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Abstract—We investigate the impact of semiconductor manu-
facturing process variation on the accuracy of machine learn-
ing models implemented as analog Artificial Neural Networks
(ANNs). Unlike their digital counterparts, where binary opera-
tions and weight representation ensure the robustness of a trained
model across software and hardware, the continuous nature of
weights and operations in analog ANNs makes the accuracy of a
trained model inevitably sensitive to the exact parameters of each
fabricated chip. As a result, expensive chip-in-the-loop training
is necessitated to ensure high accuracy. Herein, we elucidate the
nature and extent of the problem using actual measurements from
multiple identically fabricated copies of an analog ANN chip and
a variety of trained models. We quantify the accuracy loss when
models are ported across chips, as well as the effort required
for individually training each chip, and we discuss strategies for
containing this effort.

I. INTRODUCTION

Artificial intelligence, in general, and Artificial Neural Net-
works (ANNs), in particular, are used in myriads of contempo-
rary applications [1]–[3], ranging from consumer electronics
to autonomous systems and from medical instrumentation to
critical infrastructure. While software and/or digital hardware
implementations of ANNs currently enjoy the lion’s share of
the market, a number of emerging realities are necessitating the
development and deployment of analog ANNs. Specifically,
the exponential growth of sensory data from world-machine
interfaces, known as the analog data deluge, along with the
power, area and response-time constraints of distributed edge
computing systems, call for the ability to autonomously sense,
perceive, reason and rapidly act. This ability, which avoids
overwhelming communication, storage and computational in-
frastructure of contemporary systems, is promised by silicon
implementations of analog ANNs [4]–[7].

Such implementations, however, present new challenges
that are unique to the analog domain and have yet to be
thoroughly studied. Among them, we focus on the impact of
semiconductor process variation on the accuracy of analog
ANN models [8]–[16]. Indeed, due to the continuous domain
in which computation is performed by analog ANNs, their
operation is particularly sensitive to any differences in the
circuit parameters, which are bound to occur due to process
variation. As a result, unlike in digital neural networks, it is
not possible to train a software model and subsequently upload
the selected synaptic weights onto an analog neural network.
Instead, a “chip-in-the-loop” approach is required, wherein the
loss function of every candidate set of synaptic weights visited
during training has to be evaluated on the hardware itself. To

Figure 1: (a) Model Learned via Chip-in-the-Loop Training,
(b) Model Ported to Same HW Resources on Identical Chip.

Figure 2: Impact of Process Variation on Analog Neuron’s
(a) Peak-to-Peak Range, (b) Slope, (c) X-Y Offset.

make matters worse, even if a model is learned on one chip,
it will be different when uploaded on another (identical) chip.

To illustrate this problem, consider Fig. 1(a), which shows
the classification boundary learned by a fabricated analog
ANN chip (see Section II for details) that was trained with
samples from a dataset containing two classes, blue and green,
respectively. Fig. 1(b) shows the classification boundary imple-
mented when the weights of the model learned on the first chip
are ported to an identical chip, fabricated on the same wafer.
Evidently, the two boundaries are considerably different, with
the first one achieving over 95% classification accuracy and
the second achieving only 50%. This substantial discrepancy
in accuracy of the model across two identical chips is caused
by differences incurred by semiconductor process variation in
the parameters of the analog circuits, which in turn introduce
differences in their functionality. Consider, for example, one
of the key components of neural networks, the neuron circuit,
which implements a threshold activation function, such as a
sigmoid, as shown in Fig. 2. In an ideal manufacturing process,
where all circuit parameters have their nominal values, the
neuron is designed to have a specific range and slope, and
to have its mid-point centered in the origin of the X-Y plane
(i.e., solid sigmoids). In reality, however, circuit parameters of
actual chips will deviate from their nominal values, resulting
in shifts in range and slope, as well as non-zero offsets



Figure 3: (a) Experimentation Platform, (b) Chip Architecture, (c) Circuit Details, (d) Synapse and Neuron Transfer Functions,
(e) Chip-in-the-Loop Training.

in the X and Y dimensions of the sigmoid function (i.e.,
dashed sigmoids). Accumulated across multiple neurons and
synapses, these differences ultimately result in considerable
discrepancies when a model is ported across chips.

Motivated by these observations, in this paper we seek to
elucidate and quantify the impact of parametric differences in
the silicon implementation of analog ANNs, which are caused
by process variation, on the accuracy of the models that these
networks implement. Furthermore, we seek to develop solu-
tions, involving calibration of both the training strategy and the
analog ANN circuitry, to ensure fast and accurate adaptation
of trained models ported across chips.The remainder of the
paper is structured as follows: In Section II, we describe the
experimental platform used in this work. In Section III, we
propose an array of solutions for ameliorating the impact of
process variations on the accuracy of models implemented
on hardware. In Section IV, we experimentally evaluate the
effectiveness of the proposed solutions. Lastly, in Section V,
we draw conclusions and we discuss future directions.

II. EXPERIMENTATION PLATFORM

For the purposes of this study, we use an analog ANN
experimentation platform which is shown in Fig. 3(a). The

core of this platform is a 3mm x 3mm die fabricated in
TSMC’s 0.35um technology, which can be interfaced through
a custom-designed PCB. Fig. 3(b) shows the architecture of
the programmable analog ANN [17], which consists of a
reconfigurable 30x20 array of synapses (S) and neurons (N)
operating in the subthreshold region and featuring sub-µW
power consumption. The main circuits used in the core are
shown in Fig. 3(c). Specifically, a novel current storage cell
(CSC), shown on the left and comprising an analog floating
gate transistor (FG), a capacitor, and supporting control tran-
sistors and terminals, is used for two purposes. First, it offers
a compact non-volatile analog weight storage solution after
training is completed, providing up to 10 bits of precision
for each stored weight. Second, it provides a reconfiguration
mechanism for supporting various neural network topologies
and for adjusting various circuit parameters. The synapse
circuit, shown in the middle, implements a four-quadrant
multiplication function using two CSC cells for differential
weight component storage and a six-transistor core. Its transfer
function is shown on the left side of Fig. 3(d). The neuron
circuit, shown on the right side of Fig. 3(c), performs a
tanh-like nonlinear activation function on the outputs of the
synapses connected to it, through normalization, gain con-



trol, and non-linear transformation, which is also performed
through a translinear operation using a six-transistor core.
Two CSC cells are used to control the slope of the threshold
function, as shown on the right side of Fig. 3(d). Apart from
the core, three peripheral circuits provide support for the
training and operation of the neural network. The differential
transconductors (GM) accept differential voltage signals as
inputs and convert them into differential currents, as required
by the core. A current-to-voltage converter (ITOV) facilitates
the reading of internal currents such as weights and neural
network responses. A current Digital-to-Analog Converter
(IDAC) generates target currents for dynamic programming
of the weight memory.

This platform supports various feed-forward classifier ar-
chitectures, such as Multi-Layer Perceptions (MLPs) [18]
and Ontogenic Neural Networks (ONNs) [19], as well as
various non-linear regression models. As shown in Fig. 3(e),
the chip is housed in a socket on a custom PCB and is
interfaced through an FPGA board to a PC, where it can
be controlled via Matlab. This configuration supports chip-in-
the-loop training with various algorithms (e.g., resilient back-
propagation (RPROP) [20]) implemented in software, whereby
training samples are presented to the chip and the loss function
is computed and used to drive weight perturbation in the next
training iteration.

We note that this platform includes certain Resource Cali-
bration (RC) capabilities which can be used for the purpose
of counteracting process variation. Specifically, the two CSC
cells inside the neuron block, which are programmable as they
contain analog floating gate transistors, control the range and
slope of the neuron activation function, respectively. Other
non-idealities, however, such as the offset of the neuron
activation function along its X and Y axis caused by process
variation, cannot be calibrated in this platform. Nevertheless,
the programmable nature of the platform allows for judicious
selection of neurons with matching offsets across different
chips to address this limitation. Similarly, no calibration ca-
pability is offered at the synapse circuit, relying instead on
training to select weights that can counteract process variation.

III. PROPOSED ANALOG ANN TRAINING SOLUTIONS

A straightforward approach to train an analog ANN, which
we will refer to as Loading Software Model, would be
to conduct training in software using the training dataset,
and then port the learned weights to the physical hardware.
However, this approach is hindered by the difference between
ideal software model and actual chip parameters, caused by
the variation of the fabrication process. An alternative solu-
tion to ameliorate the software/hardware differences, which
we will refer to as Chip-to-Chip Weight Transfer, could
involve chip-in-the-loop training using an actual chip and then
porting the learned weights to other chips. While training
directly in hardware takes into account the circuitry non-
idealities that software model training is oblivious to, it still
does not account for the chip-to-chip variations. Hence, an
improvement upon this solution, which we will refer to as

Figure 4: Baseline (BL) Training Method.

Resource Calibration, could involve a pre-processing phase
wherein the neurons and synapses of the chip to which the
learned weights will be ported are calibrated to match the
transfer functions of the corresponding resources on the chip
where training was conducted. However, while this is certainly
a step in the right direction, perfectly matching the source and
target chip resources is unlikely due to the continuous nature of
analog signals and the limitations of the calibration circuitry.
Therefore, additional chip-in-the-loop training is likely to be
required for the target chip to reach a desired accuracy level.
Three variants of this approach are introduced herein.

A. Baseline (BL) Training

Our starting point, which we will refer to as Baseline (BL)
training, is based on the foundational chip-in-the-loop training
solution. As, shown in Fig. 4, training starts with a randomly
chosen initial set of weights for the analog ANN model. An
iteration of the RPROP algorithm is then conducted, wherein
the dataset is presented through a PC to the chip implementing
the analog ANN with the current set of weights, one sample
at a time, and responses are collected and evaluated to assess
the accuracy of the current weights. If the target accuracy
is not reached, the weights are perturbed through RPROP,
reloaded onto the chip, and the process is repeated. Otherwise,
the process terminates and the current weights in the chip
represent the final model.

B. Model Calibration (MC)

While the BL method customizes the learned weights and
the overall model to the exact circuit parameters of the target
chip, it is time-consuming and has to be repeated from scratch
for every chip. Therefore, to reduce the training time overhead,
our next solution, which we will refer to as Model Calibration
(MC) and which is shown in Fig. 5 inside the MC block,
involves two strategies:
Incremental Training: Instead of using a set of randomly
chosen initial weights, we initialize the target chip with the
weights learned through chip-in-the-loop training on another
chip. The rationale behind this strategy is that the source and
target chips are nominally identical and any differences are
only caused by process variation so their magnitude is likely
to be small. Hence, porting the trained weights of the source
chip to the target chip may give the RPROP algorithm a
better starting point, bringing it closer to the region of weights
where a solution for the target chip can be found and, thereby,
accelerating its convergence. We point out, however, that this



Figure 5: Model Calibration (MC) and Resource and Model Calibration (RCMC) Methods.

Figure 6: Sectional Training Method.

conjecture may not always hold true, both due to the stochastic
nature of the RPROP training algorithm and due to the non-
linearity of analog circuits.
Sectional Training: Instead of training the entire model all
at once, this strategy focuses on one section (i.e., neuron) of
the analog ANN architecture at a time, starting from the input
layer and progressing layer-by-layer toward the output layer,
as shown in Fig. 6. By training one neuron of the target chip
to match the model learned by the corresponding neuron of
the source chip at a time, we seek to contain the impact of
the stochasticity of the RPROP training algorithm, which is
more pronounced during simultaneous updates of all neurons.
While multiple training sessions are now required (i.e., one
per neuron), each such session is significantly faster than
training the entire network, hence the overall training time
is expected to be lower. We acknowledge, however, that this
strategy requires the ability to observe and log the output of
each section of the source chip for each sample in the training
dataset, as this enhanced dataset is needed in order to train the
corresponding section of the target chip.

As shown in Fig. 5, the MC method combines the sec-
tional and incremental training strategies. First, using weights
learned from a trained source chip as the initial model for
the target chip, as well as responses for the dataset samples
for each section of the source chip, we train sectionally each
neuron of the target chip until it reaches the target accuracy.
Then, using as a starting point the adjusted weights produced
by sectional training, we conduct incremental training of the

entire network. Having matched the models that each section
implements, we expect that the time required for incrementally
adjusting the overall model of the target chip will be small.

C. Resource Calibration and Model Calibration (RCMC)

Our final solution, which we will refer to as Resource
Calibration and Model Calibration (RCMC), combines the
MC solution with the previously mentioned RC approach, as
depicted in Fig. 5. We remind that RC is a pre-processing
phase wherein the hardware resources that are used to con-
struct the analog ANN in the target chip are calibrated to
match the characteristics of the corresponding resources on the
source chip. Specifically, in our case, such resource calibration
commences with an attempt to match the range and the
slope of the threshold activation function (i.e., sigmoid) of
each neuron in the target chip to those of the corresponding
neuron in the source chip. However, due to the uncontrolled
nature of process variation, sufficient matching may not always
be available. Hence, leveraging the programmable nature of
analog ANNs, which allow selection of resources to construct
a network architecture, we also employ an intelligent resource
selection process. The objective of this process is to cherry-
pick resources (i.e., neurons) in the target chip which are the
most similar and, when calibrated, have the highest chance of
matching the corresponding resources in the source chip.

IV. EXPERIMENTAL EVALUATION

In this section, we use the Analog ANN experimentation
platform described in Section II to further elucidate the impact
of process variation on the accuracy of trained models when
ported across different chips and to evaluate the effectiveness
of the proposed solutions in ameliorating this problem.

A. Experimental Setup

To evaluate the solutions (i.e., BL, MC, RCMC) proposed
in Section III, we use three 2D synthetic datasets, as shown in
Fig. 7. Each dataset contains 1000 elements split equally into
two classes, color-coded as yellow (class 0) and blue (class



Figure 7: Three Synthetic Datasets.

Figure 8: MLP Architecture With One Hidden Layer.

1), normalized in the range [-1, 1]. We then train a simple
binary classifier architecture, consisting of an MLP network
with one hidden layer and one output neuron, to separate the
two populations. The hidden layer contains 2, 4, and 6 hidden
neurons for the first, second, and third dataset, respectively.
Fig. 8 illustrates the MLP architecture, where the two inputs
correspond to the IN1 and IN2 coordinates of the dataset. For
this experiment, we randomly selected 3 among the 40 die that
were fabricated as part of a multi-project wafer (MPW) run,
which we refer to as Chip 1, Chip 2, and Chip 3, respectively.

B. Comparison Metric

To evaluate the proposed methods, we set a specific target of
95% for the minimum accuracy that the trained models should
achieve on each of the three chips and we focus on the time
that it takes to reach that accuracy. Training time is expressed
in Number of Iterations required for the training algorithm to
reach the target level of accuracy on the training set. We note
that, in each iteration, the entire training set is presented to
the hardware implementation of the neural network with the
latest set of synapse weights, so that the training algorithm
can compute the error and adjust the weights accordingly. As
a result, each iteration takes the same time for a given dataset.

C. Results and Comparison

Loading Software Model: Table I shows the accuracy for
each of the three datasets when training is conducted in
software and the weights of the trained model, whose accuracy
exceeds 95% in software, are ported to the three chips in our

Table I: Accuracy when porting weights from software.
Chip 1 Chip 2 Chip 3

1st Dataset 50% 49% 49%
2nd Dataset 59% 60% 61%
3rd Dataset 45% 46% 31%

Figure 9: Accuracy when Porting Weights from Other Chips.

experiment. Evidently, due to the differences between ideal
computation in software and actual computation in the analog
ANN chips, the accuracy drops dramatically, leading to an
average accuracy of approximately 50%, which for a 2-class
classification is essentially a coin toss.
Chip-to-Chip Weight Transfer: The table in Fig. 9 summa-
rizes the accuracy when a model that is trained in one chip
is ported to another chip. Results are provided for all three
datasets and for each of the three chips serving as the chip on
which the model was trained and as the chip that the model
was ported to. The results quantify and elucidate the extent
of the sensitivity of analog ANN models to process variation:
porting weights across identical chips using identical resources
and on identical datasets results in an accuracy drop between
30% and 50%, rendering the ported model unusable.
Resource Calibration: The table in Fig. 10 reports the
accuracy when the hardware resources of the target chip are
calibrated to those of the source chip, prior to porting a model.
Such calibration involves alignment of the range, slope and
offset of the neurons used to construct the network. Evidently,
compared to the accuracy of porting a model to the non-
calibrated chip, the results are significantly improved, aver-
aging an accuracy of approximately 75%. By itself, however,
resource calibration is insufficient, as it fails to reach the target
accuracy of 95%, mainly due to the inherent limitations of the
calibration hardware which cannot achieve perfect matching
of all resources across chips.
BL: The results for individually training each chip from
scratch for each of the three datasets are summarized in
the dotted white boxes of the main diagonal of the table
shown in Fig. 11. Notably, there exists a significant difference
in the number of training algorithm iterations required for
each chip to reach the target 95% accuracy level for the
same dataset. For example, the first dataset requires 970,
1873 and 630 iterations for the first, second and third chip,
respectively. This difference stems in part from the stochastic
nature of the RPROP algorithm [20] and in part from the
variation in the actual hardware parameters which are caused
by semiconductor manufacturing.
MC: The results for calibrating a model ported from one
chip to another through sectional and incremental training are
summarized in the first sub-row of each main row of the table



Figure 10: Accuracy Improvement via Resource Calibration.

Figure 11: Number of Iterations to Achieve 95% Accuracy.

shown in Fig. 11. For each target chip and for each dataset,
results are provided for the model originating from each of
the other two chips. As may be observed, MC reduces the
number of training algorithm iterations, as compared to BL.
For example, training Chip 2 from scratch for the first, second
and third dataset requires 1873, 1882 and 1840 iterations,
respectively, while calibrating the model of Chip 3 for use
in Chip 2 reduces the number of iterations to 400, 1004 and
276, respectively. Reduction is observed in all cases, although
its magnitude varies across chips and datasets.
RCMC: While the MC calibration solution provides signifi-
cant training time reduction over BL, our results indicate that
the savings are higher when combined with RC. Indeed, as
shown in the second sub-row of each main row of the table
shown in Fig. 11, first calibrating resources through intelligent
neuron selection and sigmoid function matching, and then
calibrating a ported model through sectional and incremental
training, results in an order of magnitude better training time
reduction than the MC method on its own. Overall, when using
the proposed combined RCMC solution in our experiments,
we achieved a training time reduction of up to 98% (i.e., from
1873 to 36 iterations when porting to Chip 2 a model that was
trained on Chip 3 to separate the first dataset).

To assist in contrasting the training time improvement
achieved by the proposed solutions, the data from the table
in Fig. 11 is also visualized in Fig. 12. The histograms
corroborate our earlier observations, namely the significant
training time reduction that the MC solution achieves over
BL, as well as the drastically improved training time reduction
that the combined RCMC solution accomplishes, making it the
indisputable winner and method of choice.

V. CONCLUSION

Analog ANN implementations promise significant advan-
tages in applications such as world-machine interfaces, where
rapid, low-power sensing, computation and actuation is re-
quired. Such implementations, however, are susceptible to

Figure 12: Comparison of Training Time for BL, MC and
RCMC Solutions.

parametric differences introduced by manufacturing process
variation, thereby introducing a new set of challenges for
training an accurate model. Indeed, porting weights learned
through training an equivalent software model to an analog
ANN chip, or even porting weights learned through chip-in-
the-loop training from one chip to another identically fab-
ricated chip, results in significant accuracy loss. Moreover,
while chip-in-the-loop training can address the problem, the
training time required is a significant limitation. To alleviate
this overhead, we developed an array of solutions that take into
account the impact of process variation on both the source and
the target chip and employ hardware resource calibration along
with sectional and incremental training, while porting a model.
Thereby, as we demonstrated in silicon using three copies of
an analog ANN experimentation platform, the training time
required is significantly reduced. Future efforts will focus
on extending this study across a larger number of fabricated
ICs, using more elaborate analog ANN topologies and more
complex datasets, as well as on developing testing and error
mitigation techniques for analog ANN chips, an emerging area
that yet to be thoroughly investigated [21].
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