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Abstract

We consider the problem of sharing the cost of a �xed tree-network
among users with di¤erentiated willingness to pay for the good sup-
plied through the network. We �nd that the associated value-sharing
problem is convex, hence, the core is large and we axiomatize a new,
computationally simple core selection based on the idea of proportion-
ality.
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1 Introduction.

We consider the problem of sharing the cost of a �xed uncongested tree-

network among users with di¤erentiated willingness to pay for the good sup-

plied through the network. This problem is relevant, for example, in the gas

�I thank our partners from the French gas distribution network (GRDF) for discussions
inspiring this work. I am indebted to Michel Le Breton for his introduction to the �eld
of cooperative decision making and his encouraging guidance. I am also grateful to Hervé
Moulin for helpful comments at the initial stage of my work. I thank anonymous referees
for insightful comments on a previous version. I acknowledge funding from ANR under
grant ANR-17-EURE-0010 (Investissements d�Avenir program).

yToulouse School of Economics, University of Toulouse Capitole. E-mail:
e_panova@yahoo.com
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distribution industry. According to our private interviews with managers

of French gas distribution network (GRDF), a pipeline diameter is typically

chosen with a margin, and gas-distribution network is congestion-free. The

network cost is supposed to be paid from the regulated market revenues.

Some consumers possess relatively high willingness to pay, such as industrial

consumers or large buildings that heat with gas; other consumers, such as

households, possess only a modest willingness to pay. How shall di¤erences

in consumers�locations and willingness to pay be re�ected in their bills?

In order to address this question, we analyze a model in which agents

living in geographically separated communities bene�t from a good provided

by a common supplier. The agents have a di¤erent willingness to pay for

the good, termed for shortness �bene�t�. We assume that the agents are

connected to the source by a �xed uncongested tree-network and we ask how

to share the network cost among its users.

We �nd that the associated value-sharing problem is convex, hence, the

core is large. We require that the solution to that problem lies in the core, tak-

ing thereby an axiomatic approach. We focus on solutions which are anony-

mous because monitoring identities by network users may be very costly. If

the billing rule is anonymous, the agents may try to �game�it by merging

or splitting. We require our solution to be split- and merge-proof, hereafter,

SMP. Finally, we introduce a normative axiom which is speci�c to our game:

If the joint bene�t by consumers in some location A is equal to the joint

bene�t of consumers located �downstream�from A net of their cost of con-

necting to A, then the joint bill of consumers in A and the remaining bill

of consumers downstream from A are equal. We call this axiom �no spatial
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discrimination,�hereafter, NSD.

We show that with core property, SMP and NSD characterize a computa-

tionally simple solution based on the idea of proportionality: An agent shares

the cost of each network segment belonging to the path from his location to

the source with other users of this segment. His cost share is proportional

to his local bene�t, that is, his bene�t net of the sum of his bills for the

�downstream� segments he uses, and inversely proportional to the sum of

local bene�ts by all users of this network segment. His surplus share is equal

to his bene�t less the sum of his segment-speci�c bills.

Related literatures. We extend Moulin�s problem (1989) of sharing

the cost of public good1 by allowing the bene�ciaries to occupy di¤erent

locations. Moulin axiomatizes the proportional rule. We axiomatize a rule

based on the idea of proportionality which reduces to proportional rule when

our network has only one segment, and so our problem reduces to Moulin�s

problem.

At the same time, our problem reduces to the problem of sharing the cost

of a �xed tree-network if we assume that all agents�bene�ts are equal to the

same, su¢ ciently large value (see Koster et al., 2001 and references therein;

Bjørndal et al., 2004; Ni and Wang, 2008). It has been shown that the

core of the problem is large, and the core has been characterized in di¤erent

ways. We extend this literature by allowing the agents to have di¤erentiated

willingness to pay for the good delivered through network, show that the core

of the associated value sharing game is large and axiomatize computationally

1See Chapter 6.
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simple core selection.

A related economic literature studies the problem of sharing the cost of a

minimal cost spanning tree (MCST) connecting di¤erent geographic locations

to the source at the least cost (see review by Bergantiños and Vidal-Puga,

2021). Some cost-sharing rules are linked to the algorithms for construct-

ing MCST proposed by operational research. We relate to that literature in

that our results apply to any tree-network without �useless branches�,2 in

particular to a surplus-maximizing network, which coincides with a MCST

if all users have the same su¢ ciently large bene�t. However, the problem of

constructing a surplus-maximizing network is outside the scope of this paper.

Asymmetry among consumers connected through the network which cost

is to be shared relates us to Bergantiños and Martínez (2014).3 In their

model the agents have not only di¤erent willingness to pay for the good de-

livered through the tree-network (as in our model) but also produce di¤erent

amounts of this good, with the main example being water transportation

from the rainy to arid regions. The core of their problem is not necessarily

full (conditions are provided). Bergantiños and Martínez characterize two

network cost sharing rules, specifying how to share a segment�s cost depend-

ing on supply and demand in two subtrees resulting from its removal. Our

2From our interviews with GRDF managers we understood that investments in network
expansion are typically justi�ed by su¢ ciently high demand.

3Apart Bergantiños and Martínez (2014), we are aware of only one other paper that
considers consumers with di¤erentiated willingness to pay, namely Hougaard and Tvede
(2020). This paper asks how to implement a welfare-maximizing network and allocate its
costs when information on the agents�willingness to pay is private and it shows that is
impossible to Nash-implement budget-balanced cost sharing rules, which is not directly
related to our work. Note that �smart technologies� that provide increasingly good in-
formation about consumer willingness to pay give at least some relevance to our public
information structure.
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problem is simpler in that our consumers do not produce. This allows us to

show that the core of the associated value-sharing game is large and propose

a computationally simple allocation in the core. Either rule by Bergantiños

and Martínez reduces to splitting a segment�s cost equally among its users,

resulting in an allocation which is generally outside the core.

Finally, we relate to the literature using the SMP axiom to characterize

proportional rule (see references in Ju et al., 2007; Moulin, 2008). In our

setting, SMP and core property imply that the bills are linear in bene�ts

with location-speci�c coe¢ cients. We add the NSD axiom speci�c to our

spatial setting to pin down these coe¢ cients.

Roadmap. This paper is organized as follows. Section 2 sets up the

basic version of the model with locations on a line. Section 3 shows that the

associated value-sharing game is convex, hence, the core is large. Section 4

proposes and axiomatizes a new computationally simple core selection, called

�locally proportional allocation�. Section 5 extends the basic model and its

results to locations on a tree. Section 6 concludes.

2 Value-sharing game on a line.

Set I = f1; ...;mg of agents, indexed by i, bene�t from being connected to

the source, indexed with 0. The agents are located in the nodes of a chain

originating at the source. The chain�s nodes are indexed with j 2 N =

f1; ...; ng, so that nodes located further from the source have higher indexes.

Location by agent i is denoted with li 2 N . The vector of locations is

denoted with l = (l1; :::; lm). At least one agent is located at each node of
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set N . The set of agents located in the same node is called �community�.4

Community j is denoted with Sj = fi 2 I j li = j g.

The agents have di¤erentiated willingness to pay for the connection.

Agent i�s willingness to pay for the connection, called �bene�t�, is equal

to bi 2 R+. The vector of bene�ts is denoted with b = (b1;...; bm). Joint

bene�t by community j is denoted with Bj =
P
i2Sj
bi.

�Segment j� refers to the segment connecting communities j � 1 and

j. Its cost is denoted with cj 2 R+.5 The vector of cost is denoted with

c = (c1;...; cn).

We assume that the network cost and the agents�bene�ts are such that it

is optimal to connect all communities to the source, because part of network

�downstream�from any community j generates positive surplus:

Wj =
X
k>j

Bk �
X
k>j

ck > 0. (1)

Hence, our results apply to any network without �useless tails�, in particular

to a surplus-maximizing (e¢ cient) network.

We consider the associated value sharing game � = (I;N; b; l; c) in which

the value of coalition S � I is equal to

V (S) = max

8<:maxX�S

0@X
i2X
bi �

maxflij i2X gX
j=1

ci

1A , 0
9=; . (2)

Note that the value of coalition S given by equation (2) is weakly higher

than the joint bene�ts of S�s members net of minimal expenses for connecting
4We allow several agents to occupy the same location. Alternatively, we could assume

that these agents occupy di¤erent locations with null cost of connection. We thank an
anonymous referee for introducing this remark.

5Connections are undirected, that is, the cost of connecting community j � 1 to com-
munity j is the same as the cost of connecting community j to community j � 1.
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them to the source. Example A in Figure 1 shows that this relation may be

strict: the value of coalition f1; 2g is equal to the bene�t by agent 1 less the

cost of his connection to the source while agent 2 is �useless�:

V (f1; 2g) = b1 � c1 = 1 > max fb1 � c1 + b2 � c2; 0g = 0.

.

Figure 1: example A.

A solution of game � de�nes the cost share or �bill�xi(�) by any agent

i in set I and his surplus share

yi(�) = bi � xi(�). (3)

It is convenient to introduce notation for the joint bill of community j:

Xj(�) =
X
i2Sj

xi(�). (4)

3 Convexity.

This section shows that the above value-sharing game is convex. We begin

with introducing the concepts of large nodes and e¤ective coalition members.

Large nodes and e¤ective coalition members. Consider value (2)

of some coalition. It is positive i¤ the joint bene�t by coalition members
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living in some community is su¢ ciently large to justify connection of this

community to the source.6 For example, consider the network depicted in

Figure 2 with three single-agent communities.

Figure 2: example B.

Consider the grand coalition f1; 2; 3g. Its positive value (of 5) is due to

agent 3 located in node 3. We will say that node 3 is the unique �large node�

of coalition f1; 2; 3g.

De�nition 1. Node j is a large node of coalition S � I i¤ the joint bene�t

of coalition members located in node j is higher than the cost of connecting

node j to the source or at least to some other large node of coalition S. The

set of large nodes of coalition S is denoted with L(S).

Recall example A in Figure 1. Agent 1 adds a positive value (of 1) to

coalition f1; 2g while agent 2 adds nothing to this value. We will say that

agent 1 is the unique �e¤ective member�of coalition f1; 2g.

De�nition 2. Agent i is an e¤ective member of coalition S � I i¤ his

value in S is positive, that is, V (S) � V (Sn fig) > 0. The set of e¤ective

members of coalition S is denoted with S�.

Note that

S� = argmax
T�S

V (T ) . (5)

6From our interviews with managers of GRDF we have learned that typically they
extend their network in order to serve a su¢ ciently large client.
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Example A suggests that we can �visualize�set S� as follows.

Lemma 1 (e¤ective coalition members). Consider some coalition S � I

and its furthest large node from the source maxL(S). The set of e¤ective

members of S consists of all members of S living closer to the source than

maxL(S):

S� = fi 2 S j li 6 maxL(S)g . (6)

Indeed, by De�nition 1, all members of coalition S � I located in large

nodes of S are e¤ective. Furthermore, connecting a member of S living �on

the way�from maxL(S) to the source increases the value at no cost, hence,

this member is e¤ective. On the other hand, by De�nition 1, it is too costly to

connect a member of S living further from the source than maxL(S), hence,

this member is not e¤ective. Appendix A formalizes these simple arguments.

Proposition 1. Value-sharing game � is convex.

The formal proof of Proposition 1 in Appendix B veri�es convexity crite-

rion, by which the marginal value of any agent r 2 InH in coalition H � I

is weakly higher than that in any subcoalition S � H:

V (S [ frg)� V (S) 6 V (H [ frg)� V (H). (7)

By Lemma 1, the set of e¤ective members of coalition H extends weakly

further than that of H�s subcoalition S:

maxL(S) 6 maxL(H). (8)

Therefore, it is (weakly) cheaper to connect agent r to coalitionH than toH�s

subcoalition S. While the marginal contribution of r to S may include the

joint bene�t by members of S living in between maxL(S) and maxL(H),
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this bene�t is weakly below the cost of network connecting maxL(S) to

maxL(H) by De�nition 1. Therefore, inequality (7) holds.

4 Proposed solution.

We look for a solution to the above value-sharing game taking axiomatic

approach. That is, we �rst postulate desirable solution properties (axioms)

and then describe the unique solution with these properties. At the end of

this section we brie�y discuss the Shapley value which, by Proposition 1, is

a natural alternative to our proposed solution.

4.1 Axioms.

4.1.1 Core property.

The core of a game is commonly de�ned as a set of e¢ cient allocations:X
i2I
yi(�) = V (I) (9)

which cannot be improved by any coalition of players:X
i2S
yi(�) > V (S) for any S � I. (10)

There is a consensus in the literature to pick an allocation in the core if it is

full.7 By Proposition 1, the core of our game is full (Shapley, 1971), which

brings us to our �rst axiom.

7The reason is two-fold. First, given the above de�nition it is reasonable to require core
property from the incentive perspective. Second, the core can alternatively be de�ned as a
set of e¢ cient allocations excluding cross-subsidies among di¤erent coalitions. Therefore,
core property may be viewed as a justice requirement.
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Axiom C (core property). Value allocation y lies in the core, as described

by equation (9) and set of inequalities (10).8

We proceed with other axioms. Given the bijective relation (3) between

values and bills, we state these axioms in terms of bills.

4.1.2 Split- and merge-proofness.

Monitoring identities by network users may be very costly. Therefore, we

will focus on solutions which are anonymous, that is, such allocations that if

we �swap�locations and bene�ts by any pair of agents i 2 I and r 2 I, we

shall swap their bills

xi

�e�� = xr (�) and xr �e�� = xi (�) , (11)

where e� di¤ers from game � only in that bi is replaced for br, and vice versa

in the vector of bene�ts b and li is replaced for lr, and vice versa in the vector

of locations l.

If billing rule is anonymous, the agents may try to �game�it by merging.

As an example, consider the current French gas billing system �xed by the

regulatory authority (CRE). It proposes �ve options including two-part tari¤s

termed T1, T2 and T3, which are di¤erentiated by �xed-fee T and price p

per MWh: (T1) T = 40:44, p = 31:86 if annual consumption (hereafter, C)

is inferior to 6MWh (T2) T = 133:56, p = 8:56 if C is between 6MWh and

300MWh, (T3) T = 941:4, p = 6:15 if C is between 300MWh and 5000MWh.

Given these options, four owners of apartments located in the same building

8Note that in our setting some inequalities in set (10) are redundant. Indeed, if some
members of coalition S are not e¤ective, that is, S� � S, then inequality (10) written for
S follows from that written for S� and individual rationality constraints.
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each consuming 4MWh per annum can reduce their joint bill from 671:52 to

270:52 euros by paying jointly as a condominium.

The agents may also try to �game�the billing rule by splitting. For ex-

ample, suppose that the existing gas billing system in France is modi�ed by

increasing the price per MWh in option (T3) from 6:15 to 6:56. Then, a

su¢ ciently large hotel consuming 280MWh annually with a restaurant con-

suming 30MWh annually could reduce its bill from 2975 to 2920:72 euros by

splitting.

We will require that the billing rule is immune to such splits and mergers.

In order to state this axiom formally, we introduce concepts of k-merge and

k-split. Because in our game any agent has unique location, we focus on

�local�splits and mergers.

De�nition 3. (i) k-merge of game � is a game obtained from � by merging

a set of k > 2 agents from the same community into one community member.
(ii) k-split of game � is a game obtained from � by splitting an agent into

k > 2 agents in his community.9

Axiom SMP (split- and merge proofness). Bills x are such that

(i) no agent r can reduce his bill by splitting into k agents fi1; :::; ikg:X
i2fi1;:::;ikg

xi

�e�� > xr (�) for any k-split e� of �.
(ii) no set of k agents fi1; :::; ikg can reduce their joint bill by merging:

x�

�e�� > X
i2fi1;:::;ikg

xi (�) for any k-merge e� of �.
Note that anonymity is necessary for the SMP axiom to make sense.

Hence, the SMP axiom implicitly involves an anonymity axiom.
9See formal de�nitions of k-merge and k-split in Appendix C.
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4.1.3 No spatial discrimination.

Let us now introduce a normative axiom which is speci�c to our game. In

order to provide some intuition, consider the network illustrated in Figure 3

with a large community 2 in the terminal node and a small community 1 on

its way to the source:

Figure 3: example C.

Any allocation in the core bills community 2 at least the cost of its con-

nection to community 1, that is, at least c2 = 2. Once this cost is paid, the

remaining bene�t of community 2 is the same as the bene�t of community 1:

B2� c2 = B1 = 3. It seems fair to require that the remaining bill by commu-

nity 2 for its connection to the source is the same as the bill by community

1, that is, X2 � c2 = X1.

More generally, consider some �interim�community j < n. By core prop-

erty, the joint bill of communities located �downstream� from j covers at

least the cost of their connection to community j:X
k>j

Xk > cj+1 + :::+ cn.

If the �remaining�joint bene�t
X
k>j

Bk�
X
k>j

ck by these communities is equal

to the bene�t of community j, then their �remaining�joint bill
X
k>j

Xk�
X
k>j

ck
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shall be equal to that of community j.

Axiom NSD (no spatial discrimination). Bills x are such that

if Wj = Bj then
X
k>j

Xk (�)�
X
k>j

ck = Xj (�) . (12)

4.2 Locally proportional solution.

Let us look for a solution in the core with SMP and NSD properties.

Lemma 2 (linearity in bene�ts). SMP implies that bills are linear in

bene�ts with community-speci�c coe¢ cients:

xi (�) = klibi. (13)

Formal proof of Lemma 2 in Appendix D considers a game in which some

community j has at least three members including agents i and r, and the

following three games obtained by merger(s) reducing the number of agents

in this community to two: (i) All agents in community j but i merge, and

agent i is ordered �rst in his community. (ii) All agents in community j but

r merge, and agent r is ordered �rst in his community. (iii) Agents i and r

merge and the resulting member of community j is ordered �rst. If there are

several other agents in community j, they also merge.

Notice that the di¤erence among the above three games is characterized

by the bene�t of the �rst agent in community j. Let us �x the bene�ts by

di¤erent communities and the cost vector. Then, bill by the �rst agent in

community j is a continuous function, say ' (�), of his bene�t. By SMP, bills

by the �rst agent in community j in three games are linked by the Cauchy

functional equation:

' (bi) + ' (br) = ' (bi + br) . (14)
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Because ' (�) is a positive function, the solution to equation (14) is linear.10

Appendix E uses the e¢ ciency (9) and NSD to �nd community-speci�c

coe¢ cients in equation (13). The resulting bill by agent i is

xLPi (�) = bi
Bli+Wli

 
cli +

li�1P
j=1

cj

li�1Y
k=j

Wk

Bk+Wk

!
. (15)

Proposition 2. The unique e¢ cient allocation with SMP and NSD prop-

erties is given by set of equations (15). None of these three properties is

disposable.

We term bills (15) �locally proportional�as indicated with an upper index

�LP�, because they can be obtained by the iterative �home-down�11 proce-

dure that shares the cost of each segment among its users proportionately

to their �local� bene�ts, that is, the bene�ts net of bills for the network

segments further from the source (see Appendix F for details).

Example D in Figure 4 illustrates that procedure. Community 2 pays

entirely the cost of the second segment. Its remaining bene�t, termed local

bene�t in node 1 is B2 � c2 = 1. It is �ve times smaller than the bene�t by

community 1. Therefore, community 2 pays �ve times less than community

1 for the cost of the �rst network segment:12

X2 = c2 + c1
B2�c2

B1+B2�c2 = c2 +
c1
6
= 42

3
; X1 = c1

B1
B1+B2�c2=

5c1
6
= 31

3
.

10See the original argument by Darboux 1880 presented in Aczél (1966) on page 32. I
am grateful to Fabien Gensbittel for drawing my attention to this fact.
11We use terminology by Koster et al. (2001).
12Once community bills are speci�ed, they are shared among community members using

a proportional rule.
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Figure 4: example D.

The fact that the cost of a network segment is shared among its users

proportionately to their local bene�ts, not just bene�ts di¤erentiates LP

allocation from the �serial�version of the proportional rule which has been

used in real-world environments such as sharing the cost of an irrigation

system (Aadland and Koplin, 1998). If the network cost in the above example,

D, is shared according to serial proportional rule, then the communities split

the cost of the �rst segment equally (because their bene�ts are equal). The

resulting allocation is outside the core because the bill of c2 + c1
2
= 6 by

community 2 is higher than its bene�t.

We conclude this section with the following set of remarks. Note �rst that

while we use only the e¢ ciency and not the core property in the characteri-

zation of LP allocation, LP allocation is in the core.

Remark 1. LP allocation is in the core.

Formal proof in Appendix G shows �rst that core inequality (10) holds

for any coalition S in which all members are e¢ cient, that is, S� = S. The

reason is that some network users may be located further than maxL(S).

Because S� = S, these users are outside S. Their LP bills contribute to the

cost of network up to maxL(S). In order to prove that core inequality (10)
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is also met for any coalition S with �useless tail�, we prove that LP bills by

ine¤ective members of S are individually rational.

Note, second, that LP allocation possesses some further desirable prop-

erties, as we verify in Appendix H. It is monotonous in cost and in bene�ts:

@xi(�)
@bi

> 0 and @xi(�)
@cj

> 0 for any j 6 li; (16)

scale invariant (the currency of accounting is irrelevant):

xi(I;N; �b; l; �c) = �xi(�); (17)

and continuous (minor changes in bene�ts or cost shall not lead to signi�cant

changes in bills):

lim
"!0
xi(I;N; b

r
"; l; c) = lim

"!0
xi(I;N; b; l; c

k
") = x

LP
i (�)

for any r 2 I and any k 2 N , where br" is a vector of bene�ts b in which

component br is replaced with br + " and ck" is a vector of costs c in which

component ck is replaced with ck + ".

Note, �nally, that in the limit case with n = 1 when our problem reduces

to Moulin�s problem of sharing the cost of public good, the LP rule reduces

to the proportional rule defended by Moulin (1989).13 Moulin uses two ax-

ioms: core and decentralizability. Our SMP axiom plays a similar role to his

decentralizability axiom.14 NSD axiom is speci�c to the spatial aspect of our

problem.

13See Chapter 6, page 157.
14Moulin uses decentralizability to obtain Jensen�s functional equation. We use SMP

to obtain the Cauchy functional equation. Axiomatization of the LP rule involving the
decentralizability axiom is available upon request.
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4.3 Why not the Shapley value?

A natural alternative to LP allocation is the Shapley value

yShi (�) =
X
S: S�S

(jSj�1)!(m�jSj)!
m!

(V (S)� V (Sn fig)) for any i 2 I, (18)

where S denotes the set of di¤erent coalitions. Indeed, by Proposition 1, the

Shapley value is a �central point� of the core in which extreme points are

the marginal contribution vectors.

While Shapley-value bills are not SMP, the rule assigning Shapley bills

to communities and then sharing these bills among community members

according to proportionate rule, is SMP.15 Therefore, for the rest of this

section we focus on games in which there is one agent per community:

I = N; i = li: (19)

The main drawback of the Shapley allocation rule is that bills by com-

munities (available upon request) are di¢ cult to compute.16 The reason is

that the marginal value by an agent-community with su¢ ciently high bene�t

varies across di¤erent agent-community coalitions, because membership by

that agent-community may justify connection of some other coalition mem-

bers to the source. Recall Example A in Figure 1. The marginal value of

agent-community 1 is equal to: 3 in the grand coalition, 2 in coalition f1; 3g

and 1 in either coalition f1; 2g or f1g.

The above computation problem may not appear in speci�c cases, in-

cluding the following two. The �rst case is a generalization of Example B

15I am grateful to anonymous referee for this remark.
16We have computed the Shapley bills through decomposing the game by the number

of network segments and using additivity.
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in Figure 2: one �large�agent-community located at the terminal node and

several �small�agents-communities on its way to the source. The second case

is classic �airport problem�(Littlechild and Owen, 1973) to which our game

reduces when all agent-communities have the same su¢ ciently large bene�t.

Remark 2 (Shapley value in two special cases). Suppose that set of

equations (19) holds. (i) If L(I) = fng, then

xShi (�) = bi
2
for any i < n and xShn (�) =

nX
i=1

ci �
n�1X
i=1

bi
2
.

(ii) If bi = b >
nX
k=1

ck
n+1�k , then x

Sh
i (�) =

iX
k=1

ck+i�1
k
.

Appendix I proves Remark 2 using basic combinatorics.

5 Extension to game with tree-network.

The above model and its insights naturally extend to the situation in which

the agents are located in nodes of a tree. This extension makes our work po-

tentially useful for sharing the cost of real distribution networks. Therefore,

we brie�y outline it keeping all details in Appendices J and K.

Value-sharing game in a tree. From now on, suppose that commu-

nities are located in R2. Assume that it is e¢ cient to connect all of them to

the source and it is done through a tree-network T .17 Assume, furthermore,

that any branch of tree T generates a positive surplus.

In order to state the latter assumption formally, we introduce the follow-

ing notations: pkj denotes the unique path connecting some pair of nodes

17We focus on tree-networks because any network including a cycle is suboptimal: its
cost may be reduced by removing redundant edges while keeping connectivity.
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j and k;18 � (j) denotes the node preceding node j on path p0j. The edge

between node j and its precessor � (j) is called �segment j�. We keep using

notation cj for its cost. Subtree growing from node j (excluding j) is denoted

with Tj and its cost is denoted with

C (Tj) =
X
k2Tj

ck.

The surplus generated by Tj is denoted with

Wj =
X
k2Tj

bk � C (Tj) ,

the marginal welfare generated by adding segment j to subtree Tj is denoted

with wj = Bj � cj, and their sum is denoted with W+
j = Wj + wj. Using

these notations, our assumption that the surplus generated by any branch of

tree T is positive is equivalent to

W+
j > 0 for any community j. (20)

We continue to use notations: I for set of agents; N for the set of

nodes or communities; b for the vector of the agents� bene�ts and l for

the vector of their locations, c for the vector of network segments�cost and

� = (I;N; b; l; c) for the associated value-sharing game. The value of coalition

S � I in game � is equal to

V (S) = max

(
max
X�S

 X
i2X
bi � C

�
T jN(X)

�!
; 0

)
, (21)

where N(S) = fli ji 2 S g denotes the set of communities with members of

coalition S � I and T jN(S) is the minimal (sub)tree of T connecting these

communities to the source.19

18Uniqueness of pkj follows from T being a tree.
19Note that subtree T jN(S) may contain nodes without members of coalition S. Recall
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LP allocation. Appendix J proves that the extended game is convex

using, once again, convexity criterion (7). While the extension makes the

proof a bit more technical, its idea is the same: it is cheaper to connect

agent r outside some coalition H to the minimal network connecting the

e¤ective members20 of H to the source than to its subnetwork connecting

the e¤ective members of H�s subcoalition S to the source, and this e¤ect is

dominant.

Proposition 3. The game with tree-network is convex.

Proposition 3 allows us to postulate core property. We postulate the SMP

axiom (as is) and we generalize the NSD axiom as follows.

No spacial discrimination (NSD). If the joint bene�t by communities

located in subtree Tj net of cost of connecting these communities to node j

is equal to the bene�t of community j, then their remaining joint bill must

be equal to the bill by community j:

if Wj = Bj then
X
k2Tj

Xk (�)� C (Tj) = Xj (�) . (22)

Appendix K shows that the unique allocation in the core with SMP and

NSD properties shares the cost of a network segment among its users pro-

portionately to their local bene�ts, assigning bill

xLPi (�) = bi
Bli+Wli

0@cli + P
j2pli0nfli;0g

cj
Y

k2plijnfjg

W+
k

B�(k)+W�(k)

1A . (23)

the line-tree in example C depicted in Figure 3. Subtree T jN(f3;4g) containing locations
of members of coalition f3; 4g is the whole line, and contains nodes 1 and 2.
20See Appendix J for formal de�nitions of large nodes and e¤ective coalition members.
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to agent i. Note, that when tree T is a line, W+
k = W�(k) = Wk�1 and so

equation (23) reduces to equation (15).

Proposition 4. In the game with tree-network the allocation characterized

by core property, SMP and NSD assigns to agent i bill (23).

6 Conclusion.

We have analyzed the problem of sharing the cost of a �xed tree-network

among users with di¤erentiated willingness to pay, which may be seen as

an extension of Moulin�s problem of sharing the cost of public good on one

hand and �xed tree-network cost sharing models on the other hand. We have

shown that our problem is convex hence, the core is large. We have proposed

and axiomatized a computationally simple core selection based on the idea

of proportionality. We hope that our rule may help to allocate the cost of

distribution networks.
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Appendix A: proof of Lemma 1.

Step 1 proves that fi 2 S j li 2 L(S)g � S�. Consider i such that li 2 L(S).

By De�nition 1, li 2 L(S) implies

Bli (S) >

liX
k=�i

ck, where ji = max fj 2 L(S) jj < lig (24)

is the large node proceeding li. Therefore,

V (S)� V (Sn fig) =

8>>>>><>>>>>:
bi, if Bli (S)� bi >

liX
k=ji

ck

Bli (S)�
liX

k=ji

ck, otherwise.

By true inequality bi > 0 and inequality (24), V (S)� V (Sn fig) > 0, hence,

by De�nition 2, i 2 S�.

Step 2 shows that r 2 S� for any r 2 fi 2 S jli 2 NnL(S), li < maxL(S)g.

By inequality lr < maxL(S), connecting r to the source involves no addi-

tional cost for coalition S. Therefore, V (S) � V (Sn frg) = br > 0. By

De�nition 2, r 2 S�.

Step 3 shows that r 2 SnS� for any r 2 fi 2 S jli > maxL(S)g. By De�ni-

tion 1, inequality li > maxL(S) implies

Blr 6
lrX

j=k+1

cj for any k 2 L(S). (25)

By equation (2) and inequality (25), V (S) = V (SnSli). By De�nition 2,

i 2 SnS�.
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Appendix B: proof of Proposition 1.

Consider H � I, S � H and r 2 InH. By equation (2) and Lemma 1,

V (Y [ frg)� V (Y ) =

8>>>>>>>><>>>>>>>>:

br, if lr 6 maxL(Y )

max

8<:0; br + X
i2Y :maxL(Y )<li6lr

bi

�
lrX

j=maxL(Y )+1

cj

9=; , otherwise
(26)

for either Y = S or Y = H.

Inequality (8) holds because S � H, which leaves three possible cases.21

Case 1: lr < maxL(S) 6 maxL(H). By equation (26),

V (S [ frg)� V (S) = V (H [ frg)� V (H) = br.

Hence, inequality (7) is (weakly) met.

Case 2: maxL(S) < lr 6 maxL(H). By equation (26),

V (H [ frg)� V (H) = br, (27)

V (S[frg)�V (S) = max

8<:0; br + X
i2S:maxL(S)<li<lr

bi �
lrX

j=maxL(S)+1

cj

9=; . (28)
By de�nition of set L(S),

X
i2S:maxL(S)<li<lr

bi �
lrX

j=maxL(S)+1

cj 6 0. (29)

By equation (28) and inequality (29),

V (S [ frg)� V (S) 6 br. (30)

21Note that S � H and r 2 InH implies that lr di¤ers from li for any i in either set L
or H. In particular, lr di¤ers from either maxL(S) or maxL(H).
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By equation (27) and inequality (30), inequality (7) holds.

Case 3: maxL(S) 6 maxL(H) < lr. By equation (26),

V (Y [ frg)� V (Y ) = max

8<:0; br + X
i2Y;maxL(Y )<li<lr

bi �
lrX

j=maxL(Y )+1

cj

9=;
(31)

for either Y = H or Y = S, hence, inequality (7) is equivalent to

X
bi

i2S:maxL(S)<li<lr

�
lrX

j=maxL(S)+1

cj 6
X

i2H:maxL(H)<li<lr

bi �
lrX

j=maxL(H)+1

cj. (32)

Because S � H, X
bi

i2S:maxL(S)<li<lr

6
X

i2H:maxL(H)<li<lr

bi. (33)

At the same time, by inequality (8),

lrX
j=maxL(H)+1

cj 6
lrX

j=maxL(S)+1

cj. (34)

Inequalities (33) and (34) imply inequality (32), hence, inequality (7) holds.

Appendix C: de�nitions of k-split and k-merge.

Game e� = �eI;N;eb;el; c� is k-merge of game � = (I;N; b; l; c) in community
j i¤ eI = f�g [ InS, where S � Sj, jSj = k

el� = j, eli = li for any i 2 InS, and
ebr =X

i2S
bi and ebi = bi for any i in set InS.
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Game e� = �eI;N;eb;el; c� is k-split of game � = (I;N; b; l; c) in community
j i¤ eI = (In frg) [ fi1; :::; ikg , where r 2 Sj,

eli = j for any i 2 fi1; :::; ikg , eli = li for any i 2 In frg , andnebi1 ; :::;ebiko are such that
X

i2fi1;:::;ikg

ebi = br and ebi = bi for any i 2 In frg .
Appendix D: proof of Lemma 2.

Consider a game � = (I;N; b; l; c) with some community j such that jSjj > 3
and fi; rg 2 Sj. Consider the following three games:

(i) �i is (jSjj � 1)-merge of � in community j: all agents except agent i

merge. Agent i indexed with � and the other community member with ��.

(ii) �r is(jSjj � 1)-merge of � in community j: all agents except agent r

merge. Agent r is indexed with � and the other community member with

��.

(iii) If jSjj = 3, game �ir is 2-merge of � in community j: agents i and r

merge, the resulting member of community j is indexed with � and the other

community member is indexed with ��. Otherwise, game �ir is a combina-

tion of the above merge and (jSjj � 2)-merge of all members of community

j but i and r. The agent resulting from 2-merge is indexed with � and the

other community member is indexed with ��.

Note that the di¤erence among the above three games reduces to repar-

tition of the joint bene�t Bj by community j between its members: (i) In

game �i, b� = bi, b�� = Bj � bi. (ii) In game �r, b� = br, b�� = Bj � br. (iii)
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In game �ir, b� = bi + br; b�� = Bj � (bi + br).

By de�nition (4) of community bill,

x� (�i) = Xj (�i)� x�� (�i) . (35)

By SMP,

Xj (�i) = Xj (�) , (36)

x�� (�i) = xr (�) +
X

q2Sjnfi;rg

xq (�) . (37)

By equations (35) to (37),

x� (�i) = Xj (�)� xr (�)�
X

q2Sjnfi;rg

xq (�) . (38)

Similarly,

x� (�r) = Xj (�)� xi (�)�
X

q2Sjnfi;rg

xq (�) , (39)

x� (�ir) = Xj (�)�
X

q2Sjnfi;rg

xq (�) . (40)

By equations (38) to (40),

x� (�i) + x� (�r) = 2x� (�ir)� (xi (�) + xr (�)) . (41)

By SMP,

xi (�) + xr (�) = x� (�ir) . (42)

By equations (41) and (42),

x� (�i) + x� (�r) = x� (�ir) . (43)
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For �xed joint bene�ts by di¤erent communities and cost vector c, x� (�i)

is a function of bi. Let us denote this function with ' (bi). Using these

notations, x� (�r) = ' (br) and x� (�ir) = ' (bi + br). Hence, equation (43)

is equivalent to the Cauchy functional equation (14). Because function ' (�)

is positive, it is monotonous:

' (z + w) = ' (z) + ' (w) > ' (z) for any w > 0.

Monotonicity of function ' (�) guarantees that the Cauchy functional equa-

tion (14) has linear solution:

' (b) = kjb,

where kj is a constant speci�c to community j (see Akzél 1966, page 32).

Appendix E: proof of Proposition 2.

Step 1 shows the �rst statement of Proposition 2. By Lemma 2,

Xj = kjBj for any j = 1; ...; n. (44)

We �nd coe¢ cients kj recursively using the e¢ ciency and NSD. First, by

NSD in node 1 and equation (44),

k1W1 =
nX
j=2

(kjBj � cj) . (45)

By the e¢ ciency,
nX
j=1

(kjBj � cj) = 0. (46)
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The left-hand side of equation (46) can be decomposed as follows:

nX
j=1

(kjBj � cj) = k1B1 � c1 +
nX
j=2

(kjBj � cj) . (47)

By equations (45) to (47),

k1B1 � c1 + k1W1 = 0,

which is equivalent to

k1 =
c1

B1+W1
. (48)

Next, by NSD in node 2 and equation (44),

k2W2 =
nX
j=3

(kjBj � cj) . (49)

By equations (45) and (48),

c1W1

B1+W1
= k2B2 � c2 +

nX
j=3

(kjBj � cj) . (50)

By equations (49) and (50),

k2 =
1

B2+W2

�
c2 +

c1
B1+W1

�
. (51)

Proceeding in this way, we �nd

kj =
1

Bj+Wj

�
cj +

Wj�1
Bj�1+Wj�1

(cj�1 +
Wj�2

Bj�2+Wj�2
(cj�2 + :::))

�
, (52)

or, equivalently,

kj =
1

Bj+Wj

 
cj +

j�1P
r=1

cr

j�1Y
k=r

Wk

Bk+Wk

!
. (53)
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Step 2 shows the second statement of Proposition 2. Consider the following

(counter)examples.

Example A.1 shows that the e¢ ciency is not disposable. Consider an alloca-

tion de�ning bills to be linear in bene�ts with community-speci�c coe¢ cients

kj, as described by equation (13). Let us replace the e¢ ciency condition (46)

with the following equation

knBn +
n�1X
j=1

zj
Bj
Wj
= �c1 +

nX
j=2

cj, where � 2 R+n f1g (54)

and �nd coe¢ cients kj following the procedure in step 1. Solving for kj we

�nd equation (53) in which c1 is replaced for �c1:

kj =
1

Bj+Wj

 
cj +

j�1P
r=2

cr

j�1Y
k=r

Wk

Bk+Wk
+ �c1

j�1Y
k=r1

Wk

Bk+Wk

!
. (55)

Allocation de�ned by equations (3), (13) and (55) is di¤erent from LP

because � 6= 1. By equation (54), it is ine¢ cient. At the same time, it

possesses the other two properties in Proposition 2: SMP (because bills are

linear in bene�ts with community-speci�c coe¢ cients), and NSD (because

coe¢ cients kj de�ned by equation (55) were found using NSD).

Example A.2 shows that NSD is not disposable. Consider some game � =

(I;N; b; l; c) and game e� = (eI; eN;eb;el;ec) obtained from � by �deleting�small
nodes: eI = fi 2 I j li 2 L(I)g , eN = L(I), (56)

el = ljeI , eb = bjeI , (57)

ecj1 = j1X
j=1

cj, ecjr = jrX
j=jr�1

cj for any r 2 f2; :::; kg , (58)
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where fj1; :::; jkg = L(I). De�ne bills in game � as follows:

xi (�) =

(
xLPi

�e�� if li 2 L(I);
0, otherwise.

(59)

That is, the agents located in the large nodes of � pay their LP bills in gamee�, while the agents located in small nodes of � pay nothing.
This allocation rule is di¤erent from LP. It is clearly not NSD: the agents

located in large nodes are discriminated. At the same time, it possesses the

other two properties in Proposition 2. Indeed, SMP holds because bills de-

�ned by equation (59) are linear in bene�ts with community-speci�c coe¢ -

cients. The e¢ ciency follows from de�nitions of: game e� given by equations
(56) to (58) and bills given by set of equations (59). Let us verify that the

core inequality (10) holds for any coalition S � I. Stand-alone value of

coalition S is given by the following equation:

V (S) =
X
i2S�

bi �
maxL(S)X
j=1

cj. (60)

The joint value allocated to coalition S is given by equationX
i2S
yi (�) =

X
i2S
bi �

X
i2S\eI

xi (�) . (61)

Notice that it lies (weakly) below the cost of network up to maxL(S)

X
i2S\eI

xi (�) 6
maxL(S)X
j=1

cj. (62)

The reason is that the agents in set eInS (if any) are billed for using this
segment. At the same time, X

i2S
bi >

X
i2S�

bi (63)
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because S� � S. Equations (60), (61) and inequalities (62), (63) imply in-

equality (10).

Example A.3 shows that SMP is not disposable. Consider the following allo-

cation rule. First, assign LP bills to all communities:

Xj (�) = X
LP
j (�) =

Bj
Bj+Wj

 
cj +

j�1P
r=1

cr

j�1Y
k=r

Wk

Bk+Wk

!
. (64)

Then, allocate bill by community j among its members as follows:

xi (�) =
b2iX

k2Sj

b2k

Xj (�) for any i 2 Sj.
(65)

The above allocation is NSD, because community bills are de�ned by the

LP rule. Furthermore, given that bills (65) are individually rational, we can

show that the induced allocation is in the core using the argument for LP

allocation being in the core (see Appendix G below). At the same time,

the above allocation is not SMP, because any agent i can reduce its bill by

splitting into two agents i1 and i2 with positive bene�ts. Indeed, consider

bi1and bi2 such that

bi = bi1 + bi2, min fbi1 ; bi2g > 0.

By equation (65),

xi1 (�) + xi2 (�) =
b2i1
+b2i2X

k2Sli

b2k

<
b2i1
+b2i2

+2bi1bi2X
k2Sli

b2k

=
b2iX

k2Sli

b2k

= xi (�) .

Appendix F: iterative �home-down�procedure.

The following iterative procedure de�ning bill xi;j(�) by agent i for each

segment j 6 li results in LP bills.
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Step 1. Let the agent(s) from community n share cost cn of the terminal

network segment proportionally:

xi;n(�) =
bi
Bn
cn for any i 2 Sn, (66)

The remaining (hereafter, �local�) bene�t by any agent i 2 Sn in node n�1

is

bi;n�1 =
biWn�1
Bn

(67)

and the joint local bene�t of community n in node n � 1 is equal to the

downstream welfare at node n� 1:P
i2Sn

bi;n�1 = Wn�1. (68)

Step 2. Let the agents from communities n and n � 1 share cost cn�1 pro-

portionally to their local bene�ts in node n� 1:
xi;n�1(�) =

bi
Bn�1+Wn�1

cn�1, if i 2 Sn�1;
xi;n�1(�) =

bi;n�1
Bn�1+Wn�1

cn�1 =
bi
Bn

Wn�1
Bn�1+Wn�1

cn�1, if i 2 Sn.
(69)

For illustrative purpose, suppose that n > 2. Local bene�ts by agents from

communities n and n� 1 in node n� 2 are

bi;n�2 = bi;n�1

�
1� cn�1

Bn�1+Wn�1

�
= bi

Bn

Wn�1Wn�2
Bn�1+Wn�1

, if i 2 Sn;

bi;n�2 = bi

�
1� cn�1

Bn�1+Wn�1

�
= biWn�2

Bn�1+Wn�1
, if i 2 Sn�1

(70)

and their joint bene�t is equal to the welfare generated by subline following

node n� 2: P
i2Sn[Sn�1

bi;n�2 = Wn�2. (71)

Step 3. Let the agents from communities n, n� 1 and n� 2 share cost cn�2
proportionally to their local bene�ts:

xi;n�2(�) =
bi

Bn�2+Wn�2
cn�2, if i 2 Sn�2;

xi;n�2(�) =
bi;n�2

Bn�2+Wn�2
cn�2 =

bi
Bn�1+Wn�1

Wn�2
Bn�2+Wn�2

cn�2, if i 2 Sn�1;
xi;n�2(�) =

bi;n�2
Bn�2+Wn�2

cn�2 =
bi
Bn

Wn�1
Bn�1+Wn�1

Wn�2
Bn�2+Wn�2

cn�2, if i 2 Sn.
(72)
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Proceeding in this way we �nd the bill by agent i for segment j 6 li:22

xi;j(�) =
bi

Bli+Wli

Wli�1
Bli�1+Wli�1

:::
Wj

Bj+Wj
cj. (73)

Summarizing i�s bills (73) for all segments on his way to the source we �nd

equation (15).

Appendix G: Proof of Remark 1.

Given that LP allocation is e¢ cient, we need to verify the set of core inequal-

ities (10). We proceed in two steps.

Step 1. Suppose �rst that S� = S. Then, inequality (10) is equivalent to

X
i2S�

xLPi (�) 6
maxL(S)X
j=1

cj. (74)

By Lemma 1, X
i2S�

xLPi (�) =
X

i2S:li6maxL(S)
xLPi (�) .

By de�nition of LP allocation,X
i2S:li6maxL(S)

xLPi (�) =
X

i2S:li6maxL(S)

P
j6li
xLPi;j (�) ,

where xLPi;j (�) is given by equation (73). S � I implies

X
i2S:li6maxL(S)

P
j6li
xLPi;j (�) 6

X
i2I:li6maxL(S)

P
j6li
xLPi;j (�) =

maxL(S)X
j=1

cj,

22Recall that Wn = 0, so if i 2 Sn, then

xi;j(�) =
bi
Bn

Wn�1
Bn�1+Wn�1

:::
Wj

Bj+Wj
cj .
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that is, inequality (74) holds.

Step 2. Suppose now that S� � S.

Step 2.1 proves that individual rationality constraints are met. This is equiv-

alent to bill xLPi (�) given by equation (15) being weakly below bi:

bi
Bli+Wli

 
ci +

li�1P
j=1

cj

li�1Y
k=j

Wk

Bk+Wk

!
6 bi. (75)

Given that bi > 0, inequality (75) is equivalent to inequality

li�1P
j=1

cj

li�1Y
k=j

Wk

Bk+Wk
=

Wli�1
Bli�1+Wli�1

 
cli�1 +

li�2P
j=1

cj

li�2Y
k=j

Wk

Bk+Wk

!
6

Bli +Wli � ci = Wli�1,

which, given that Wli�1 > 0, is in its turn equivalent to

li�2P
j=1

cj

li�2Y
k=j

Wk

Bk+Wk
=

Wli�2
Bli�2+Wli�2

 
cli�2 +

li�3P
j=1

cj

li�3Y
k=j

Wk

bk+Wk

!
6

Bli�1 +Wli�1 � ci�1 = Wli�2.

By continuing this argument, we �nd that the initial inequality (75) is

equivalent to inequality W1 > 0, which is true by inequality (1).

Step 2.2 proves set of inequalities (10) using steps 1 and 2.1. We decompose

the value of coalition S as follows:X
i2S
yLPi (�) =

X
i2S�

yLPi (�) +
X
i2SnS�

yLPi (�) . (76)

By step 1, X
i2S�

yLPi (�) =
X
i2S�

bi �
X
i2S�

xLPi (�) > V (S�). (77)

By step 2.1, X
i2SnS�

yLPi (b; l; c) =
X
i2SnS�

bi �
X
i2SnS�

xLPi (b; l; c) > 0. (78)
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By equation (76) and inequalities (77) and (78),X
i2S
yLPi (�) > V (S�) = V (S).

Appendix H: monotonicity, continuity and scale
invariance.

By equation (15), LP allocation is (strictly) monotonous in bene�ts:

@xi(�)
@bi

= 1
Bli+Wli

 
cli +

li�1P
j=1

cj

li�1Y
k=j

Wk

Bk+Wk

!
> 0,

in cost:

@xi(�)
@cj

= bi
Bli+Wli

Wli�1
Bli�1+Wli�1

:::
Wj

Bj+Wj
> 0 for any j 6 li.

and it is scale invariant:

xi(I;N; �b; l; �c) =
�bi

�Bli+�Wli

 
�cli +

li�1P
j=1

�cj

li�1Y
k=j

�Wk

�Bk+�Wk

!
= �xi(I;N; b; l; c).

It is continuos because it is speci�ed by a closed-form continuos function.

Appendix I: proof of Remark 2.

Statement (ii) follows from Littlechiled and Owen (1973). Let us prove state-

ment (i). Consider i < n and S � I such that i 2 S.

V (S)� V (Sn fig) =
�
bi, if n 2 S;
0, otherwise.

(79)

Let us compute the number of ways to build coalition S so that it contains

both i and n. It is equal to the number of ways to pick s� 2 agents, where
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s = jSj from set In fi; ng, that is, to (n�2)!
(s�2)!(n�s)! . Therefore,

yShi (�) = bi

nX
s=1

(jSj�1)!(n�s)!
n!

(n�2)!
(s�2)!(n�s)! =

bi
n(n�1)

nX
s=1

(s� 1) . (80)

By standard formula for the sum of elements of arithmetic progression,

nX
s=1

(s� 1) = n(n�1)
2
. (81)

By equations (80) and (81), yShi (�) = bi
2
.

Appendix J: proof of Proposition 3.

Here (and below) we use notation C(pjk) =
X
z2pjk

cz for the joint cost of edges

belonging to the path from some node j to some other node k and

h(i; Y ) = argmin
k2T jN(Y )

C(plik), (82)

for the hub node of agent i 2 I on his way to (sub)tree T jN(Y ) connecting

members of coalition Y � I to the source.23

E¢ cient coalition members. We extend De�nition 1 as follows.

De�nition A.1. Node j 2 N(S) is a large node of (sub)tree T jN(S) i¤ the

joint bene�t by members of coalition S � I located in node j is higher than

the cost of connecting node j to the source or at least to another large node

of (sub)tree T jN(S). Set of large nodes of T jN(S) is denoted L(S).

The concept of e¢ cient coalition members introduced by De�nition 2

extends to two-dimensional context literally. The following characterization

23Trivially, if i 2 Y then h(i; Y ) = li.
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of the set of e¢ cient coalition members is an extension of Lemma 1.

Lemma A.1. Set of e¢ cient coalition members is composed of all members

of coalition S located in large nodes of T jN(S) and other members of S located

on paths from a large node of T jN(S) to the source:

S� = fi 2 S jli 2 L(S)g [ fi 2 S j li 2 pk0 for some k 2 L(S)g . (83)

Proof. By De�nition of L(S) and S�, li 2 L (S) implies i � S�. Consider

agent i 2 S such that li 2 N (S) nL (S).

Suppose �rst that agent i is located on the path from the source to some

large node of T jN(S), that is, there exist node j 2 L (S) such that li 2 p0j.

Then, V (S)� V (Sn fig) = bi > 0. Hence, i 2 S�.

Suppose now that agent i is located outside any above path, that is,

li 2 N (S) n (L (S) [ fp0j jj 2 L (S)g). Consider the shortest path plih(i;S�)
from li to T jL(S). By De�nition A.1 of set L (S), any node j 2 plih(i;S�) on

this path containing members of S is not a large node of subtree T jN(S).

Therefore, C
�
plih(i;S�)

�
>

X
r2S:lr2plih(i;S�)

br, hence i 2 SnS�. Q.E.D.

Note that by Lemma A.1, the subtree connecting the e¢ cient members

of coalition S to the source 0 is the subtree connecting its large nodes to 0:

T jN(S�) = T jL(S). (84)

Proof of Proposition 3. Let us verify convexity criterion (7). Consider

coalitions S and H such that S � H � I and agent r 2 InH. By de�nition
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(21) of a coalition�s value, de�nition (82) of a hub node and Lemma A.1,24 ;25

V (Y [ frg)� V (Y ) =

8>>>><>>>>:
br, if lr 2 L(Y );

max

8<:br + X
i2Y nY �:li2plrh(r;Y �)

bi�

C
�
plrh(r;Y �)

�
; 0
	
, otherwise

(85)

for either Y = S or Y = H. By De�nition A.1 of large nodes, S � H implies

L (S) � L (H) . (86)

By Lemma A.1,

N(Y �) = L (Y ) (87)

for either Y = S or Y = H. By relation (86) and equation (87),

T jL(S) � T jL(H). (88)

Informally, the rest of the proof goes as follows. By relation (88), hub

node h(r; S�) of agent r on his way to (sub)tree T jL(S) is a node of (sub)tree

T jL(H). Because tree T has no cycles, hub node h(r;H�) is located on the

path from agent r�s location lr to hub node h(r; S�). Hence, the di¤erence

between agent r�s marginal contributions to coalitions S and H (if any) is

created on the path from hub node h(r;H�) to hub node h(r; S�): There

may be some members of coalition S located on this path. Their bene�ts

shall be added to r�s marginal contribution to S. However, these members

24Recall that the path from node j to T jN(Y �), where Y takes values S and H, is de�ned
as the shortest path from node j to a path connecting a node containing some member of
coalition Y � to the source, and hub node h(j; Y �) is the de�ned by equation (82) as the
terminal point of this path.
25Condition lr 2 L(Y ) means that lr is the node of T jL(Y ). This is true i¤ there exist

j 2 L(Y ) such that lr 2 pj0.
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of coalition S are located outside the large nodes of S, therefore, their joint

bene�t is (weakly) below the cost of the path from hub node h(r;H�) to hub

node h(r; S�). Hence, agent r�s marginal contribution to coalition S is weakly

below that to coalition H.

Formally, we consider three possible cases left by relation (88).

Case 1: lr 2 T jL(S), that is, agent r is located on the way from some large

node of the subtree connecting members of coalition S to the source. Then,

by relation (88), lr 2 T jL(H). By set of equations (85),

V (S [ frg)� V (S) = V (H [ frg)� V (H) = br.

Hence, inequality (7) holds (weakly).

Case 2: lr 2 T jL(H)nT jL(S). By set of equations (85),

V (H [ frg)� V (H) = br, while (89)

V (S [ frg)� V (S) = max

8<:
0@br + X

i2SnS�:li2plrh(j;S�)

bi

1A� C �plrh(r;S�)� ; 0
9=; .
(90)

By De�nition A.1 and Lemma A.1, li 2 N (S) nL(S) for any i 2 SnS� such

that li 2 plrh(j;S�). Therefore,X
i2SnS�:li2plrh(j;S�)

bi � C
�
plrh(r;S�)

�
6 0. (91)

By equation (90) and inequality (91),

V (S [ frg)� V (S) 6 br. (92)

By equation (89) and (92), inequality (7) holds.
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Case 3: lr 2 NnT jL(H). By set of equations (85),

V (Y [ frg)� V (Y ) = max

8<:br + X
i2Y nY �:li2plrh(r;Y �)

bi � C
�
plrh(r;Y �)

�
; 0

9=;
(93)

for either Y = S and Y = H. By de�nition (82) of hub node, h(r; S�) 2

T jL(S). By relation (88),

h(r; S�) 2 T jL(H). (94)

Because tree T has no cycles,

plrh(r;S�) = plrh(r;H�) [ ph(r;H�)h(r;S�). (95)

By equation (95),

C
�
plrh(r;S�)

�
= C

�
plrh(r;H�)

�
+ C

�
ph(r;H�)h(r;S�)

�
and (96)X

i2SnS�:li2plrh(r;S�)

bi =
X

i2SnS�:li2plrh(r;H�)

bi +
X

i2SnS�:li2ph(r;H�)h(r;S�)

bi. (97)

Note that i 2 SnS� and li 2 plrh(r;H�) implies i 2 HnH�. The reason is

that i 2 SnS� implies i 2 H, while i 2 H� contradicts de�nition of h(r;H�):

indeed, if i 2 H� and li is on the way from lr to h(r;H�), then plrh(r;H�) is

not the shortest way from lr to T jL(H). Therefore,X
i2SnS�:li2plrh(r;H�)

bi =
X

i2HnH�:li2plrh(r;H�)

bi. (98)

By equations (93) and (96) to (98),

(V (S [ frg)� V (S)) =

max

8<:(V (H [ frg)� V (H)) + X
i2SnS�:li2ph(r;H�)h(r;S�)

bi � C
�
ph(r;H�)h(r;S�)

�
; 0

9=; .
(99)
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By Lemma A.1, li 2 N(S)nL(S) for any i 2 SnS� such that li 2 ph(r;H�)h(r;S�).

Therefore, X
i2SnS�:li2ph(r;H�)h(r;S�)

bi � C
�
ph(r;H�)h(r;S�)

�
6 0. (100)

By equation (99) and inequality (100), inequality (7) holds.

Appendix K: proof of Proposition 4.

We divide the statement of Proposition 4 into two Lemmas.

Lemma A.2. LP allocation billing the agents according to set of equations

(23) has properties in Proposition 4.

Proof. Let us divide the bill (23) by agent i into the sum of bills for the

segments he uses, as implicitly suggested by set of equations (23):

xLPi (�) =
X
j2pli0

xLPi;j (�) , where

xLPi;j (�) =

8>>><>>>:
cj

bi
Bj+Wj

if j = li;

cj
bi

Bli+Wli

Y
z2plijnfjg

W+
z

B�(z)+W�(z)
if j 2 pli0n fli; 0g ;

0, otherwise.

(101)

Step 1 shows that the agents located in node j and those located in subtree

Tj jointly pay P
i:li2Tj[fjg

xLPi;k (�) = ck
Y

z2pjknfkg

W+
z

B�(z)+W�(z) (102)

for using segment k located on their way to the source, and this bill is shared

between these groups of agents as follows:P
i:li2Tj

xLPi;k (�) = ck
Wj

Bj+Wj

Y
z2pjknfkg

W+
z

B�(z)+W�(z)
, (103)
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P
i:li=j

xLPi;k (�) = ck
Bj

Bj+Wj

Y
z2pjknfkg

W+
z

B�(z)+W�(z)
. (104)

Consider some node r preceding some terminal node(s) of subtree Tj. Let

Fr = fz 2 N j � (z) = rg be the set of nodes following r. Note that any node

z in set Fr is terminal. Therefore,

Wz = 0 and
P
z2Fr

W+
z = Wr. (105)

By equations in sets (101) and (105), the joint bill by communities located

in set Fr for segment k isP
z2Fr

XLP
z;k (�) = ck

Wr

Br+Wr

Y
z2prjnfjg

W+
z

B�(z)+W�(z)
, (106)

while the bill by community r is

XLP
r;k (�) = ck

Br
Br+Wr

Y
z2prjnfjg

W+
z

B�(z)+W�(z)
. (107)

By equations (106) and (107),P
z2Tr[frg

XLP
z;k (�) = X

LP
r;k (�) +

P
z2Fr

XLP
z;k (�) = ck

Y
z2prjnfjg

W+
z

B�(z)+W�(z)
, (108)

Consider community �(r). By equation (108), joint bill by communities

in subtree T�(r) for segment k isP
z2T�(r)

XLP
z;k (�) = ck

P
q2F�(r)

W+
q

B�(r)+W�(r)

Y
z2p�(r)jnfjg

W+
z

B�(z)+W�(z)
=

ck
W�(r)

B�(r)+W�(r)

Y
z2p�(r)jnfjg

W+
z

B�(z)+W�(z)
.

(109)

By set of equations (101), bill by community �(r) for segment k is

XLP
�(r);k (�) = ck

B�(r)
B�(r)+W�(r)

Y
z2p�(r)jnfjg

W+
z

B�(z)+W�(z)
. (110)
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By equations (109) and (110),P
z2T�(r)[f�(r)g

XLP
z;j (�) = ck

Y
z2p�(r)jnfjg

W+
z

B�(z)+W�(z)
. (111)

Continuing this argument, we �nd set of equations (102) to (104).

Step 2 notes that NSD property follows from equations (102) to (104): if

Wj = Bj then the bill of community j for any network segment k it uses is

equal to the joint bill of communities in Tjn fjg for this segment.

Step 3 notes that LP allocation is e¢ cient, as de�ned by equation (9), be-

cause, by step 1 the cost of any segment j is paid (without excess) by the

agents located in node j and those located in subtree Tj.

Step 4 veri�es set of core inequalities (10). It begins with proving that bills

de�ned by set of equations (23) are individually rational, that is,

bi � xLPi (�) > max fbi � C (pli0) ; 0g . (112)

for any i 2 I. Suppose �rst that bi � C (pli0) > 0. Then, inequality (112) is

equivalent to

xLPi (�) 6 C (pli0) (113)

which holds because by step 1, agent i shares the cost of any segment on path

pli0 with other agents in community li (if any) and agents located in subtree

Tli (if not empty). Suppose now that bi�C (pli0) 6 0. Then, inequality (112)
is equivalent to

xLPi (�) 6 bi. (114)

By equation (23), inequality (114) is equivalent to

bi
Bli+Wli

0@cli + P
j2p�(li)0nf0g

cj
Y

z2plijnfjg

W+
z

B�(z)+W�(z)

1A 6 bi. (115)
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We divide each side of inequality (115) by bi, then multiply it by Bli+Wli and

�nally substrate cli from each side. Thereby, we �nd that inequality (115) is

equivalent toP
j2p�(li)0nf0g

cj
Y

z2plijnfjg

W+
z

B�(z)+W�(z)
6 Bli +Wli � cli = W+

li
. (116)

We divide each side of inequality (116) by W+
li
, then multiply it by B�(li) +

W�(li) and �nally substrate c�(li) from each side. Thereby, we �nd that in-

equality (116) is equivalent toP
j2p�(�(li))0nf0g

cj
Y

z2p�(li)jnfjg

W+
z

B�(z)+W�(z)
6 W+

�(li)
.

Proceeding iteratively in this way we �nd that inequality (114) is equivalent

to set of inequalities W+
z > 0 for any node z in set F0, which are true by

assumption (20).

We now are ready to prove set of inequalities (10). Suppose �rst that

V (S) = 0. Then, set of inequalities (10) follows from individual rationality

proved above. Suppose now that V (S) > 0. Notice that by de�nition (21)

and Lemma A.1, this supposition is equivalent toX
i2S�

bi � C
�
T jL(S)

�
> 0.

Let us decompose the left-hand side of inequality (10) as follows:P
i2S
yLPi (�) =

P
i2S�

bi +
P

i2SnS�
bi �

P
i2S�

xLPi (�)�
P

i2SnS�
xLPi (�) . (117)

By equation (23),

C
�
T jL(S)

�
=
P
i2I

P
j2T jL(S)

xLPi;j (�) >
P
i2S�

P
j2T jL(S)

xLPi;j (�) =
P
i2S�

xLPi (�) . (118)
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By individual rationality,X
i2SnS�

bi �
X
i2SnS�

xLPi (�) > 0. (119)

By equation (117) and inequalities (118), (119), inequality (10) holds. Q.E.D.

Lemma A.4. An allocation in the core which is SMP and NSD is de�ned

by equations (23).

Proof. Notice that the proof of Lemma 2 goes through, hence,

Xj = kjBj (120)

We will now use NSD and core property to �nd location-speci�c coe¢ cients

kj, starting from nodes located closest to the source and going towards the

terminal nodes.

Step 1. Consider, one by one, branches of tree T originating in nodes directly

connected to the source, that is, nodes in set F0. Suppose, w.l.g., that node

1 is in set F0. By NSD and equation (120),

k1W1 =
X
j2T1

(kjBj � cj) . (121)

By the core property,

k1B1 � c1 +
X
j2T1

(kjBj � cj) = 0. (122)

By equations (121) to (122),

k1 =
c1

B1+W1
. (123)

Step 2. If F1 = ?, the proof is over. Otherwise, let us decompose the right-

hand side of equation (121) as follows:X
j2T1

(kjBj � cj) =
X
r2F1

X
j2Tr

(kjBj � cj) +
X
r2Fj

(krBr � cr) . (124)
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Consider some node br 2 F1. Suppose �rst that F1 = fbrg. Then, equation
(124) is equivalent toX

j2T1

(kjBj � cj) =
X
j2Tbr

(kjBj � cj) + (kbrBbr � cbr) . (125)

By NSD, equation (125) is equivalent to26

k1W
+br = kbrWbr + kbrBbr � cbr, or, equivalently,

kbr = 1
Wbr+Bbr

�
cbr + k1W+br � (126)

where coe¢ cient k1 is given by equation (123).

Suppose now that F1n fbrg 6= ?. Let us evaluate equation (124) at the

following limit:

Bj ! cj for any j 2 Tr [ frg for any r 2 F1n fbrg . (127)

Step 2.1. Consider some r 2 F1n fbrg. Consider some terminal node j in
Tr [ frg. By core property,

kjBj > cj. (128)

By individual rationality,

kjBj 6 Bj. (129)

By inequalities (128) and (129),

lim
Bj!cj

kj = 1 (130)

Note that equation (130) holds for any (terminal) node sharing the same

precessor with node j:

lim
Bj!cj

kj = 1 for any terminal node j 2 F�(j). (131)

26Note that F1 = fbrg this implies W1 =W
+br .
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Step 2.2. Consider node � (j). By the core property,

k�(j)B�(j) +
X

q2F�(j)

kqBq > c�(j) +
X

q2F�(j)

cq. (132)

By set of equations equations (131), inequality (132) evaluated at the limit

(127) is equivalent to

k�(j)B�(j) > c�(j): (133)

By individual rationality,

k�(j)B�(j) 6 B�(j): (134)

By inequalities (133) and (134),

lim
Bq!cq8q2T�(j)[f�(j)g

k�(j) = 1. (135)

Step 2.3. Proceeding iteratively, we �nd

lim
Bq!cq8q2Tr[frg

kq = 1 (136)

for any r 2 F1n fbrg.
Step 2.4. Consider �rst the right hand side of equation (124). By set of

equations (136)

lim
(127)

X
r2F1

X
j2Tr

(kjBj � cj) +
X
r2Fj

(krBr � cr) = kbrBbr � cbr +X
j2Tbr

(kjBj � cj) ,

(137)

where, by NSD,
X
j2Tbr

(kjBj � cj) = kbrWbr. (138)

Now consider the left hand side of equation (124). By NSD,X
j2T1

(kjBj � cj) = k1W1, (139)
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where coe¢ cient k1 is given by equation (123). By set of equations (136),

lim
(127)

W1 = W
+br . (140)

By equations (137) to (140), coe¢ cient kbr is given by equation (126).
Step 3. Proceeding iteratively, we �nd

kj =
1

Bli+Wli

0@cli + P
j2pli0nfli;0g

cj
Y

k2plijnfjg

W+
k

B�(k)+W�(k)

1A , (141)

which completes our proof.
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