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Kalman-based approaches for online estimation of bioreactor dynamics
from fluorescent reporter measurements∗

Rand Asswad1,†, Eugenio Cinquemani1, Jean-Luc Gouzé2

Abstract— We address online estimation of microbial growth
dynamics in bioreactors from measurements of a fluorescent
reporter protein synthesized along with microbial growth. We
consider an extended version of standard growth models that
accounts for the dynamics of reporter synthesis. We develop
state estimation from sampled, noisy measurements in the cases
of known and unknown growth rate functions. Leveraging
conservation laws and regularized estimation techniques, we
reduce these nonlinear estimation problems to linear time-
varying ones, and solve them via Kalman filtering. We establish
convergence results in absence of noise and show performance
on noisy data in simulation.

I. INTRODUCTION

Estimation and control of cellular growth in bioreactors
have been dedicated a significant amount of work over
several decades [1]. Nowadays, these challenges receive
renewed attention in relation with new biotechnological
developments. Among the new research frontiers is the
feedback control of microbial consortia [2]. Motivated by
the potential to outperform single species in biosynthetic
processes and other applications [3], control of microbial
consortia requires in the first place to be able to discern single
species dynamics by suitable real-time monitoring, e.g. the
use of fluorescent reporter proteins expressed along with the
growth of the different species.

In a recent paper [4], we have explored (local) observ-
ability of the prototypical microbial consortium model from
[5] under different assumptions about the observed variables.
The construction and analysis of observers for (noisy) time-
sampled measurements (as encountered frequently, e.g. with
the use of pipetting robots [6]) have not been explored
in detail. Given the nonlinear nature of these models, the
problem is nontrivial. General observer synthesis approaches
exist [7], [8], however their viability depends on perfect
knowledge of the system, which hardly applies to biological
systems, and/or on idealized assumptions about the measure-
ment process. Robust estimation approaches can tackle in
part modelling uncertainty [9], but they are generally not
conceived for sampled data. Nonlinear generalizations of
Kalman filtering exist that cope explicitly with sampled noisy
data [10], [11], but performance is usually not guaranteed
even with a perfectly known model.

In this paper, we focus on the construction of state estima-
tors for a single species growing in a bioreactor from indirect,
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sampled fluorescent reporter measurements of the species
abundance. We consider classical nonlinear growth models
[1], [12]) modified to account for the dynamical relationship
between fluorescence abundance and biomass synthesis. As
explained above, besides its interest per se, the problem
constitutes a key step toward estimation of dynamics of
microbial communities. Much literature has been dedicated
to the problem in the case of direct observations of biomass
abundance [1], [13] or gaseous outflow [14]. None of these
approaches applies to the augmented model we consider with
sampled, noisy measurements.

We consider two cases, perfect knowledge of the func-
tional form of the growth law, and lack of this knowledge.
We apply hybrid (continuous-time dynamics, discrete-time
measurements) Kalman filtering to linear, time-varying ver-
sions of the original nonlinear estimation problems, obtained
by treating nonlinearities as unknown time-varying inputs.
In the first case, we show that the unknown input can be
pre-estimated thanks to the system conservation laws. In the
second case, we use a Bayesian regularization approach to
linearly estimate the unknown input along with the other
system state variables. We demonstrate in simulation that our
approaches perform well in presence of noise, and we prove
that the estimator for a known growth law is an observer,
i.e., it enjoys deterministic convergence in absence of noise.

The paper is organized as follows. In Sec. II, we describe
bioreactor growth models and illustrate the properties of our
model. In Sec. III we review concepts of observability and
Kalman filtering estimation that are used in the sequel. In
Sec. IV we introduce our estimation method for a perfectly
known growth law, and prove its convergence properties. In
Sec. V we present our method to address state estimation
for unknown growth laws. In Sec. VI, based on noisy
simulated data, we compare performance of our methods
with the reference approach of Extended Kalman filtering.
Conclusions and perspectives are drawn in Sec. VII.

II. MODEL AND PROPERTIES

The model of a continuously stirred-tank bioreactor
(CSTR) for microbial growth in constant volume without
accounting for gaseous outflow is generally expressed as

ẋ = Nr(x, t) + d(xin − x) (1)

where x(t) ∈ Ω = Rn
+ represents the reactants concentra-

tions vector, xin ∈ Rn
+ is the reactor feed concentrations

vector, N ∈ Rn×q is the stoichiometric matrix, r(x, t) ∈ Rq
+

is the reaction rates vector (gL−1h−1), and d ∈ R∗
+ is the

dilution rate (h−1) [1]. Concentrations (in gL−1) are relative



to the total culture volume. We assume a strictly positive
dilution rate d > 0. Consider in particular the dynamical
system describing the growth of Escherichia coli (E. coli)
bacteria along with synthesis of a fluorescent protein. We
assume as in [4] that the latter takes part of the resources
away from the synthesis of the self-replicative biomass.
For e(t), f(t) and s(t) the biomass, fluorescent protein,
and substrate concentration, in the same order, and x(t) =
(s(t), e(t), f(t))

⊤ ∈ R3
+, the model becomes [4], [15], [16]

ṡ = − 1

γ
µ(x, t)e+ d(sin − s)

ė = (1− α)µ(x, t)e− de

ḟ = αµ(x, t)e− df

(2)

where µ(x, t) ∈ R+, the growth rate per capita at time t ≥
t0, may depend on time due to quantities that are not part of
the model state (pH, temperature) [1]. Constant 0 < α < 1
is the proportion of substrate import dedicated to fluorescent
protein synthesis, while sin represents the inflow substrate
concentration. Overall, this is a constant yield model where
the substrate uptake rate per capita is given as µ(x, t)/γ
with γ the growth yield coefficient. The values of α, sin,
and γ are assumed known and strictly positive. The model
is in the form of (1) with N = (−1/γ, 1− α, α)

⊤ ∈ R3,
r(x, t) = µ(x, t)e(t) ∈ R+, and xin = (sin, 0, 0)

⊤ ∈ R3
+.

For the problem of online state observation, in section
IV we consider the specific growth rate known and strictly
a function of the system’s state. In section V, we will
instead address the case where the functional form of µ(·) is
unknown, and thus treat it as an unknown function of time.

A. Conservation relations
In a biochemical system, linear dependence of the rows

of N defines conservation relations. The rows of N are
linearly dependent if and only if the left null-space of N
has dimension ℓ = n− rank(N) > 0, which corresponds to
the number of conservation relations. A conservation matrix
Π ∈ Rℓ×n is defined as a matrix with rows forming a basis
of the left-null space of N . Consequently, ΠN = 0 and
rank(Π) = ℓ. The conservation matrix, which is not unique
[17], [18], projects the system’s state into an auxiliary state
σ = Πx of dimension ℓ. We also refer to this definition as
the conservation law. From (1),

σ̇ = d(Πxin − σ) (3)

(in the “batch mode’ d ≡ 0, σ̇ = 0, whence the name
“conservation”). The conservation manifold (nullcline of the
conservation law) is defined as Σ = {x ∈ Rn,Πẋ = 0}.
From (3), σ(t) = Πxin + e−d(t−t0)(σ(t0) − Πxin), which
shows that Σ is positively invariant. Since d > 0, Σ is also
exponentially attracting, thus it is asymptotic invariant [17].

System (2) has dimension n = 3 and rank(N) = 1. Hence
there are ℓ = 2 conservation relations. Notably, we choose

Π =

1 0
1

αγ

0 1 −1− α

α

 =⇒


σ1 = s+

1

αγ
f

σ2 = e− 1− α

α
f

. (4)

B. Steady states

Regardless of the form of µ(x, t), system (2) always
admits an equilibrium xwashout = (sin, 0, 0)

⊤, which is
globally asymptotically stable on Ω if the set of equilibria is a
singleton and unstable otherwise. The existence and stability
of other equilibria depends on µ(x, t) and on the system
parameters, in this case d, α, and sin.

We focus on the Monod law [1]. In this case µ takes the
form

µ(s) = µmax
s

ks + s
, s ≥ 0, (5)

with ks > 0 known as half-saturation constant and
µmax > 0 the maximal growth rate. Eq. (5) is strictly
increasing, therefore it defines a bijection from [0,∞) to
[0, µmax). If d/(1− α) < µ(sin), (2) admits another equi-
librium x∗ = (s∗, γ(1− α)(sin − s∗), γα(sin − s∗))

⊤ with
s∗ = µ−1 (d/(1− α)). If this exists, it is globally asymptot-
ically stable on any open subset of Ω\{e = 0}. From now on
we work under this assumption. These results extend similar
known results for the subsystem (s, e) without fluorescence
synthesis [12]. They apply similarly to several other common
growth models, such as Teissier law or Contois law [1].

III. OBSERVABILITY AND STATE ESTIMATION

We review the system’s observability and the definition
of a state observer in the idealized case of noiseless mea-
surements in continuous time. A dynamical system describes
the time evolution of the system’s state x(t) ∈ Ω ⊂ Rn.
Typically, information about the state variables is obtained
through measurements y(t) = h(x(t)) ∈ Rp (often re-
ferred to as the system’s output), where h is a function
assumed C∞(Ω). The problem of interest in this paper is
the construction of a state observer x̂(t) ∈ Rn from the
measurements y(t) for all t ≥ t0. x̂(t) is an observer if (i)
∥x(t)− x̂(t)∥ converges to zero as t tends to ∞, and (ii)
x̂(t) = x(t) =⇒ x̂(t + τ) = x(t + τ),∀τ ≥ 0. If the
first condition holds for any x(t0) and x̂(t0), the observer
is global. If the convergence rate for (i) can be tuned, the
observer is tunable. A tunable observer can be constructed
if the system is observable, which is discussed in subsection
III-A [7]. An open loop (non-tunable) observer (i.e. with no
output feedback) is also referred to as a detector.

The available measurements for (2) are fluorescent pro-
tein concentrations y(t) = f(t), thus h is defined by
y(t) = Cx(t) with C = (0, 0, 1).

A. Observability

The local observability of a dynamical system ẋ = f(x) is
studied via its observation space O(h), that is the vector field
containing h and its Lie derivatives along the vector field f .
The Lie derivative along f of a function φ : Rn → Rp is
Lf (φ) =

∂φ
∂x f . The system is locally observable if and only

if there exists n elements of O(h) defining a diffeomorphism
around x for all x ∈ Ω [7]. By the chain rule, ẏ(t) =
∂h
∂x (x(t))ẋ(t) = Lf (h)(x(t)). Ergo, the observation space
is the space of time-derivatives of the outputs.



For (2), y = f , therefore ẏ = αµ(x, t)e − d · y.
Setting z = (d · y + ẏ)/α = µ(xg, t)e defines a reduced
dynamical system for the state xg = (s, e)

⊤ with output
z = hg(xg) = µ(xg, t)e, provided µ(x, t) does not involve f .
Consequently, O(hg) ⊂ O(h), and since a diffeomorphism
exists from f to z by construction, the system is locally
observable if the reduced system is observable.

Biologically, output z = µ(xg, t)e corresponds to mea-
surements of biogas flow rate in the anaerobic digestion
process, which is studied and proven locally observable
under suitable assumptions in [14]. Observability of (2) for
the Monod growth law follows from the results in [14].

B. Estimation problem and Kalman filtering

We stated the observer problem in continuous time, but
in truth measurements are in discrete time. This is not an
issue in practice if the time steps are sufficiently small
(for example, for continuously operating sensors built on
the bioreactor). In many experimental scenarios of interest,
however, measurements are obtained by time-consuming
procedures (see e.g. [6])), hence motivates us to explicitly
account for the sampled nature of the data. Moreover, mea-
surements are typically noisy due to biophysical uncertainty
in the measurement process This gives rise to an estimation
problem, as follows.

Let measurements at times t0 < t1 < · · · < tM−1 < tM
be given by yk = Cx(tk) + vk, where vk is an independent
Gaussian noise with zero mean and known covariance matrix
Rk ∈ Rp×p (scalar variance if p = 1). The problem is to
estimate the continuous-time state x(t) from the discrete-
time measurements yk. It can be addressed by a hybrid
(continuous-discrete) Kalman filter [10]. This filter is optimal
for linear state-space models, while our system dynamics
are nonlinear. Though variants exist that cope with nonlinear
dynamics, such as the Extended KF (EKF) or the Unscented
KF (UKF) [10], [11], [19], convergence and performance of
these filters are hardly proven. We instead propose to refor-
mulate the estimation problem by treating the nonlinearities
of the system dynamics as a time-varying input. This input
is either pre-estimated (as explained in Sec. IV) or described
by a probabilistic prior in the form of a conveniently chosen
linear stochastic process (as explained in Sec. V). In both
cases, this leads to a hybrid filtering problem on a linear
(time-varying) stochastic system of the form

ẋ(t) = A(t)x(t) + b(t) +G(t)w(t),

yk = Ckx(tk) + vk,
(6)

with A(t) ∈ Rn×n, b(t) ∈ Rn, Ck ∈ Rp×n, G(t) ∈
Rn×m, Q(t) ∈ Rm×m and Rk ∈ Rp×p known. The process
noise {w(t), t ≥ t0} is formally the derivative of the
Brownian motion [10], i.e. it is a zero-mean, stochastic
process with E

{
w(t)w(τ)

⊤
}

= Q(t)δ(t − τ), δ being the
Dirac distribution.

The hybrid KF, which is optimal for this class of models,
alternates prediction based on the dynamical model and
update based on a new measurement. The prediction step

consists of integrating the the system’s dynamics for the state
estimate x̂k|k−1(t) and a Riccati equation for the state covari-
ance matrix Pk|k−1(t) over each time interval [tk−1, tk], with
x̂k|k−1(tk−1) = x̂k−1|k−1 and Pk|k−1(tk−1) = Pk−1|k−1.
The update step applied to x̂k|k−1(tk) and Pk|k−1(tk) for a
new measurement yk is identical to the discrete KF [10].

C. Parameter tuning from data

In our estimator designs, Eq. (6) will comprise unknown
parameters θ ∈ Θ. We propose (and later demonstrate in
simulation) to estimate these parameters from a preliminary
data set YM = {y0, . . . , yM} through a Maximum Likeli-
hood (ML) approach, which closely relates with the filter’s
prediction error methods for tuning filters [20].

Given YM , ML estimation is the problem of maximizing
the value of the joint distribution f(YM |θ) over θ ∈ Θ.
By recursive application of the Bayes law, one can write
f(YM |θ) as the product of the conditional (Gaussian) den-
sities f(yk|Yk−1, θ) for k = 0, . . . ,M . Mean and variance
of these densities correspond to the Kalman ouput predictor
Ckx̂k|k−1 and its covariance Sk = CkPk|k−1Ck

⊤ + Rk

[16], [20]. Writing ML as the equivalent negative log-
likelihood minimization and working out the equations, the
ML estimator of θ is

θ̂ = argmin
θ∈Θ

[
−1

2

M∑
k=0

p log(2π) + log |Sk|+ ỹ⊤
k S−1

k ỹk

]
. (7)

For any candidate θ, all of these quantities can be computed
by the corresponding Kalman filtering iteration, which en-
ables fast numerical solution of the optimization problem.

IV. APPROACH FOR KNOWN µ(x)

In this section, leveraging conservation laws, we propose a
pipeline for state estimation for the case where µ is a known
function of the state variables. We develop this for system (2)
with Monod growth law, yet, the approach is viable for other
growth laws and similar biochemical systems. The resulting
estimator is proven to be a global observer.

As seen in section II, nonlinearities of CSTR dynamics
are in the reaction rate vector r(x, t) of (1). For system (2),
it is however possible to compute a pre-estimate µ̂(t) of the
specific growth rate µ. Replacing µ in (2) with µ̂(t) yields
linear time-varying dynamics, eligible for linear Kalman
filtering. We next show how to compute µ̂(t) in the case
of the Monod growth rate µ(s).

A. Proposed pipeline

The Monod law is a function of the unknown s(t). By
the conservation law (4), in the (exponentially attracting)
conservation manifold, s = σ1 − 1

αγ f . In view of this, we
define a pre-estimate ŝσ of s by ŝσ = σ̂1 − 1

αγ ŷ, with σ̂1

calculated based on the dynamics of σ1 and ŷ a suitable
smoothening of the measurements yk of f , as detailed next.

The conservation variable σ1 is estimated through an open-
loop detector σ̂1(t) with dynamics as in (3), resulting in

σ̂1(t) = sin + e−d(t−t0)(σ̂1(t0)− sin). (8)

This converges to sin exponentially at a rate d.



To calculate ŷ, a Kalman-based regularization method is
used. In the same spirit as [21], the method introduces a
regularizing linear stochastic dynamical model for the time
profile f to estimate, and solves the problem by linear state-
space estimation [22]. We consider a second-order linear
stochastic differential equation ÿ(t) = βw(t) with {w(t)}
a scalar white noise process, and assume that the noisy
measurements yk of f are noisy measurements of process
y. Such model of the data can obviously be expressed in the
form of (6). An optimal parameter β̂ is the solution to the
ML problem discussed in subsection III-C. This provides
a model of the data-generating process f independent of
the knowledge of f . Applying a Kalman filter based on
this model to the measurments yk yields estimates of y,
i.e. of f . The chosen form of process y is known to
penalize overly irregular solutions [16], [21], whereas the
ML estimation of β ensures an appropriate tradeoff between
noisy data interpolation and regularity of the solution. The
filter produces piecewise-continuous predictions ŷk|k−1(t)
and filtered estimates ŷk|k. Both choices being equally viable
as a definition of the estimate ŷ(t) sought, we simply refer
to ŷ(t) from now on and add details only when necessary.

Armed with σ̂1 and ŷ, one can now compute µ̂(t) =
µ(ŝσ(t)) with ŝσ(t) = σ̂1(t) − 1

αγ ŷ(t), and plug it into (2)
to approach Kalman filtering estimation of the whole system
state. Let µ̃(t) = µ(s(t))− µ̂(t) be the pre-estimation error
of µ at time t. Then

ẋ = N(µ̂(t) + µ̃(t))e+ d(xin − x)

= Aσ(t)x+ b+Nw(t)
(9)

with w(t) = µ̃(t)e(t) as the process error term, where

Aσ(t) =

−d −µ̂(t)/γ 0
0 (1− α)µ̂(t)− d 0
0 αµ̂(t) −d

 , b =

dsin
0
0


are now known. To run the linear Kalman filter of subsec-
tion III-B for this system (with G = N and C = (0, 0, 1)
in Eq. (6)), we exploit the analytic expression of σ̂1(t) in
(8), for a given σ̂1(t0), while ŷ and µ̂ can be obtained
online sequentially for every interval Tk = [tk, tk+1) for
k = 0, . . . ,M−1. The process noise w(t) remains unknown,
and linearly dependent on the state variable e. In the next
subsection, an approximate characterization of w(t) is pro-
posed, which is used to tune the KF. The specific choice of
Q(t) is especially important in determining performance in
presence of measurement noise.

B. Tuning of Q(t)

We now derive an approximate expression for the co-
variance Q(t) of w(t) = µ̃(t)e(t). Consider the linear
approximation of µ around s(t). For sufficiently small s̃σ =
s − ŝσ , µ(ŝσ) = µ(s − s̃σ) ≈ µ(s) − µ′(s)s̃σ . Then
µ̃(t) = µ′(s(t))s̃σ(t) implies w(t) = µ′(s(t))e(t)s̃σ(t).
We choose to study the process noise around the system
equilibrium. From (4), (8) and subsection II-B, it can be
shown that for t ∈ Tk, s̃σ(t) = vk/αγ at the system’s steady
states. Consequently, w(t) = µ′(s∗)e∗

αγ vk for t ∈ Tk, near

the system’s equilibria. It follows that {w(t)} is a piecewise
constant stochastic process. By integrating E {w(t)w(τ)} =
Q(t)δ(t− τ) over R we obtain the piecewise-constant func-

tion Q(t) =
(

µ′(s∗)e∗

αγ

)2

Rk(tk+1 − tk) for t ∈ Tk.

C. Asymptotic stability of the filter

We now prove that the proposed filtering pipeline defines
a global observer in the sense of Section III. That is, we
consider noiseless measurements and look at convergence at
the discrete measurement times [7]. We first prove conver-
gence of the observer error, then its positive invariance, i.e.
that xk − x̂k = 0 implies xk+l − x̂k+l = 0 for l > 0.

As seen before, the KF is applied to the pre-estimated
system (9) with Aσ(t)x = Nµ̂(t)e − dx. In the absence
of measurement noise, ŝσ(t) converges to s∗ at the same
rate as σ̂1 (globally, exponentially at rate d). Consequently,
µ̂(t) = µ(ŝσ(t)) converges to µ∗ = µ(s∗) = d/(1− α) and
the system (9) is asymptotically time-invariant with Aσ(t)
converging globally to A.

A =

−d −µ∗/γ 0
0 0 0
0 αµ∗ −d

 .

Integrating the linear time-invariant dynamics over Tk gives
the difference equation

ẋ(t) = Ax(t) + b+Nw(t)

xk+1 = eA(tk+1−tk)xk +

∫
Tk

eA(tk+1−t)(b+Nw(t))dt

= Fkxk + bk +Nwk

with Fk = exp(A(tk+1−tk)) the state transition matrix [10],
bk =

(∫
Tk

exp(A(tk+1 − tk))dt
)
b, and wk =

∫
Tk

w(t)dt.
Let us fix a time step ∆t = tk+1 − tk,∀k. Then Fk =
exp(A∆t) = F , and one can verify that eAτN = N, ∀τ .
For a fixed Qc for the continuous system, E {wkwl} = Qδk,l
with Q = Qc∆t.

The equivalent discrete Kalman predictor equation is

x̂k+1|k = (F −KkC)x̂k|k−1 +Kkyk + bk (10)

with Kk ∈ Rn×1 the Kalman gain. If the pair [F,C] is com-
pletely detectable and [F,NG] is completely stabilizable for
any G such that GG⊤ = Q, then (i) for any positive semidef-
inite initial matrix P0, Pk+1|k converges to the solution P∞
of the algebraic Riccati equation, which defines the associ-
ated gain K∞ = FP∞C⊤(CP∞C⊤ + R)−1, (ii) all eigen-
values λ of F −K∞C verify |λ| < 1 [19]. The pair [F,C]
is completely detectable if ∃K ∈ R3 : |λ| < 1,∀λ ∈ Sp(F −
KC) [19]. Let K = (0, k2, k3)

⊤. For k2 = (1−α)/4α, k3 =
e−d∆t, Sp(F −KC) =

{
e−d∆t,

(
1± e−d∆t/2

)
/2
}

, which
fulfills the condition for complete detectability. Similarly, the
pair [F,NG] is completely stabilizable if ∃K ∈ R3 : |λ| <
1,∀λ ∈ Sp(F −NGK⊤) [19]. Here G =

√
Q > 0. Taking

K = (0, 1
G(1−α)∆t , 0)

⊤, Sp(F − NGK⊤) =
{
e−d∆t, 0

}
,

which proves complete controllability. Hence P∞ and K∞
are well-defined.



From (10), we have xk+1 = Fxk + bk, therefore the
estimation error for the asymptotic gain K∞ is

xk+1− x̂k+1|k = (F −K∞C)(xk− x̂k|k−1)−K∞vk. (11)

For vk = 0, this converges to zero since ∥F −K∞C∥ < 1.
Finally, if ∃k : xk − x̂k|k−1 = 0, it follows from (11) that

xk+l − x̂k+l|k+l−1 = 0,∀l > 0. This concludes the proof.

V. APPROACH FOR UNKNOWN µ(·)
The lack of knowledge of the specific growth rate function

eliminates the possibility of classical approaches for state
estimation. To remedy this issue, a Bayesian regularization
approach is proposed for the online estimation of the reaction
rate as an unknown function of time r(t) = µ(x(t), t)e(t).
This is obtained by augmenting the system (2) with a
probabilistic prior on r(t) in the form of linear stochastic
dynamics [16], [22], and directly solving the augmented
linear estimation problem via the hybrid KF. Consider the
following stochastic prior on r

ṙ(t) = −θr(t) + κw(t) (12)

where {w(t)} is a standard Gaussian noise process. Together
with the assumption that r(0) is Gaussian with mean zero
and variance κ2/(2θ), this defines a stationary process. This
convenience choice is discussed for a related application
in [16]. In essence, θ defines the timescale of admissible
fluctuations (the larger the θ, the faster the fluctuations),
and the standard deviation κ/

√
2θ defines the admissible

magnitude of r. This already enables an educated guess for
the choice of the design parameters θ and κ. Precise tuning
of these parameters can be obtained from preliminary data
via the ML procedure discussed in III-C.

For the ML-optimal values θ̂ and κ̂, simultaneous online
estimates of state x and r are obtained from measurements
yk by the KF for the joint system (1)–(12),

d
dt

[
x(t)
r(t)

]
=

[
−dI N

0 −θ̂

] [
x(t)
r(t)

]
+

[
dxin
0

]
+

[
0
κ̂

]
w(t). (13)
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Fig. 1. Measurements and the reaction rate plotted against time. [Top]
The fluorescent protein concentration f(t) (black curve), noisy fluorescence
measurements yk (green dots), and the pre-smoothed measurements ŷk (red
curve). [Bottom] The specific growth rate µ(s(t)) and its pre-estimation via
the conservation law µk (blue curves, solid and dotted, respectively), and
the total growth rate r(t) = µ(s(t)e(t)) and its BKF estimation r̂k (orange
curves, solid and dotted, respectively).

Compared with the approach in Sec. IV, no further noise
component appears in the dynamics of x. Performance of
this approach will be demonstrated in simulation in Sec. VI.

VI. SIMULATION RESULTS

In this section, numerical simulations of the proposed
approaches are presented for system (2) with Monod growth
rate function. The system is simulated over 36 hours, with
measurements taken at a fixed interval of 5 minutes. Pa-
rameters are fixed arbitrarily but realistically based on the
related system in [5]. We use γ = 1, ks = 0.2 gL−1, α =
0.3, sin = 2 gL−1, the maximal growth rate µmax = ln 2 h−1

corresponds to a doubling time of 1 h, and we fix d =
0.48 h−1. The initial conditions for the simulation are x(0) =
(0, 1, 0)

⊤
gL−1 whereas x̂(0) = (0.5, 1.5, 0)

⊤
gL−1.

For the approach presented in Sec. IV, σ̂1(0) = 0.5 gL−1

is selected arbitrarily. The ML-optimal smoothing parameter
is β̂ ≈ 0.013. This method being based on the system’s
conservation law, we refer to it as the Conservation KF
(CKF). As for the Bayesian regularization approach in Sec.
V, we call it the Bayesian KF (BKF). Its optimal process
parameters are θ̂ ≈ 0.03 and κ̂ ≈ 0.002. The ML problems
are solved through the optimizers provided in the Python
library SciPy over numerically generated preliminary data,
with the same initial conditions and the noise covariance R.
Different data are later generated for running the filters.
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1.0
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0.0

0.2

f

0 6 12
Time [h]

State CKF BKF EKF

Fig. 2. Comparison of KF for state estimation from fluorescence measure-
ments. [Left] Reconstructed trajectories using CKF, BKF, and EKF using
set of generated noisy data compared with the true state trajectory. [Right]
Mean trajectory of estimated states for each filter over 500 data sets and
a confidence interval given by twice the standard error around the mean
trajectory.



The pre-estimates from the CKF pipeline are shown in Fig.
1. Estimate µ̂k converges to µ(s(t)) at rate determined by d
after an onset resulting from the difference σ1(0) − σ̂1(0).
The quality of the ML-estimates of β (for CKF) and of θ
and κ (for BKF) is witnessed by the estimates ŷ, which
duly provide a smoothened version of the data, and the
performance of r̂, which converges to r after an onset.
Reported in 1 in the interest of illustration, r̂ is obtained in
practice along with the estimation of the other state variables
(e, s, f), which is the focus of the next paragraph.

We then run each filter on a noisy dataset to get estimates
x̂k of x(t). For comparison, we also run the well-known
Extended KF (EKF). The Q parameter for this filter is also
fixed by solving the ML problem of subsection III-C on
preliminary data, with 3 degrees of freedom, yielding Q̂ ≈
diag(0.04, 0.004, 0.00002). Estimation results on a single
dataset are given in Fig. 2 (left). We also evaluate each filter
statistically by Monte Carlo analysis, i.e. by estimating the
same x(t) from NMC = 500 different noisy data sets with
same noise intensity. A mean estimated trajectory is obtained
for each filter as well as a 95% confidence band. Results from
this statistical analysis are in Fig. 2 (right). Results show
that all studied filters perform well generally. The estimated
trajectories seem to converge to the true trajectory. However,
both the CKF and BKF converge faster than EKF.

VII. CONCLUSIONS

We proposed two online state estimators for a bacterial
growth model in a bioreactor that includes synthesis of a
fluorescent reporter protein. The estimators reconstruct the
three-dimensional system’s state from discrete-time noisy
fluorescence measurements.

We analyzed the system observability showing the possi-
bility to construct a tunable observer, which we achieved
by our CKF. Using conservation laws, this solution pre-
estimates the growth rate profile to turn state estimation
into a linear time-varying problem. This allowed us to
benefit from the KF convergence properties to also prove
deterministic convergence in absence of noise. Our study
focused on the Monod growth function, yet the CKF can
be extended to other growth laws depending on both sub-
strate and biomass concentration, such as the Contois law
[1]. Indeed, for such a growth law, the a-priori unknown
biomass concentration profile can be pre-estimated based on
the second conservation relation in (4), obtaining êσ from
the fluorescence measurements sided by a detector for the
conservation variable. In more generality, the approach is
viable for any growth model depending on state variables
that enter suitable conservation laws.

We also proposed what we called BKF as a solution that
does not assume knowledge of the growth rate law, a relevant
scenario for bioprocesses. The approach allows estimating
the system’s state efficiently when classical approaches are
not applicable. By its nature, the BKF can be applied to
a more general class of growth rate functions, provided a
Bayesian prior can be fixed to describe the system’s reaction
rate behavior over time.
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