
HAL Id: hal-04556138
https://hal.science/hal-04556138

Submitted on 23 Apr 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards a participatory cloud infrastructure for hosting
services: QoS-aware dynamic orchestration of

microservices
Bruno Stévant, Jean-Louis Pazat, Alberto Blanc

To cite this version:
Bruno Stévant, Jean-Louis Pazat, Alberto Blanc. Towards a participatory cloud infrastructure for
hosting services: QoS-aware dynamic orchestration of microservices. ISORC 2024, May 2024, Tunis,
Tunisia. �hal-04556138�

https://hal.science/hal-04556138
https://hal.archives-ouvertes.fr

Towards a participatory cloud infrastructure for
hosting services: QoS-aware dynamic orchestration

of microservices.
Bruno Stévant

IMT Atlantique, IRISA
Rennes, France

bruno.stevant@irisa.fr

Jean-Loui Pazat
INSA Rennes, IRISA

Rennes, France
jean-louis.pazat@irisa.fr

Alberto Blanc
IMT Atlantique, IRISA

Rennes, France
alberto.blanc@irisa.fr

Abstract—A Participatory Cloud Infrastructure (PCI) is a
collaborative framework designed to host services for a virtual
community thanks to residential devices contributed by its mem-
bers. In this work, we deploy on these devices a photo-sharing
application based on microservices. The placement of services
on devices significantly influences the overall performance of
the application. To address this concern, we present a heuristic
able to find a placement that approximates the ideal application
response-time in constant time. Our proposed approach has
undergone validation within a real infrastructure, revealing
the necessity for dynamic adjustments of service placements.
Consequently, we introduce a comprehensive adaptation process
for placement and an associated specialized strategy.

Index Terms—participatory cloud infrastructure, microser-
vices, performance optimization, dynamic placement adaptation

I. INTRODUCTION

A. Participatory Cloud Infrastructure: definition and usage

Virtual communities on the Internet unite around online
tools that facilitate interaction between members. These tools
generate shared content from individual contributions. One
exemple of such usage in a sports club’s virtual community
could be photo sharing and collaborative calendar editing.
Community requirements for tool adoption include functional
alignment with community needs and non-functional criteria,
including universal accessibility, sustained availability, non-
restrictive performance, acceptable financial implications, and
assurance of data security and confidentiality.

The concept of Participatory Cloud Infrastructure (PCI)
is an alternative to traditional hosting solution like service
platforms or dedicated servers. It revolves around building a
hosting solution from resources contributed by its members.
Participants share computing or storage resources from de-
vices they own at home (computers, home appliances, virtual
machines). This sharing is realized through the installation of
specific software on each device, ensuring the coordination of
shared resources within the community to create a runtime
environment for applications.

The PCI is essentially an extension of domestic self-hosting
on a community scale, retaining properties such as data privacy

and community control over tools and services. Unlike domes-
tic self-hosting where the execution context is provided by a
single device, the participatory infrastructure relies on multiple
devices in different households. This approach enhances host-
ing solution availability, scalability and cost sharing between
participants.

B. Challenges

The proposed solution of a PCI raises several technical chal-
lenges. A first challenge involves deploying applications based
on the available resources of the participative infrastructure.
Coordinating devices and utilizing their resources for each
application’s execution requires a mechanism to automatically
deploy applications on these devices and transfer their data.
Considering the diverse profiles of the participating devices,
the deployment system must account for storage capacity,
processing power, and network quality of the residential access
network.

A second challenge is to maintain an acceptable user experi-
ence for hosted applications despite the variable availability of
resources. Since domestic network resources are concurrently
used by household members for various purposes, the solution
must not compromise these priority uses while ensuring a
good user experience for the hosted applications. Adapting
to the fluctuating availability of resources on each device and
addressing potential equipment failures are crucial aspects of
maintaining a high-quality user experience.

C. Existing approaches

We identified 3 differents approaches of PCIs that could
meet our requirements : Voluntary clouds, Peer-to-Peer (P2P)
clouds and Community clouds.

The proposed voluntary cloud solutions, such as Neb-
ula [10], cuCloud [9], and Cloud@Home [2], leverage the con-
cept of voluntary computing (as in BOINC) but with a cloud-
centric approach, aiming to create a unified execution context
from voluntarily contributed distributed resources. Nebula
focuses on creating a computation infrastructure for intensive
tasks, distinguishing between equipment for data storage and
computation. cuCloud, designed for Desktop Cloud scenarios,979-8-3503-7128-4/24/$31.00 ©2024 IEEE

utilizes shared resources on site for hosting virtual machines,
outperforming Amazon EC2 in latency. Cloud@Home aims
to provide on-demand infrastructure services using voluntarily
shared domestic equipment, implementing an architecture with
dedicated brokers for resource management and an orchestra-
tor for virtual machine deployment.

P2P cloud solutions, like P2PCS [1] and MycoCloud [3],
aim to establish on-demand hosting infrastructure using de-
centralized resources without relying on centralized servers
for resource management and application deployment. P2PCS
focuses on creating a decentralized infrastructure from locally
or geographically distributed resources, designed for applica-
tions benefitting from proximity to users like video streaming,
online gaming, and collaborative applications. On the other
hand, MycoCloud, building on the groundwork of MycoNet
and MycoLoad, emphasizes a service-oriented approach within
a large-scale P2P network.

Community cloud solutions leverage participatory networks,
such as Wireless Community Networks, to provide application
hosting services with a cloud-centric approach. The Cloudy
prototype [7] aims to harness the computational resources
of devices available on the Guifi.net community network in
Spain by deploying various services as software containers on
each device. Another study [11] expands Cloudy to distributed
applications like video streaming and 3-tier web architecture,
focusing on optimal component placement on devices. The
proposed algorithm instantiates the application’s component
graph on the network connectivity graph, minimizing ap-
plication response-time by optimizing link utilization in the
community network.

D. Our proposition

The study of existing solutions guides the identification
of key contributions to address challenges in realizing a
participative hosting infrastructure. Infrastructure-as-a-Service
solutions like Cloud@Home and CuCloud exhibit limitations,
requiring substantial virtualization support at the equipment
level. Task-centric approaches like Nebula demand significant
adaptation for traditional collaborative applications. Service-
oriented solutions like MycoCloud or Cloudy, tailored for
deployment on home devices with varied and limited compu-
tational resources, have promising extensions to applications
built on microservices.

Based on these conclusions, we chose, for our PCI design,
a Platform-as-a-Service approach, facilitating microservices
hosting. It incorporates mechanisms for deploying microser-
vices on participating devices, encompassing data provision-
ing, microservice instantiation, networking across devices, and
inter-microservice discovery. Our study focuses on maintain-
ing an acceptable user experience of the services deployed on
such platform.

II. RESPONSE TIME MANAGEMENT

This section introduces a model for application response-
time based on placement and infrastructure parameters, and
propose a heuristic we detailled in [12].

A. Use Case

This study investigates the implementation of a participatory
hosting infrastructure for a community scenario involving 10
to 100 individuals. The community’s objective is to facilitate
photo sharing from events. To enable such usage, the commu-
nity agreed on the deployment of a photo-sharing application,
structured as microservices, to be hosted on a PCI built from
domestic devices in members’ households.

C UI PH

TH

MH

Fig. 1: Architecture of the photo-sharing application.

We chose, as target application to be deployed on this
PCI, a photo-sharing web-service exemplifying microservices
architecture principles. The application composed of four
independent services with loose coupling - MetaHub (MH),
PhotoHub (PH), ThumbHub (TH), and WebUI (UI) — han-
dling metadata, binary data retrieval, thumbnail generation,
and user interface, respectively. The microservices interact
through defined interfaces, forming a dependency graph with
constant interactions during application execution, as shown in
Figure 1. The client (C) interacts directly with the UI service
that serves as the front-end to the application.

In this architectural framework, microservices represent dis-
tinct functions of the application, and their interdependencies
necessitate network communication. The process responsible
to manage the response-time of the application should strategi-
cally select devices for hosting each microservice, considering
device characteristics and service-specific requirements. Our
study focuses on the decision-making process for optimal
microservices placement to enhance overall application per-
formance within the PCI.

B. Hypothesis

In this scenario, community members contribute their de-
vice resources for microservices hosting within a PCI. The
model depicts an architecture comprising devices with varying
computational capabilities interconnected through networks.
Two device categories are considered based on computational
capacities (low and high), as well as two connectivity types
(Digital Subscriber Line (DSL) and Fiber To The Home
(FTTH)). We assume in this study that the impact of storage
type is negligible on the application response-time.

Considering requests to the application, we assume constant
photo and thumbnail sizes, ensuring reproducible response-

times under stable resource usage conditions. Each microser-
vice must be deployed at least once on the infrastructure,
facilitated by a manager ensuring code and data availability.
We limit the study to a scenario where each microservice is
deployed only once, allowing flexibility in service placement
without affecting application functionality.

C. Monitored indicators

To characterize the performance of an application deploy-
ment, we consider response-time as the primary indicator,
which holds a significant value for user experience. The cho-
sen response-time indicator is quantifiable and decomposable,
measuring the interval between user request and applica-
tion response. This decomposition into request transmission,
processing, and response transmission intervals allows for
effective optimization of the user experience. The application’s
response-time depends on various parameters, and our study
aims to identify factors that can be influenced within the
given context, particularly focusing on processing and data
transmission times.

Processing time depends on the application’s computational
needs and processor characteristics, while transmission time
relies on data quantity and network characteristics. The fixed
nature of processing and data transfer requirements, along with
processor and network capabilities in a PCI, necessitates strate-
gic placement of the application to optimize response-time.
The complexity increases for distributed, microservices-based
applications, as each microservice has distinct computational
and communication requirements.

D. Response time enhancement

1) Model for application response-time: We have to con-
sider in our model the interdependent nature of the microser-
vices. In terms of response-time, this implies that the observed
latency for a request to a single microservice might depend of
the latency of susequent requests originated by the microser-
vice itself to others. In order to reduce this complexity, we
introduce a metric called the specific response-time for a single
microservice. This metric includes the data transmission time
for both request and reply, and the local processing time of
the request needed by the microservice.

This metric depends on the service itself, on the device
where the service is deployed and on the device requesting the
service. We can compile the different possible values for this
metric in the form of a matrix Rs(m,n) with s the considered
service, m the requesting device and n the device hosting
the service. We assume, in our model, that is possible to
estimate the specific response-time of each microservice for
each pair (m,n). We can then evaluate the response-time of
the application as the sum of the specific response-times for
each microservices involved in the application.

We need the following definitions in order to define the
objective function f :

• Let N be the set of devices in the infrastructure.
• Let C be the set of devices used as clients of the

application (C ⊂ N).

• Let S be the set of services composing the application.
• Let D(i, j) be the dependency between each service i and

j; D(i, j) = 1 if i needs to call j, otherwise D(i, j) = 0.
• Let P = (ps,∀s ∈ S) be the chosen placement for service

s (P (s) ∈ N)
• Let Rs(n,m) be the specific response-time of a service

s requested by device n when running on device m.
The response-time of the application for one client node

c considering the placement P is measured as the response-
time of the front-end service α from the node c. For the sake
of simplicity, we consider that one service makes requests
to the other services sequentially. In this case, the response-
time of the application is the specific response-time of α
added to the sum of the response-time of the others required
services used by α. These others services may also call other
services, implying that the objective function to be computed
recursively. The response-time tc,α(P) can be expressed as:

tc,α(P) = Rα(c, P (α)) +
∑

k∈S
D(α, k) · tP (α),k(P) (1)

The global objective function f(P) is the weighted sum of
the objective function for each user. Let W (c) be the weight
applied to user c:

f(P) =
∑

c∈C
W (c) · tc,α(P) (2)

2) Heuristic: The placement Popt that results in the optimal
performance of the application is the one that minimizes the
objective function f(P). Finding Popt requires finding the
values of P (s) ∈ N ; s ∈ S which minimize the sum in
the objective function 2. The number of possible placements
is equal to |N ||S|. As finding Popt is an NP-hard problem, we
consider using a heuristic in order to find acceptable solutions
in constant or linear time. We found that nature-inspired
metaheuristics, like Particle Swarm Optimization (PSO) [4],
have shown good results for the problem of Quality of
Service (QoS)-aware service composition [5] [8], to which
our problem can be considered as equivalent.

We evaluated, on different use cases, the response-time of
the placement found by the PSO heuristic and compared them
to the minimum response-time produced with the optimal
placement Popt, which we found by exhaustive search. For the
heuristic to be considered as valid, the response-time obtained
with the placement found by PSO should be relatively close
to the optimal response-time. We produced different use cases
by simulating the response-time of the services with synthetic
Rs(n,m) values. We generated these values using a simple
model taking as input the computing resource of node m
hosting the service and the technology used as residential
access network for each node n and m. The number of nodes
and the distributions of computing resources and network
technologies are the parameters we tuned to generate different
use cases for our evaluation. We introduce an additional
constraint to avoid trivial solutions where all services are
deployed on the same device.

We tested the PSO algorithm in different cases by increasing
the number of devices from 10 to 100. The execution time of
the PSO algorithm was constant as the number of iterations is
limited and the evaluation of the objective function does not
depend on the number of devices. The execution time was be-
low 1 second on a 3GHz four-core server. We also performed
an exhausive search for the optimal solution by evaluating
the score of all possible deployments. Such exhaustive search
might take up to 20 hours for largest use cases.

10 20 30 40 50 60 70 80 90 100

0

2,000

4,000

6,000

8,000

10,000

12,000

14,000

16,000

Number of devices

Sc
or

e

Min. Score (Exhaustive)
Score Distribution (PSO)

Score Distribution (Exhaustive)

Fig. 2: Results of PSO heuristics compared to exhaustive
search.

Figure 2 shows the results of both PSO and exhaustive
search algorithms for the different test cases. The score of
the optimal solution for each test case found with exhaustive
search is marked with a blue dot. The two red horizontal
lines delimit the score interval containing 90% of the solu-
tions found by 50 different executions of the PSO algorithm.
The boxes show the distribution (5-percentile, 25-percentile,
average, 75-percentile, 95-percentile) of the scores of all the
possible placements (found with exhaustive search).

From these results we can conclude that the PSO heuristic
is able to find placements for which the response-time for the
application is very close to the optimal solution found with an
exhaustive search. These placements are included in the 5% of
the possible placements with the lowest score. Moreover the
PSO heuristic is able to find such placement in a maximum
of 100 iterations.

III. EVALUATION ON REAL CONDITIONS

A. Test infrastructure

We deployed a test infrastructure using eight small-factor
computers hosted by volunteers on their premises. We in-
tegrated in these devices the tools required for the remote
deployement of the microservices and a framework enabling
service discovery and communication. The deployment of

the application is orchestrated by a remote server which
manages the activation on designated devices of the different
microservices of the application. In order to automate our
tests, this server manages as well the devices designated as
clients of the application, from which emulated requuests to
the application are generated.

The physical devices are connected to the Internet through
different types of residential networks. Six of these devices
were connected through high-speed fiber networks that can
achiever 100Mbit/s in each direction. Two devices were con-
nected through a VDSL residential network which offers
am asymmetrical bandwidth of 80Mbit/s downstream and
20Mbit/s upstream. The deployed devices were dedicated to
our tests, therefore computing resources are always available to
handle the workload of the application. However the network
between each devices was shared with the users traffic on
their residential network, then globally with other traffic on
the Internet.

B. Evaluation methodology

Several experiments were conducted to evaluate the appli-
cation’s response-time on the actual PCI. Due to intermittent
availability of infrastructure devices, experiments commenced
when a sufficient number of devices (five out of eight) were
accessible and ceased if any became unavailable. Sixteen
experiments, representing over 200 hours of usage, were
conducted at various time periods and with different devices,
capturing variations in the application’s response-time under
diverse usage conditions.

We used the PSO heuristic to determin a placement that
approximated optimal response-time under initial experiment
conditions. Given the limited number of devices, the applica-
tion’s response-time was assessed from each device, all acting
as clients. Each client integrates a remotely controlled request-
generating process. Clients were deployed on each device, with
request coordination from a remote server ensuring that the ap-
plication processed only one request at a time during response-
time evaluation. The global response-time was derived by
averaging the response-times measured for each client. The
global response-time is equivalent to the objective function
of our model. In parallel to the response-time evaluation, we
continuously monitored QoS parameters, including available
upstream and downstream bandwidths and latency.

C. Results

Each experiment resulted in measurements of QoS param-
eters and response-times. We sampled them over a 2-hour
period and normalized their deviation using the minimal value
measured during a whole experiment. Results, depicted in
Figure 3, indicated that the majority of experiments occurred in
favorable network conditions, with high bandwidth availability
(> 84%). The stability of response-times under realistic
conditions was affirmed, with 75% of samples exhibiting
response-time deviations below 30%. As expected, degradation
in network QoS conditions, particularly decreased bandwidth
availability, led to increased response-time deviations (samples

marked as +). Some variability in results was attributed to
imprecise measurements of network QoS conditions.

80859095100
0

5

10

15

20

25

30

Available bandwidth (%)

R
es

po
ns

e
tim

e
de

vi
at

io
n

(%
)

Fig. 3: Response time deviations of the application observed
on different usage conditions on a real PCI.

We further investigated samples where the response-time
was unexpectedly high while network conditions were favor-
able (marked with an x in Figure 3). These investigations
revealed that some of these samples were associated with
experiments where specific devices, responsible for critical
services like thumbnail generation, experienced degraded net-
work QoS conditions. Despite a majority of experiments
occurring under favorable network conditions, instances of
significant response-time deviations highlighted the impact of
specific device conditions on overall application performance.
These findings underscored the importance of considering
both network conditions and the role of individual devices
in optimizing the placement of microservices within a PCI.

IV. QOS-AWARE PLACEMENT ADAPTATION

This section focuses on exploring how dynamic adjustments
to the placement of microservices can be employed to maintain
acceptable application performance. We detailled our proposed
solution in [13].

A. Monitoring solution

To make such adaptation relevant, specific conditions ne-
cessitating placement modification must be identified and
monitored using indicators. The dynamic adaptation process
involves evaluating the current placement’s performance under
the altered conditions. In addition to the software required for
microservices deployment and operation, we integrated in the
devices a monitoring tool measuring the response-times for
all microservices. With such tool, we can observe time spent
on each interaction between microservices in the call-graph of
the application, and detect potential deviations.

The tool consists in a transparent proxy that measures the
time between each request and its reply. It forwards the result
to a monitoring server that centralizes all measurements so
they can be used later on by the adaptation process. We need
to perform at this point a calculation based on all the response-
time collected for the same user request, in order to extract
the specific response-times (Rs(n,m)) of each microservice.
We tag, at the front-end, each user request with a corellation
ID parameter, that is forwarded on all subsequent requests
between microservices. Based on this value, the monitoring
server is able to correlate the different response-times and
calculate the different values of Rs(n,m).

B. Adaptation process

Emphasizing relevance and user experience, the adaptation
process should act judiciously, supervising system perfor-
mance evolution and swiftly implementing placement adjust-
ments to avoid noticeable degradation. The desired process
should autonomously make decisions or rectify errors, in-
corporating an automatic evaluation of the chosen adaptation
solution. Integrating seamlessly with the microservices orches-
tration system on a real PCI is crucial for practical testing and
evaluation under real usage conditions.

The decision-making chain, modeled on the well-known
MAPE-K architecture [6], involves monitoring, analyzing,
planning, and execution. The iterative process collects real-
time measurements of monitored system parameters. The
analysis function derives from these values decision-making
indicators. The decision phase evaluates if adaptation is nec-
essary by applying rules defined in an adaptation strategy.
Once the decision to adapt is made, the planning function
determines a new placement, leveraging the PSO heuristic. The
deployment function executes the chosen placement, allowing
the adaptation process to reevaluate application response-
time in the updated configuration, forming a continuous and
dynamic adaptation loop.

C. Towards an effective adaptation strategy

1) Proactive Strategy: We tested on a first hand series
of experiments a simple proactive adaptation strategy which
involves regular deployments with a predefined time interval
of 100 minutes. Each experiment spans for 30 hours and
resulted in an average of 11 different chosen placements.
We monitored the evolution of application response-times to
assess the impact of different placements on performance.
Notably, some adaptations result in significant improvements,
while others lead to performance degradation, highlighting the
dynamic nature of the system.

We explain these unsatisfactory results by considering a
possible inconsistency between Rs(n,m) values used for
placement decision and the actual response-times measured
with the new placement. Indeed, even if the Rs(i, j) values
have been updated by prior measurements, some values might
not be relevant when a new placement is to be chosen,
due to variations of the network QoS parameters. There is
therefore a probability that the PSO heuristic, based on these

biased values, could choose a placement resulting in a higher
response-time than the previous placement.

Monitoringstart

Proactive
adaptation

Reactive
adaptation

Placement
evaluation

Corrective
adaptation

Active timer
and ∆t < 15%

Expired
timer

∆t > 15%

∆t < 15%
or ncorrections > 10

∆t > 15%

Fig. 4: Transitions in the revised adaptation strategy

2) Reactive strategy: To address this issue, we propose to
integrate in our strategy the ability to compare the current
response-time with previously monitored values. If a signifi-
cant performance degradation is detected at any time, the pro-
cess will trigger a new adaptation. This reactive behavior could
occur either when monitoring the current placement between
two proactive adaptation, either right after the deployment of
a new placement. The first case is indicative of a change in the
network QoS, the second case of an poorly chosen placement.

The revised adaptation strategy encompasses multiple
stages, and the transitions between them are represented in
Figure 4. The strategy evaluates transitions each time the
adaptation process invokes the decision function. The proactive
adaptation, triggered at regular intervals, is followed by an
evaluation stage, comparing the new response-time with the
pre-adaptation value. If the difference falls below the specified
threshold of 15%, the placement is validated; otherwise, a
corrective adaptation is initiated. The newly chosen placement
is then compared to the same pre-adaptation response-time.
For the sake of process completion, this evaluation is bypassed
after 10 consecutive corrective adaptations.

We performed several experiments to get a representative
view of the behavior of both strategies with different network
QoS variations. Results show that the refined strategy presents
a higher ratio of adaptations resulting in an improvement of the
response-time than the proactive strategy. Thanks to corrective
adaptations, new placements are more frequently deployed
which helps to maintain up-to-date values for Rs(n,m).

V. CONCLUSION

This thesis [14] provided an opportunity to investigate the
unconventional challenge posed by an application deployed
as microservices on domestic devices within a Participatory
Cloud Infrastructure. As part of our research, we introduced a
response-time model for such applications, taking into account
a designated placement. Using specific response-times for
each deployed service as metrics facilitated the mitigation of
the model’s complexity due to the interdependent nature of
microservices. Through simulation, we validated a heuristic for
placement selection, that gives a response-time approximation

near the optimal solution, with a maximum deviation of 5%,
with a reduced execution time.

Tests of our solution on a real Participatory Cloud In-
frastructure highlighted the need to cope with the dynamic
nature of network QoS. A degradation of these parameters
on a single device could have a comprehensive impact on
the application’s response-time. As a solution, we presented
an adaptation framework able to trigger new deployments
of the application when such degradation is detected. Our
solution gave us satisfactory results by adding the ability to
dynamically evaluate and, if necessary, correct the proposed
placement.

This thesis suggests possible future works related to au-
tomatically adjusting the number of microservices’ instances
to manage increased traffic. Additionally, we identified various
security issues in our scenario linked to a participatory system.

REFERENCES

[1] Ozalp Babaoglu, Moreno Marzolla, and Michele Tamburini. Design
and Implementation of a P2P Cloud System. In Proceedings of the 27th
Annual ACM Symposium on Applied Computing, SAC ’12.

[2] Vincenzo D. Cunsolo, Salvatore Distefano, Antonio Puliafito, and Marco
Scarpa. Cloud@Home: Bridging the Gap between Volunteer and
Cloud Computing. In Emerging Intelligent Computing Technology and
Applications, Lecture Notes in Computer Science, 2009.

[3] Daniel J. Dubois, Giuseppe Valetto, Donato Lucia, and Elisabetta
Di Nitto. Mycocloud: Elasticity through Self-Organized Service Place-
ment in Decentralized Clouds. In 2015 IEEE 8th International Confer-
ence on Cloud Computing, June 2015.

[4] R. Eberhart and J. Kennedy. A new optimizer using particle swarm
theory. In , Proceedings of the Sixth International Symposium on Micro
Machine and Human Science, 1995.

[5] C. Jatoth, G. R. Gangadharan, and R. Buyya. Computational Intelligence
based QoS-aware Web Service Composition: A Systematic Literature
Review. IEEE Transactions on Services Computing, 2015.

[6] Jeffrey Kephart and William Walsh. An architectural blueprint for
autonomic computing. Technical report, IBM, 2003.

[7] Amin M. Khan and Felix Freitag. On Edge Cloud Service Provision
with Distributed Home Servers. In 2017 IEEE International Conference
on Cloud Computing Technology and Science (CloudCom).

[8] Wenfeng Li, Ye Zhong, Xun Wang, and Yulian Cao. Resource virtual-
ization and service selection in cloud logistics. Journal of Network and
Computer Applications, November 2013.

[9] Tessema M. Mengistu, Abdulrahman M. Alahmadi, Yousef Alsenani,
Abdullah Albuali, and Dunren Che. cuCloud: Volunteer Computing as
a Service (VCaaS) System. In Min Luo and Liang-Jie Zhang, editors,
Cloud Computing – CLOUD 2018, Lecture Notes in Computer Science.

[10] M. Ryden, K. Oh, A. Chandra, and J. Weissman. Nebula: Distributed
Edge Cloud for Data Intensive Computing. In 2014 IEEE International
Conference on Cloud Engineering.

[11] Mennan Selimi, Llorenç Cerdà-Alabern, Marc Sánchez-Artigas, Felix
Freitag, and Luı́s Veiga. Practical Service Placement Approach for
Microservices Architecture. In 2017 17th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing (CCGRID).

[12] Bruno Stévant, Jean-Louis Pazat, and Alberto Blanc. Optimizing the
Performance of a Microservice-Based Application Deployed on User-
Provided Devices. In 2018 17th International Symposium on Parallel
and Distributed Computing (ISPDC).

[13] Bruno Stévant, Jean-Louis Pazat, and Alberto Blanc. QoS-aware
Autonomic Adaptation of Microservices Placement on Edge Devices. In
Proceedings of the 10th International Conference on Cloud Computing
and Services Science, 2020.

[14] Bruno Stévant. Vers une infrastructure participative d’hébergement
de services à destination des communautés virtuelles : Orchestration
dynamique de micro-services selon les conditions d’utilisation. PhD
Thesis, INSA de Rennes, 2022. https://theses.hal.science/tel-04522400

	Introduction
	Participatory Cloud Infrastructure: definition and usage
	Challenges
	Existing approaches
	Our proposition

	Response Time management
	Use Case
	Hypothesis
	Monitored indicators
	Response time enhancement
	Model for application response-time
	Heuristic

	Evaluation on real conditions
	Test infrastructure
	Evaluation methodology
	Results

	QoS-aware placement adaptation
	Monitoring solution
	Adaptation process
	Towards an effective adaptation strategy
	Proactive Strategy
	Reactive strategy

	Conclusion
	References

