

can be zasily extracted from CP(A/A"). See [lﬂ s f12]



125

Using (XIX), it can be checked that (XXII) and (XII) are equivalent with

oy - Perarany B T Ferwsy ) T > @ T /“‘2: and
Jor (a8) = r ¥=>s 5 see L121 .

Thus the generalized modus ponens in Zadeh's or in Baldwin's form is consistent

with the extended rule of detachment given by (XII),

N.B.7. It is important to remember that CP(A/A') may be a fuzzy set of [0,1]
(i.e. corresponds to a non-crisp possibility distribution) only if A is a
genuine fuzzy set. In other words, in the compatibility model a precise
statement cannot have a fuzzy truth-value (see [11] , L121 for a discussion).
However a truth~value may be fuzzy only because itSimprecisely spec1f1ed

in that case the direct use of XII solves the problem.

N.B.8. Another important remark must be made concerning (XVIII). It can be
shown that '

VY My () sup Far® = Fopamn ©
X, fLA(X) =0

whica means that a uniform level of indetermination appears as soon as a
s: snificant part of A' is not included in A, which intuitively seems natural.
Ywu8 the generalized modus ponens cannot enable to deduce from

"If a tomato is red,then the tomato is ripe"
and from "The tomato is very red"
that "This tomateo is very ripe"
Such an inference presupposes we know that the ripeness degree is an increasing
function of the color intensity. More generally if we know that "A' is not far
from A" in the sense of some metrics, the generalized modus ponens is not a
sufficient model for deducing from "if X is A, then Y is B" that "Y is not far
from B",
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