
HAL Id: hal-04556203
https://hal.science/hal-04556203

Submitted on 2 May 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Tree based Diagnosis Enhanced with Meta Knowledge
Applied to Dynamic Systems

Louis Goupil, Louise Travé-Massuyès, Elodie Chanthery, Thibault Kohler,
Sébastien Delautier

To cite this version:
Louis Goupil, Louise Travé-Massuyès, Elodie Chanthery, Thibault Kohler, Sébastien Delautier. Tree
based Diagnosis Enhanced with Meta Knowledge Applied to Dynamic Systems. 12th IFAC Symposium
on Fault Detection, Supervision and Safety for Technical Processes (2024), IFAC, Jun 2024, Ferrara,
Italy. à paraître. �hal-04556203�

https://hal.science/hal-04556203
https://hal.archives-ouvertes.fr

Tree based Diagnosis Enhanced with Meta

Knowledge Applied to Dynamic Systems ⋆

Louis Goupil ∗ Louise Travé-Massuyès ∗∗ Elodie Chanthery ∗∗

Thibault Kohler ∗ Sébastien Delautier ∗

∗ Atos, Toulouse, France (e-mail: lgoupil@laas.fr,
thibault.kohler@atos.net, sebastien.delautier@atos.net)

∗∗ LAAS-CNRS, ANITI, Université de Toulouse, CNRS, INSA,
Toulouse, France (e-mail: louise@laas.fr, echanthe@laas.fr)

Abstract: This paper presents an online data and knowledge-based diagnosis method. It leverages
decision trees where decisions are informed by diagnosis meta knowledge, specifically focusing
on the properties of diagnosis indicators. This knowledge is used at each node to articulate
a symbolic classification problem, outputting discriminating functions. The outcome is a
multivariate decision tree that produces a compact model for diagnosis. The use of decision trees
increases the explainability of the outcome, all the more so as one discovers the explicit formal
expressions of diagnosis indicators, structured in the form of analytical redundancy relations.
This article centers on the essential components required for the method to be suitable for
dynamic systems. It is tested on the well-known two-tank system, showing that the performances
match those of model-based diagnosis.

Keywords: Fault detection and diagnosis, Symbolic classification, Decision Tree, Analytical
redundancy relation, Meta knowledge injection, Symbolic regression, Genetic algorithm.

1. INTRODUCTION

Diagnosis consists in finding when a system is behaving
abnormally, but also what causes a fault. Model-based
diagnosis -inferred from system equations- leads to highly
efficient solutions but requires extensive knowledge about
the system (Slimani et al. (2018)) and suffers from un-
certainties inherent to real systems. Data-based diagnosis
-inferred from operational data gathered on a system-
requires no prior knowledge of systems but rarely grants
explanations as to what causes a fault (Tidriri et al. (2016),
Lei et al. (2020)). Decision trees (DTs) are data-based
methods that can give explainable decisions, with some
precautions. This explainability generally requires manip-
ulating conditions returned on the tree paths (Izza et al.,
2022a,b). This article proposes a diagnosis algorithm in
the form of a DT enhanced with meta knowledge on the
properties of diagnosis indicators. It will take advantage
of both data-based and model-based techniques, bringing
answers both to the when and what questions.

The most common version of DTs is univariate decision
trees (Priyam et al. (2013)). However, system diagnosis is
most often obtained by studying relations between mea-
sured input and output variables. Thus, univariate DTs
may not efficiently address diagnosis problems. That is
why we propose a multivariate approach that looks for
relations involving several measured variables to discrimi-
nate the data in DT nodes as precisely as possible.

⋆ This research is funded by Atos. This project is related to ANITI
through the French “Investing for the Future – PIA3”program under
the Grant agreement n°ANR-19-PI3A-0004.

This paper main contribution is DT4X, an algorithm that
builds a multivariate DT performing explainable diagnosis.
The second contribution relies on tree nodes discrimina-
tion done by finding relations between observable vari-
ables. These relations correspond to diagnosis indicators
for they have the same semantics and mathematical form
as classical analytical redundancy relations (ARR) from
model-based diagnosis. The use of a DT and the identi-
fication of diagnosis indicators provide explainability. To
sum up, DT4X finds diagnosis indicators for the system
and uses them as discriminating relations in a multivariate
decision tree. Finally, DT4X is successfully applied on a
dynamic system, showing its good performances compared
to model-based diagnosis.

Section 2 presents the related works. Section 3 gives
the background information required to understand how
DT4X works. The algorithm is detailed and its pseudo
code given in Section 4. Section 5 demonstrates the appli-
cation of DT4X to the two-tank use case.

2. RELATED WORK

In De Kleer and Kurien (2003) or Pulido and Alonso
(2002), authors show that diagnosis can be accurate and
explicable when based on the full model of the system.
However, this model is not always accessible and, more of-
ten than not, only easy-to-obtain information is available,
like which variables are measured and the model structure.

Methods presented in Jung (2022) or Mohammadi et al.
(2022) try to exploit this easy-to-obtain system infor-
mation to perform model-based diagnosis. They conduct
structural analysis to derive ARRs and replace model-

based residual generators that require the full model of
the system by learned residual generators. They use ma-
chine learning algorithms trained on data measured on the
system to generate residuals.

On the other hand and despite tremendous advances in
explicable AI, methods based only on data are accurate
but lack explainability, as discussed in Dwivedi et al.
(2023). One exception is DTs that, particularly when of
modest size, can be inherently explicable. DTs can be
categorized into two types: univariate and multivariate
(Yıldız and Alpaydın (2000)). Univariate DTs do not fit
well our diagnosis problem (see Section 3.1) given that
faulty classes are known to be isolable through multivariate
relations (Gao et al. (2015)). Multivariate DTs (Brodley
and Utgoff (1995)) allow studying the joint influence of
multiple system variables. This is why we advocate them
in this paper.

To the best of our knowledge, the only work focusing on
applying multivariate decision trees to diagnosis problems
in the literature is (Goupil et al., 2023), which limits itself
to static systems. This paper goes further by addressing
the more difficult case of dynamic systems and presenting
a way of taking dynamics into account. It also adds a
”refitting”stage to the proposed algorithm, which improves
the overall accuracy of the resulting tree.

Hence, this paper aims to apply multivariate DTs to di-
agnosis. It leverages meta knowledge about diagnosis indi-
cators to extract multivariate discriminating expressions.
These expressions happen to have the same properties as
model-based ARR.

3. BACKGROUND

3.1 Decision Trees

A Decision Tree T (E,N) is a directed acyclic graph having
at most one edge between every pair of nodes. E is the set
of edges and N is the set of nodes. T has one root node n0,
characterized by no incoming edge. All other nodes have
exactly one incoming edge. Nodes that do not have an
outgoing edge are called leaves. We consider only binary
decision trees, meaning each node that is not a leaf has
exactly two outgoing edges, associated to a node. A path
of the tree goes from the root node n0 to a leaf.

A DT can be used to classify a sample x = (x1, . . . , xn) ∈
Rn. Let us define C the set of possible classes. A dataset D
is a set of pairs (x, l) with l ∈ C. A sample can designate
x alone or the whole pair (x, l), depending on the context.
When training the DT, a sample is a pair and when using
the tree to predict the class of x, x is the sample.

Training, equivalent to building the DT, starts from n0

and figuratively stores the entire training dataset inside
it. Then, if the node is pure, meaning that all samples it
contains belong to the same class l, it is considered as a
leaf and labeled with that class. If the node is not pure, a
discriminating criterion d is computed. The most common
algorithms used to determine discriminating criteria are
gini and entropy (Priyam et al. (2013)). Once d is chosen,
all samples in the node are evaluated on d leading to
the creation of two new nodes: one for the samples that
satisfy the criterion (d(x) is true), and one for those that

do not (d(x) is false). This process is repeated for newly
created nodes until there are no impure nodes left. As a
consequence, when the DT is fully trained, each leaf is
assigned a class l ∈ C.

Once the DT has been trained, it can be used to predict the
class of a sample x. For multivariate DT, a non-leaf node is
associated with k features, the value of k being dependent
of the node. Each non-leaf node is also associated with a
subset of Rk. The decision made at a node depends on
whether the actual values of the k features belong to the
associated subset.

During the prediction phase, classification of a sample
x is performed by following the path of decisions that
corresponds to its feature values until reaching a leaf node.
The predicted class is the one associated with this leaf
node.

Diagnosis can be considered as a classification problem
with C containing the nominal behavior class and the
faulty classes. A sample x is formed by the observable
variables measured on the system at a specific timestep. In
the following, D contains the samples from these classes.

3.2 Diagnosis indicators

A diagnosis indicator is a function that maps quantities
that are observable, or those deducible from observations,
into a scalar value, providing an indication of a fault.
The value of a diagnosis indicator should be zero, or close
to zero, for nominal behavior samples and non-zero for
some faulty behavior samples. To evaluate a diagnosis
indicator d on a sample x means to compute the image
of x by d. A diagnosis indicator evaluated on a nominal
sample should always be zero, considering an ideal, non-
noisy, environment.

The idea of this paper is to use this knowledge to find
appropriate multivariate relations that will be used to
take a decision in each node of the diagnosis tree. To
do so, we propose to use symbolic classification, modified
to incorporate this knowledge and constrain the output
function to have the properties of a diagnosis indicator.

3.3 Symbolic Classification

Symbolic classification is a binary classification method.
It estimates a function f : Rn → R knowing pairs (x, l)
with x = (x1, . . . , xn) ∈ Rn and l ∈ C, C being a
set of classes of cardinality two, {0, 1}. f is then used
together with a classification function t : R → [0, 1]
to predict the class of a sample x. The output of t is
in [0, 1] but a threshold can be applied to obtain the
class in {0, 1}. t is known. Thus, applying a threshold
to t(f(x)) gives the class of x. This estimation of f is
done without assuming the structure of f and discovers a
precise analytical solution. It relies on a genetic algorithm
that takes as inputs a set of pairs D = {(x, l)} called the
dataset and a set of operators O (e.g. +, ∗,−, /,√, ||, log,
etc.). It searches for the best combination cx,O of variables
(x1, . . . , xn) and operators so that cx,O = f(x). The
genetic algorithm generates candidate functions c : Rn →
R. These candidate functions are then evaluated using
a fitness function. Since a symbolic classifier aims at

predicting classes, the fitness function used is most often
the log loss function (Bishop (2006)), given by:

Fitness(c) = − 1

|D|
∑

(x,l)∈D

[l ln(t(c(x)))

+ (1− l) ln(1− t(c(x)))]

Training symbolic classification corresponds to generating
candidate solutions c until reaching one that is close
enough to f , close enough being defined by a given
threshold. The python package gplearn (Stevens (2016))
provides an implementation. The classification function
t can take many shapes. Its default value in gplearn
is a sigmoid function. In the context of this paper, the
classification function is customized to fit our needs, see
Section 4.5.

4. DT4X

DT4X stands for Diagnosis Tree for eXplainability with
4 main features: multivariate analysis, explicable decision-
making, incorporation of meta knowledge and use of sym-
bolic classification.

4.1 Principle

DT4X aims at building (training) a binary DT to diagnose
a system. Its pseudo-code is given in Algorithm 1. The
inputs for DT4X are the training dataset D, the operators
and the hyper-parameters (see Section 4.3) values.
D contains pairs of corresponding (x, l) with x ∈ Rn, the
observable variables and l ∈ C the diagnosis, with C the
set of diagnosis classes (nominal, faulty1, . . . , faultym).
A faulty scenario can be any faulty state of the system,
including multiple faults occurring at the same time.
The operators are a set of functions specified by the user.
The usual operators are: +, ∗,−, /, sign, abs,√, cos, sin, ...

In the resulting DT, each node ni ∈ N that is not a
leaf contains a diagnosis indicator dni

: Rn → R. Each
diagnosis indicator dni

is used to partition the data into
two disjoint subsets, depending on whether t(dni

(x)) = 0
or t(dni

(x)) = 1 for x contained in ni. The two subsets
are then sent to a different child node. Each leaf of the
resulting tree has a label that is the classes predicted for
the data reaching this leaf.

The algorithm uses concepts that need to be defined, with
Xp and Xr hyper-parameters of DT4X:

Definition 1. (Pure with label). A node ni is said to be
pure with label if at least Xp% of the samples belonging
to ni are of class label.

Definition 2. (Relevancy in ni). A class is said to be rele-
vant in ni if the amount of samples of this class constitutes
at least Xr% of the whole dataset.

4.2 Algorithm

Algorithm 1 gives the pseudo-code of DT4X. The arrow
symbol with a plus (← +) means that the value is
appended to the variable.

During the training phase, a node ni ∈ N contains a subset
of samples Dni ⊂ D. Each sample (x, l) contained in ni

Algorithm 1 DT4X

Input: Training Dataset, Operators, Hyper-parameters
Output: DT with Diagnosis Indicators
1: currentNodes← rootNode
2: while currentNodes is not empty do
3: for all node ∈ currentNodes do
4: if node is pure with label then
5: node is leaf
6: node← label
7: else
8: pairsToTry ← generate pairs
9: pair ← first element of pairsToTry

10: while not check foundExpression
11: and pairsToTry not empty do
12: balance pair
13: foundExpression← SC on pair
14: pair ← next element of pairsToTry
15: end while
16: if foundExpression then
17: lNode, rNode← split according to
18: foundExpression
19: futureNodes← +lNode, rNode
20: else
21: node is leaf
22: node← majority label
23: end if
24: end if
25: end for
26: currentNodes← futureNodes
27: end while

verifies the conditions defined on the edges leading to ni

from the root node. At the beginning of DT4X (line 1),
the root node rootNode contains the entire set D. DT4X
builds the tree starting from the root node and then going
through every single node in their order of creation. The
algorithm stops when no nodes are left (line 2).

When reaching a node ni, DT4X first checks whether ni is
pure with label (line 4) (see Definition 1). If it is the case,
ni is designated as a leaf and the label label is associated
with it (lines 5 and 6).
Otherwise, the goal is to find a new diagnosis indicator
dni

that splits the data belonging to Dni
(line 8 to 15).

Thus, let us generate a set of possible pairs of classes
(pairsToTry) to split using a symbolic classifier (line 8).

Two cases are distinguished for the pair generation.

If the nominal class is relevant (see Definition 2) in the
node ni, the set of pairs to try (pairsToTry) is built by
having the nominal data as the first class, and any of the
faulty classes relevant in ni as the second class. This means
pairs of the shape (nominal, faultyk).

If the nominal class is not relevant in ni, the first step
is finding the set of faulty classes that are relevant in
ni. Then, all permutations of pairs of these classes are
generated. For p faulty classes, this results in p ∗ (p − 1)
pairs. It also means that if the pair (faultyi, faultyk) is
present, the pair (faultyk, faultyi) will be present too.
This is important because of the following step: the first
class of the pair is then modified. During the balancing
process (see further), half of the data of the first class is
made of samples of the class itself, and the other half is

made of nominal data randomly selected from the initial
dataset. This ensures that symbolic classification finds
an expression that is worth 0 for both nominal samples
and samples belonging to the first class of the pair. This
expression will also be different from 0 for samples of the
second class of the pair. In other words, the expression is
triggered by samples of the second class but not by samples
of the first or by nominal samples.

Once the set of pairs (pairsToTry) is generated, the
algorithm loops over those pairs until either it runs out
of pairs to try or until a diagnosis indicator dni is found
that discriminates the classes from the pair correctly (lines
10 to 11).
When a pair is selected from pairsToTry, step one is to
balance samples in the two classes (line 12). This pre-
processing checks which class in the pair has fewer samples
and randomly selects the same number of samples from the
class that has the most samples. This is done to ensure
symbolic classification is performed with balanced classes.

Then, the symbolic classification algorithm is performed
on the pair as described in Section 3.3 (line 13). Symbolic
Classification (SC in the pseudocode) always returns a
candidate expression, named foundExpression, that is
the best expression found w.r.t. the fitness. However, while
this expression might be the best found, it might not
necessarily qualify as a good diagnosis indicator, either
because the best possible expression has not been found or
because the pair of classes used to train the symbolic clas-
sification are samples from non isolable fault cases. Thus,
it is important to check (line 10) if the found expression
is a valid diagnosis indicator. This is done by taking two
consecutive tests T1 and T2, with hyper-parameters XT1

and XT2
.

T1 checks that the nominal data from the whole dataset
is predicted as 0 by foundExpression. If at least XT1

% of
the nominal data is predicted as 0 then the test is passed
successfully.
T2 checks that foundExpression predicts correctly XT2

%
of the data used to find it through symbolic classifica-
tion. This percentage does not include data discarded
during the balancing process. This test ensures that
foundExpression is classifying correctly.
If either T1 or T2 is false, then foundExpression is not
considered as a valid diagnosis indicator and the loop over
the pairs continues.

Once either a valid diagnosis indicator dni
has been found

or all pairs have been tested, the while loop is exited.
If a diagnosis indicator dni

was found, corresponding to
foundExpression (line 16), the data in node ni is split
according to dni

. The algorithm evaluates dni
on the

samples within Dni
. If the result is 0, the sample (x, l)

is sent to the left child of the current node (lNode). If
the result is different from 0, the sample is sent to the
right child (rNode). If no diagnosis indicator was found
(line 20), the class with the most samples in Dni

has the
majority, and the node is labeled with this class (line 22)
and declared a leaf.

4.3 Parameterizing DT4X

The hyper-parameters are summarized in Table 1. The
DT4X hyper-parameters are described in Section 4.2.

DT4X Default Value

purity threshold Xp 0.95

relevance threshold Xr 0.001

performance on nominal threshold XT1
0.95

indicator performance threshold XT2 0.90

Symbolic Classification Default Value

ϵ 0.01

population size 5000

maximum number of generations 50

proportion of samples used 1

parsimony coefficient 0.02

Table 1. List of hyper-parameters and their
default value

The ϵ parameter (Section 4.5) has a powerful influence
on the outcome of symbolic classification, so it should be
modified according to the studied system. It should be
scaled according to the order of magnitude of the data. The
population size parameter is the number of candidate solu-
tions generated at each generation. A higher value reduces
the number of generations before reaching a good solution
but it extends training time. The maximum number of
generations is the number of generations beyond which
the algorithm stops, even if it has not found a solution.
High value means more chances to find the right solution,
but when no solution is to be found, it will lengthen the
time it takes to stop. The proportion of samples used is
the dataset fraction used to test each candidate solution.
It provides a trade-off between computation time and
accuracy. Higher accuracy means finding better diagnosis
indicators, leading to faster predictions. Indeed, prediction
time should have priority over training time. Thus, the
whole dataset is used by default. When computing fitness
for a candidate solution, a penalty is subtracted from its
score. This penalty is the parsimony coefficient multiplied
by the expression length of the candidate solution, favoring
shorter solutions.

4.4 Prediction with DT4X

Once DT4X has built the tree, it can be used to predict
the class of a sample x, i.e. to diagnose the system status
when x is (or was) measured. Prediction is performed by
inputting x at the root node. When x reaches a node
ni, the diagnosis indicator dni of that node is evaluated
on x. Similarly to the process described in Section 3.1,
depending on the result of this evaluation, x is sent to one
output edge or the other. When x reaches a leaf node, the
prediction is determined by the label of that leaf node.

4.5 DT4X Classification Function

The classification function t for symbolic classification is
customized for discovering diagnosis indicators:

If |y| < ϵ, t(y) = 0, otherwise t(y) = 1, (1)

with ϵ a DT4X parameter. If nominal data is inputted as
class 0 and a faulty scenario data as class 1, and a function
is discovered with high accuracy on this data, then this
function is a diagnosis indicator, as it is characterized
by being null for nominal cases, non-null for the class 1
faulty scenario, and involving only observable variables.
Such indicator is sensitive to, at least, the fault used to
find it.

5. DT4X EXTENDED FOR DYNAMIC SYSTEMS
AND IMPROVED ACCURACY

5.1 Refitting

Once the DT is fully grown, it can sometimes be further
improved. Indeed, DT4X relies on a genetic algorithm
that, while very likely, does not guarantee convergence.
Reusing symbolic classification on a pair that initially
did not produce a diagnosis indicator might produce one
with a different seed for the randomization of mutations.
Thus, a refit function has been designed to automatically
select leaf nodes with the lowest purity scores and retry
symbolic classification with all the relevant classes in those
nodes. This iterative process has shown to improve the tree
accuracy (see Section 5.4). The refit function also allows
adjustments to symbolic classification parameters, such as
the mutation rate or the population size. refit is usually
performed only once because after two tries, an impure
node will most likely contain classes that are non-isolable
from each other. It has not been tested yet, but future
work could use refit to retrain part of the tree following,
for instance, a concept drift in the dataset.

5.2 Dynamic Systems

DT4X trains from samples corresponding to a specific
timestep. In order to work with dynamic systems, deriva-
tives (and/or integrals) of the variables must be given as
input along the variables themselves (Mohammadi et al.
(2023)). They contain information about the system evolu-
tion. This implies prior knowledge of the highest derivative
order, needed to build relevant diagnosis indicators. In the
current implementation, computation of the derivatives is
performed for all the continuous domain observable signals
of x in the data preprocessing stage and added to the
feature vector given as input to DT4X.

One could think that a better solution is to implement a
derivative operator to give to the symbolic classification
phases of DT4X. It would allow candidate solutions to
contain any order derivatives and to compose the deriva-
tive operator and other operators. However, this requires
information about the neighbor samples that must then
be stored and this requires computing the derivatives at
training phase, which would be very expensive. Also, de-
ciding the size of the window of samples to give to DT4X
is as complex as deciding the maximum derivative order.

5.3 Data-based Analytical Redundancy Relations

Diagnosis indicators found by DT4X have the same prop-
erties as model-based ARR but they are computed from
data. Hence, we define the specific diagnosis indicators
found along the DT and name them data-based ARR as
they are obtained from a dataset D whereas ARRs are
obtained from a system model. Consequently, data-based
ARR have a validity domain limited to the data set.

Definition 3. (Data-based ARR for a dataset D). Consider
a dataset of pairs D = {(x, l)}, l ∈ C. C0 ∈ C is the
class of the nominal samples. The relation of the form
d(x′, ẋ′, ẍ′, ...) = r, with input x′ a subvector of x and
output r, a scalar named residual, is a data-based ARR for

the dataset D, denoted ARRD, if, for all x such that there
exists a pair (x,C0) ∈ D, it holds that r = 0.

5.4 The Two-Tank System case study

DT4X has been tested on a two-tank dynamic system
presented in B.Ould Bouamama (2001), shown in Fig. 1.

Fig. 1. Scheme of the Two-Tank system

This system is susceptible to 12 possible faults. This means
13 possible situations including the nominal case. For the
sake of this study, faults can not occur simultaneously.

8 observable variables are in the system, including a binary
one. Thus, only 7 derivatives can be computed, using
the gradient method of the NumPy package. Hence, the
dataset contains samples of 13 feature values associated to
a label l ∈ C with C the set of possible diagnoses.

Data-Based Results The experiment uses data from a
Matlab Simulink 1 model of the system with a hundred
250-second simulations per fault type. The start of the
fault is randomly selected between 1 and 200 s. For
leaks, the flow rate is also randomized, following a normal
distribution around a standard value.

The dataset is split between a training set with 258960
samples, corresponding to 1040 simulations, and a test
set with 64740 samples, corresponding to 260 simulations.
The training set is then fed to DT4X with default hyper-
parameters, except for ϵ = 1e−4 and the parsimony
coefficient set to 0.003. The operators given to the symbolic
classification are +,−, ∗, /,√ and ||. They are chosen
according to expert knowledge about the system. The
obtained DT is fine-tuned by refitting the most impure
leaf nodes.

DT4X Results The successive DTs obtained by DT4X
are available on GitHub 2 , along with the detailed list
of input variables and faulty scenarios. The accuracy of
the resultant DT on the test set is 95.83%. The confusion
matrix is shown in Fig. 2. It took 27.23 sec to predict the
labels of all samples in the test set, meaning 0.42 ms per
sample on average. It was measured on an AMD Ryzen 9
6900hx, 16 cores, using no GPU.

1 https://cs2ac.upc.edu/en/training-benchmarks/cyber-attacks-
benchmark-simulator-1
2 https://github.com/LGpro/DT4X-on-TwoTank-System

Fig. 2. Confusion Matrix of the Obtained DT

Classical DT Results In order to compare DT4X to the
more common univariate DT, a scikit-learn 3 default deci-
sion tree (SklDT) was trained on the same dataset, but this
time on a GPU. The accuracy of this SklDT on the test set
is 96.07%. Prediction time for the 64740 test samples for
the SklDT is 0.01s, 2000 times faster than DT4X. However,
this SklDT does not find diagnosis indicators and does not
give the diagnosability of the system.

Model-Based Results Using the model of the system, it is
also possible to compute a set of ARRs. These ARRs have
an accuracy of 96.20% on the same dataset. They mostly
fail to diagnose the leaks with varying flow rate because
they are designed around a fixed threshold that fails to
trigger on all possible leak rate values. Similarly, the DT4X
tree fails to predict the input flow sensor faults, probably
for the same reasons. Similar patterns can be observed
between these two methods, due to the fact that they both
build diagnosis indicators, which are triggered according
to thresholds. However, DT4X only requires data from the
system, whereas computing the model-based ARR requires
the full physical system model.

6. CONCLUSION

The proposed algorithm generates a highly interpretable
multivariate decision tree for diagnostic purposes, utiliz-
ing multivariable relations discovered through symbolic
classification, which take the form of ARRs (Analytical
Redundancy Relations). Tested on the well-known two-
tank system, it demonstrates high accuracy. The data-
based ARR sometimes exactly coincides with the model-
based ARR. This is the case for the well-known polybox
example. However, when this is not the case, their in-
terpretability requires further investigation. Future work
will focus on evaluating and understanding the discovered
diagnosis indicators.

REFERENCES

Bishop, C. (2006). Pattern Recognition and Machine
Learning. Springer. P. 209.

3 https://scikit-learn.org/stable/modules/tree.html

B.Ould Bouamama, R. Mrani Alaoui, P.T..M.S. (2001).
Diagnosis of a two-tank system. Intern Report of
CHEM-project, USTL, Lille, France.

Brodley, C.E. and Utgoff, P.E. (1995). Multivariate deci-
sion trees. Machine Learning, 19(1), 45–77.

De Kleer, J. and Kurien, J. (2003). Fundamentals of
model-based diagnosis. IFAC Proceedings Volumes,
36(5), 25–36.

Dwivedi, R., Dave, D., Naik, H., Singhal, S., Omer, R.,
Patel, P., Qian, B., Wen, Z., Shah, T., Morgan, G., et al.
(2023). Explainable AI (XAI): Core ideas, techniques,
and solutions. ACM Computing Surveys, 55(9), 1–33.

Gao, Z., Cecati, C., and Ding, S.X. (2015). A survey
of fault diagnosis and fault-tolerant techniques, part
I: Fault diagnosis with model-based and signal-based
approaches. IEEE Trans. on Industrial Electronics,
62(6).

Goupil, L., Chanthery, E., Travé-Massuyès, L., and De-
lautier, S. (2023). Tree based diagnosis enhanced with
meta knowledge. In 34th International Workshop on
Principles of Diagnosis (DX’23).

Izza, Y., Ignatiev, A., and Marques-Silva, J. (2022a).
On tackling explanation redundancy in decision trees.
Journal of Artificial Intelligence Research, 75, 261–321.

Izza, Y., Ignatiev, A., Narodytska, N., Cooper, M.C., and
Marques-Silva, J. (2022b). Provably precise, succinct
and efficient explanations for decision trees. arXiv
preprint arXiv:2205.09569.

Jung, D.E. (2022). Automated design of grey-box recur-
rent neural networks for fault diagnosis using structural
models and causal information. In Conference on Learn-
ing for Dynamics & Control.

Lei, Y., Yang, B., Jiang, X., Jia, F., Li, N., and Nandi, A.K.
(2020). Applications of machine learning to machine
fault diagnosis: A review and roadmap. Mechanical
Systems and Signal Processing, 138, 106587.

Mohammadi, A., Krysander, M., and Jung, D.E. (2022).
Analysis of grey-box neural network-based residuals for
consistency-based fault diagnosis. IFAC-PapersOnLine.

Mohammadi, A., Westny, T., Jung, D., and Krysander, M.
(2023). Analysis of numerical integration in RNN-based
residuals for fault diagnosis of dynamic systems. arXiv
preprint arXiv:2305.04670.

Priyam, A., Abhijeeta, G.R., Rathee, A., and Srivastava,
S. (2013). Comparative analysis of decision tree clas-
sification algorithms. International Journal of current
engineering and technology, 3(2), 334–337.

Pulido, B. and Alonso, C. (2002). Possible conflicts, arrs,
and conflicts. In DX’02 12th International Workshop on
Principles of Diagnosis.

Slimani, A., Ribot, P., Chanthery, E., and Rachedi, N.
(2018). Fusion of model-based and data-based fault
diagnosis approaches. IFAC-PapersOnLine, 51, 1205–
1211. doi:10.1016/j.ifacol.2018.09.698.

Stevens, T. (2016). GPlearn. Github.
(https://gplearn.readthedocs.io/en/stable/intro.html).

Tidriri, K., Chatti, N., Verron, S., and Tiplica, T. (2016).
Bridging data-driven and model-based approaches for
process fault diagnosis and health monitoring: A review
of researches and future challenges. Annual Reviews in
Control, 42, 63–81.

Yıldız, O.T. and Alpaydın, E. (2000). Univariate and
multivariate decision trees.

